首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Heat stress can inhibit follicular development in dairy cows, and thus can affect their reproductive performance. Follicular granulosa cells can synthesize estrogen, that affects the development and differentiation of follicles by apoptosis. Heme oxygenase 1 (HO-1/heat shock protein 32) plays an antiapoptotic and cytoprotective role in various cells during stress-induced apoptosis, but little is known about its definitive function in bovine (ovarian) granulosa cells (bGCs). In our study, the roles and mechanism of HO-1 on the heat stress-induced apoptosis of bGCs were studied. Our results show that the expression of HO-1 was significantly increased under heat stress. Moreover, HO-1 silencing increased apoptosis, whereas its overexpression dampened apoptosis by regulating the expression of Bax/Bcl-2 and the levels of cleaved caspase-3. In addition, HO-1 can also play a cytoprotective role by affecting estrogen levels and decomposing heme to produce biologically active metabolite carbon monoxide (CO). Meanwhile, CO significantly increased the level of HO-1, decreased Bax/Bcl-2 levels, and inhibited the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway. The apoptosis of ovarian GCs can affect the secretion of estrogen and lead to disorder of the ovarian microenvironment, thus affecting the normal function of the ovary. Our results indicate that HO-1 acts as a cytoprotective enzyme and plays a protective role in heat-induced apoptosis of bGCs. In conclusion, HO-1 and its metabolite CO inhibit the apoptosis of bGCs induced by heat stress through the ERK1/2 pathway. The results of this study provide a valuable clue for improving the fertility of heat stressed cows in summer.  相似文献   

3.
BMP I type receptor inhibitor can selectively inhibit BMP/Smad signaling pathways, mainly by inhibiting the BMP I type receptor activity to prevent phosphorylation of Smad1, Smad5 and Smad9. The aim of the present study was to explore the effects of mouse ovarian granulosa cell function and related gene expression by suppressing BMP/Smad signaling pathway with LDN-193189(A type of BMP I type receptor inhibitor). In this study, we cultivate the original generation of mouse ovarian granular cells then collect cells and cell culture medium after treatment. Cellular localization and expression of Smad9 and P-smad9 proteins was studied by immunofluorescence (IF) in the ovarian granulosa cells of mouse; Related genes mRNA and proteins expression was checked by QRT-PCR and Western blot; Detected the concentration of related hormones by using ELISA kit; finally, the growth of the cells was analyzed by plotting cell growth curve with CCK-8 assay. The results indicate that, suppression of BMP/Smad signaling pathway can inhibit the expression of LHR and FSHR, inhibit cell proliferation and decrease E2 secretion, the mechanism of action maybe reduce the expression of smad9, at the same time, we found that the feedback regulation of smad9 may affect the expression of FSHR and cell proliferation.  相似文献   

4.
ABSTRACT

Polycystic ovary syndrome (PCOS) is recognized as a general endocrine disease and reproductive disorder. Although evidence indicates that PCOS has a complex etiology and genetic basis, the pathogenic mechanisms and signal pathway in PCOS remain unclear. In this study, the normal structure of follicle and corpus luteum were observed, and no cyst nor hyperemia was observed under the light microscopic study with hematoxylin and eosin (H&E) staining. Eestosterone and progesterone were evaluated by radioimmunoassay in rat serum. The alterations of proliferative ability and cell cycle distribution of each group were assessed by Cell Counting Kit-8 (CCK8) assay and flow cytometry. The protein expression of p-mTOR/mTOR, p-PI3K/PI3K, p-AKT/AKT, and GAPDH were analyzed by western blotting. Both doses of PLB could benefit the ovarian morphology and polycystic property. PLBinduced a suppress effect on the proliferation of rat ovarian granulosa cells. In addition, PLB also induced concentration-dependent apoptosis in rat ovarian granulosa cells. The rat ovarian granulosa cells treated with PLB that the expression levels of p-AKT, p-mTOR, and p-PI3K were significantly decreased in a concentration-dependent manner. PLB not only plays a critical role in attenuating the pathology and polycystic property changes in the ovary but can also induce rat ovarian granulosa cell apoptosis through the PI3K/Akt/mTOR signal pathway. This study showed the innovative role of PLB in the pathogenesis of PCOS and provides a new therapeutic modality for the treatment of PCOS.  相似文献   

5.
Glioma is the most common type of primary intracranial tumor. Dysregulation of circular RNAs (circRNAs) plays a critical role in multiple solid tumors. However, the expression profiles of circRNAs and their functions in glioma have been rarely studied. The current work aims to investigate the clinical significance of a novel circRNA, circ-POSTN, in glioma and explore its biological functions and mechanisms in the progression of glioma. We found that circ-POSTN was highly expressed in glioma tissue samples and cells. High circ-POSTN expression was significantly linked to larger tumor size, higher World Health Organization grades, and shorter overall survival. Furthermore, silencing of circ-POSTN in glioma cells could decrease cell growth, migratory and invasive potential, and induce cell apoptosis in LN229 cells. On the contrary, ectopically expressed circ-POSTN induced the opposite effects in the U251 cell line. By bioinformatic prediction and luciferase reporter assay, we identified that miR-1205 could be sponged by circ-POSTN. Further rescue assays demonstrated that the oncogenic functions of circ-POSTN are partly attributed to its regulation of miR-1205 in glioma cells. Taken together, our data suggest that circ-POSTN plays an oncogenic role in glioma progression and may serve as a novel therapeutic target in this deadly disease.  相似文献   

6.
Idiopathic short stature (ISS) is a main reason for low height among children. Its exact aetiology remains unclear. Recent findings have suggested that the aberrant expression of circRNAs in peripheral blood samples is associated with many diseases. However, to date, the role of aberrant circRNA expression in mediating ISS pathogenesis remains largely unknown. The up-regulated circANAPC2 was identified by circRNA microarray analysis and RT-qPCR. Overexpression of circANAPC2 inhibited the proliferation of human chondrocytes, and cell cycle was arrested in G1 phase. The expressions of collagen type X, RUNX2, OCN and OPN were significantly down-regulated following circANAPC2 overexpression. Moreover, Von Kossa staining intensity and alkaline phosphatase activity were also decreased. Luciferase reporter assay results showed that circANAPC2 could be targeted by miR-874-3p. CircANAPC2 overexpression in human chondrocytes inhibits the expression of miR-874-3p. The co-localization of circANAPC2 and miR-874-3p was confirmed in both human chondrocytes and murine femoral growth plates via in situ hybridization. The rescue experiment demonstrated that the high expression of miR-874-3p overexpression antagonized the suppression of endochondral ossification, hypertrophy and chondrocyte growth caused by circANAPC2 overexpression. A high-throughput screening of mRNA expression and RT-qPCR verified SMAD3 demonstrated the highest different expressions following overcircANAPC2. Luciferase reporter assay results indicated that miR-874-3p could be targeted by Smad3, thus down-regulating the expression of Smad3. Subsequent rescue experiments of SMAD3 further confirmed that circANAPC2 suppresses endochondral ossification, hypertrophy and chondrocyte growth through miR-874-3p/Smad3 axis. The present study provides evidence that circANAPC2 can serve as a promising target for ISS treatment.  相似文献   

7.
Recent findings suggest that ephrinA5 (Efna5) has a novel role in female mouse fertility, in addition to its well-defined role as a neurogenesis factor. Nevertheless, its physiological roles in ovarian granulosa cells (GC) have not been determined. In this study, mouse GC were cultured and transfected with ephrin A5 siRNA and negative control to determine the effects of Efna5 on GC apoptosis, proliferation, cell cycle progression, and related signaling pathways. To understand the mode signaling, the mRNA expression levels of Efna5 receptors (Eph receptor A5, Eph receptor A3, Eph receptor A8, and Eph receptor B2) were examined. Both mRNA and protein expressions of apoptosis-related factors (Bax, Bcl-2, Caspase 8, Caspase 3, and Tnfα) and a proliferation marker, Pcna, were investigated. Additionally, the role of Efna5 on paracrine oocyte-secreted factors and steroidogenesis hormones were also explored. Efna5 silencing suppressed GC apoptosis by downregulating Bax and upregulating Bcl-2 in a Caspase 8-dependent manner. Efna5 knockdown promoted GC proliferation via p-Akt and p-ERK pathway activation. The inhibition of Efna5 enhanced BMH15 and estradiol expression, but suppressed GDF9, while progesterone level remained unaltered. These results demonstrated that Efna5 is a pro-apoptotic agent in GC and plays important role in folliculogenesis by mediating apoptosis, proliferation, and steroidogenesis in female mouse. Therefore Efna5 might be potential therapeutic target for female fertility disorders.  相似文献   

8.
Cutaneous melanoma (CM) has become a major public health concern. Studies illustrate that minichromosome maintenance protein 7 (MCM7) participate in various diseases including skin disease. Our study aimed to study the effects of MCM7 silencing on CM cell autophagy and apoptosis by modulating the AKT threonine kinase 1 (AKT1)/mechanistic target of rapamycin kinase (mTOR) signaling pathway. Initially, microarray analysis was used to screen the CM-related gene expression data as well as differentially expressed genes. Subsequently, MCM7 expression vector and lentivirus RNA used for MCM7 silencing (LV-shRNA-MCM7) were constructed, and these vectors, dimethyl sulfoxide (DMSO) and AKT activator SC79 were then introduced into CM cell line SK-MEL-2 to validate the role of MCM7 in cell autophagy, viability, apoptosis, cell cycle, migration, and invasion. To further investigate the regulatory mechanisms of MCM7 in CM progress, the expression of MCM7, AKT1, mTOR, cyclin D1, as well as autophagy and apoptosis relative factors, such as LC3B, SOD2, DJ-1, p62, Bcl-2, Bax, and caspase-3 in melanoma cells was determined. MCM7 might mediate the AKT1/mTOR signaling pathway to influence the progress of melanoma. MCM7 silencing contributed to the increased expression of Bax, capase-3, and autophagy-related genes (LC3B, SOD2, and DJ-1), but decreased the expression of Bcl-2, which suggested that MCM7 silencing promoted autophagy and cell apoptosis. At the same time, MCM7 silencing also attenuated cell viability, invasion, and migration, and reduced the cyclin D1 expression and protein levels of p-AKT1 and p-mTOR. Taken together, MCM7 silencing inhibited CM via inactivation of the AKT1/mTOR signaling pathway.  相似文献   

9.
Owing to the avascular environment within ovarian follicles, granulosa cells (GCs) are believed to live in a hypoxic niche. Follicle-stimulating hormone (FSH)-mediated steroidogenesis is crucial for normal growth and maturation of ovarian follicles, but it remains unclear how FSH stimulates estradiol (E2) synthesis under hypoxic conditions. Here, we aimed to explore whether FSH affects the ATP production required for estrogen synthesis from the perspective of glucose metabolism. It was observed that the levels of both E2 and HIF-1α were markedly increased in a dose-dependent manner in mouse ovarian GCs after the injection of FSH in vivo, indicating that hypoxia/HIF-1α may be relevant to FSH-induced E2 synthesis. By treating hypoxic GCs with FSH in vitro, we further revealed that the activation of the AMP-activated protein kinase (AMPK)–GLUT1 pathway, which in turn stimulates ATP generation, may be essential for FSH-mediated E2 production during hypoxia. In contrast, inhibition of AMPK or GLUT1 with siRNAs/antagonist both repressed glycolysis, ATP production, and E2 synthesis despite FSH treatment. Moreover, blocking HIF-1α activity using siRNAs/PX-478 suppressed AMPK activation, GLUT1 expression, and E2 levels in FSH-treated GCs. Finally, the in vitro findings were verified in vivo, which showed markedly increased AMPK activity, GLUT1 expression, glycolytic flux, ATP levels, and E2 concentrations in ovarian GCs following FSH injection. Taken together, these findings uncovered a novel mechanism for FSH-regulating E2 synthesis in hypoxic GCs by activating glycolytic metabolism through the HIF-1α–AMPK–GLUT1 pathway.  相似文献   

10.
Imidazolium trans-imidazoledimethylsulfoxide-tetrachlororuthenate (NAMI-A) is a new ruthenium compound active against lung metastasis in vivo and tumor cell invasion in vitro. Since angiogenesis was recognized as a key event in the metastasizing process, the manipulation of neo-vessel formation has been developed as a new therapeutic approach. Within this context, a pivotal role for apoptosis in regulating cellular growth has been proposed. In the present study, we exposed to NAMI-A the spontaneously transformed human endothelial cell line ECV304 and assessed a number of apoptosis-related features, including the DNA degradation rate, the activation of caspase-3 protease, the expression of Hsp27, and the release of cytochrome c. Cell treatment with NAMI-A elicited a significant increment in the apoptotic response, as indicated by DNA fragmentation and caspase-3 activation, two classical hallmarks of cellular suicide. Furthermore, NAMI-A was able to down-regulate Hsp27 protein expression and provoke the release of mitochondrial cytochrome c in the cytosol. Here, we analyze the involvement of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signal transduction pathway in the induction of apoptosis elicited by NAMI-A. Such a response was associated with a marked inhibition of MAPK/ERK kinase (MEK) and ERK phosphorylation with a time course and dose dependency overlapping those observed throughout NAMI-A-induced apoptosis. In addition, we report that PD98059, a selective MEK inhibitor, is able to induce apoptosis by itself in the ECV304 cell line. These results suggest that inhibition of MEK/ERK signaling by NAMI-A may have an important role in modulating an apoptotic event in ECV304.  相似文献   

11.
12.
13.
Long non-coding RNAs (LncRNAs) play essential roles in the development of various diseases including hepatic carcinoma, melanoma, and psoriasis. Meanwhile, lncRNA-RP6-65G23.1 was upregulated in psoriasis. However, it is still unclear whether lncRNA-RP6-65G23.1 expression is upregulated and contributes to keratinocytes proliferation and apoptosis, and which mechanisms are responsible for these processes. The aims of this study are to address these issues. RP6-65G23.1 was significantly upregulated in M5-stimulated keratinocytes and stimulated the proliferation and inhibited the apoptosis of HaCaT cells. Knockdown of RP6-65G23.1 resulted in defects of growth and increased rates of apoptosis in HaCaT cells, while overexpression of RP6-65G23.1 manifested the opposite effects. Consistently, the expression of antiapoptotic proteins Bcl-xl and Bcl2 were decreased in RP6-65G23.1-knockdown cells but elevated in RP6-65G23.1 overexpression cells. In addition, RP6-65G23.1 depletion blunted the activity of extracellular regulated kinase 1/2 (ERK1/2) and AKT signaling pathways and induced G1/S-growth arrest. By contrast, overexpression of RP6-65G23.1 activates the ERK1/2 and AKT signaling pathways and inhibits the expression of p21 and p27 in an AKT-dependent manner leading to promote the G1/S progression. Our results suggested that lncRNA-RP6-65G23.1 would contribute to the pathogenesis of psoriasis by regulating the proliferation and apoptosis of keratinocytes via the p-ERK1/2 and p-AKT pathways.  相似文献   

14.
15.
Previous studies have shown that the ovarian failure in autoimmune‐induced premature ovarian failure (POF) mice could be improved by the transplantation of human placenta‐derived mesenchymal stem cells (hPMSCs); however, the protective mechanism of hPMSCs transplantation on ovarian dysfunction remains unclear. Ovarian dysfunction is closely related to the apoptosis of granulosa cells (GCs). To determine the effects of hPMSCs transplantation on GCs apoptosis, an autoimmune POF mice model was established with zona pellucida glycoprotein 3 (ZP3) peptide. It is reported that the inositol‐requiring enzyme 1α (IRE1α) and its downstream molecules play a central role in the endoplasmic reticulum (ER) stress‐induced apoptosis pathway. So the aim of this study is to investigate whether hPMSCs transplantation attenuated GCs apoptosis via inhibiting ER stress IRE1α signaling pathway. The ovarian dysfunction, follicular dysplasia, and GCs apoptosis were observed in the POF mice. And the IRE1α pathway was activated in ovaries of POF mice, as demonstrated by, increased X‐box binding protein 1 (XBP1), up‐regulated 78 kDa glucose‐regulated protein (GRP78) and caspase‐12. Following transplantation of hPMSCs, the ovarian structure and function were significantly improved in POF mice. In addition, the GCs apoptosis was obviously attenuated and IRE1α pathway was significantly inhibited. Transplantation of hPMSCs suppressed GCs apoptosis‐induced by ER stress IRE1α signaling pathway in POF mice, which might contribute to the hPMSCs transplantation‐mediating ovarian function recovery.  相似文献   

16.
miR-1275 is one of the microRNAs (miRNAs) that are differentially expressed during follicular atresia in pig ovaries, as identified by a miRNA microarray assay in our previous study [1]. However, its functions in follicular atresia remain unknown. In this study, we showed that miR-1275 promotes early apoptosis of porcine granulosa cells (pGCs) and the initiation of follicular atresia, and inhibits E2 release and expression of CYP19A1, the key gene in E2 production. Bioinformatics and luciferase reporter assays revealed that liver receptor homolog (LRH)-1, not CYP19A1, is a direct functional target of miR-1275. In vitro overexpression and knockdown experiments showed that LRH-1 significantly repressed apoptosis and induced E2 secretion and CYP19A1 expression in pGCs. LRH-1, whose expression was regulated by miR-1275, prevented apoptosis in pGCs. Furthermore, luciferase and chromatin immunoprecipitation assays demonstrated that LRH-1 protein bound to the CYP19A1 promoter and increased its activity. Our findings suggest that miR-1275 attenuates LRH-1 expression by directly binding to its 3’UTR. This prevents the interaction of LRH-1 protein with the CYP19A1 promoter, represses E2 synthesis, promotes pGC apoptosis, and initiates follicular atresia in porcine ovaries.  相似文献   

17.
Several long noncoding RNAs (lncRNAs) have been identified in various malignant tumors and determined to contribute to the process of tumorigenesis, including that of colorectal cancer (CRC). Cancer stem cells (CSCs) have been demonstrated to promote the expansion and maintain the invasion and metastasis of cancer cells, owing to their self-renewal capacity. However, the underlying modulation mechanism of CSC-associated lncRNAs in CRC remains largely unclear. Using integrated bioinformatic analysis, we identified a novel lncRNA (lncRNA-cCSC1) that is highly expressed in CRC and colorectal cancer stem cells (CRCSCs). The biological functions of lncRNA-cCSC1 were assessed in vitro and vivo through the silencing or upregulation of its expression. The depletion of lncRNA-cCSC1 markedly inhibited the self-renewal capacity of the CRCSCs and reduced their drug resistance to 5-fluorouracil. In contrast, lncRNA-cCSC1 overexpression increased the self-renewal effect. Furthermore, aberrant lncRNA-cCSC1 expression resulted in a concomitant alteration of smoothened (SMO) and GLI family zinc finger 1 (Gli1) expression in the Hedgehog (Hh) signaling pathway. Our study is the first to identify a novel lncRNA-cCSC1 in CRC and to indicate that it may regulate CSC-like properties via the Hh signaling pathway. Thus, lncRNA-cCSC1 could be a potential biomarker and promising therapeutic target for CRC.  相似文献   

18.
Circular RNAs (circRNAs) have been extensively studied in many tumors. The aim of this study was to demonstrate the relationship between circRNAs and clinical features, prognosis, and diagnosis of osteosarcoma patients. We mainly included studies about circRNAs expression and osteosarcoma. The odds ratio (ORs) and 95% confidence intervals (CIs) were used for clinical features, sensitivity, and specificity, while the hazard ratios (HRs) and 95% CIs were used to assess overall survival (OS). A number of 13 articles were included in this study, including 9 about clinical features, 11 about prognosis, and 5 about diagnosis. The results showed that increased circRNAs expression was significantly correlated with adverse clinical characteristics. In terms of prognosis, oncogenic circRNAs had adverse effects on overall survival (OS: HR = 2.54; 95%Cl: 2.05–3.03), and increased expression of cancer-suppressor circRNAs prolonged survival (OS: HR = 0.42; 95%Cl: 0.210.64). Our study further showed an AUC of 0.85, with an 80% sensitivity and 77% specificity to distinguish osteosarcoma patients from healthy controls. In conclusion, circRNAs may be new promising indicators for prognostic evaluation and early diagnosis of osteosarcoma patients.  相似文献   

19.
Circular RNAs (circRNAs) have been regarded as critical regulators of human diseases and biological markers in some types of malignancies, including pancreatic ductal adenocarcinoma (PDAC). Recently, circ_0007534 has been identified as a novel cancer-related circRNA. Nevertheless, its clinical relevance, functional roles, and mechanism have not been studied in PDAC. In the current study, real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression of circ_0007534 in 60-paired PDAC tissue samples and different cell lines. Loss-of-function and gain-of-function assays were performed to detect cell proliferation, apoptosis, and metastatic properties affected by circ_0007534. An animal study was also carried out. The luciferase reporter assay was performed to uncover the underlying mechanism of circ_0007534. As a result, circ_0007534 was overexpressed not only in PDAC tissues but also in a panel of PDAC cell lines, and this overexpression is closely associated with advanced tumor stage and positive lymph node invasion. In addition, circ_0007534 may be regarded as an independent prognostic factor for patients with PDAC. For the part of functional assays, circ_0007534 significantly increased cell proliferation, migratory, and invasive potential of PDAC cells. Circ_0007534 could inhibit cell apoptosis partly via a Bcl-2/caspase-3 pathway. The xenograft study further confirmed the cell growth promoting the role of circ_0007534. Mechanistically, miR-625 and miR-892b were sponged by circ_0007534. The oncogenic functions of circ_0007534 is partly dependent on its regulation of miR-625 and miR-892b. In conclusion, our study illuminates a novel circRNA that confers an oncogenic function in PDAC.  相似文献   

20.
Hepatocellular carcinoma (HCC) is one of the most frequent malignancies and a main cause of global cancer mortality. In the past decade, circular RNAs (circRNAs) have been proved to play key roles in various cancers. Previously, circ_0008450 was identified upregulated in HCC tissues by high-throughput circRNA sequencing. In this study, quantitative real-time polymerase chain reaction was used to evaluate the expression level of circ_0008450 in human HCC tumor and corresponding nontumor tissue samples, and the association between circ_0008450 expression and clinicopathologic features of patients with HCC was also analyzed. After that, the functions of circ_0008450 in biological behaviors of HCC cells were determined by cell counting kit-8, colony formation, flow cytometry, and the transwell assays. The mechanism of circ_0008450 was explored by the bioinformatic analysis and dual-luciferase reporter assay. The expression of circ_0008450 is upregulated in HCC tissue specimens and cell lines. Patients with a high circ_0008450 expression usually bear a lower 5-year survival rate. Silencing of circ_0008450 in Huh-7 cells inhibited cell viability, migration, and invasion, whereas cell apoptosis was increased. Conversely, its overexpression in HepG2 cells leads to absolutely inverse results. In addition, circ_0008450 was proved to be a sponge of miR-548p. The oncogenic role of circ_0008450 was partially attributed to its suppression on miR-548p. This study implies a new target for the treatment of HCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号