首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Programmed cell death (PCD) is a common process in eukaryotes during development and in response to pathogens and stress signals. Bax inihibitor-1 (BI-1) is proposed to be a cell death suppressor that is conserved in both animals and plants, but the physiological importance of BI-1 and the impact of its loss of function in plants are still unclear. In this study, we identified and characterized two independent Arabidopsis mutants with a T-DNA insertion in the AtBI1 gene. The phenotype of atbi1-1 and atbi1-2, with a C-terminal missense mutation and a gene knockout, respectively, was indistinguishable from wild-type plants under normal growth conditions. However, these two mutants exhibit accelerated progression of cell death upon infiltration of leaf tissues with a PCD-inducing fungal toxin fumonisin B1 (FB1) and increased sensitivity to heat shock-induced cell death. Under these conditions, expression of AtBI1 mRNA was up-regulated in wild-type leaves prior to the activation of cell death, suggesting that increase of AtBI1 expression is important for basal suppression of cell death progression. Over-expression of AtBI1 transgene in the two homozygous mutant backgrounds rescued the accelerated cell death phenotypes. Together, our results provide direct genetic evidence for a role of BI-1 as an attenuator for cell death progression triggered by both biotic and abiotic types of cell death signals in Arabidopsis.  相似文献   

3.
Methyl jasmonate (MeJA) is an important signalling molecule that has been reported to be able to promote plant senescence. The cell death suppressor Bax inhibitor-1 (BI1) has been found to suppress stress factor-mediated cell death in yeast and Arabidopsis. However, the effect and the genetic mechanism of Arabidopsis thaliana BI1 (AtBI1) on leaf senescence remain unclear. It was found here that the AtBI1 mutant, atbi1-2 (a gene knock-out), showed accelerated progression of MeJA-induced leaf senescence, while the AtBI1 complementation lines displayed similar symptoms as the WT during the senescence process. In addition, over-expression of the AtBI1 gene delayed the onset of MeJA-induced leaf senescence. Further analyses showed that during the process of MeJA-induced senescence, the activity of MPK6, a mitogen-activated protein kinase (MAPK), increased in WT plants, whereas it was significantly suppressed in AtBI1-overexpressing plants. Under the MeJA treatment, cytosolic calcium ([Ca(2+)](cyt)) functioned upstream of MPK6 activation and the elevation of [Ca(2+)](cyt) was reduced in AtBI1-overexpressing leaves. These results suggested a role of AtBI1 over-expression in delaying MeJA-induced leaf senescence by suppressing the [Ca(2+)](cyt)-dependent activation of MPK6, thus providing a new insight into the function and mechanism of AtBI1 in plant senescence.  相似文献   

4.
5.
6.
7.
8.
Disruption of the protein-folding capacity in the ER induces the accumulation of unfolded proteins and ER stress, which activate the unfolded protein response (UPR). Although UPR has been extensively studied in yeast and mammals, much less is known about UPR and its relationship with light in plants. Here, we examined the effects of chemically induced UPR and light on a molecular marker of UPR (binding protein, BiP2, gene expression) and a secretory green fluorescent protein marker (GFP-2SC) that is trafficked from the ER to vacuole in Arabidopsis thaliana (L). UPR, which was induced by DTT and tunicamycin (TM), increased Bip2 mRNA levels and decreased the levels of microsomal and vacuolar forms of GFP-2SC. Treatment with protease inhibitors lessened the effects of DTT and TM on GFP-2SC, indicating the decrease in GFP levels partially involved protein degradation. Light treatments synergistically enhanced the decrease in GFP levels in both the ER and vacuole and induced the expression of UPR marker genes for BiP2 and protein disulfide isomerase (PDI, EC 5.3.4.1). DTT and TM treatments required light for maximal induction of the UPR. Light-induced UPR occurred during the daily dark to light cycle and when dark-adapted plants were exposed to light. We propose that light activates the UPR to increase the protein folding capacity in the ER to accommodate an increase in translation during dark to light transitions.  相似文献   

9.
Stresses increasing the load of unfolded proteins that enter the endoplasmic reticulum (ER) trigger a protective response termed the unfolded protein response (UPR). Stromal cell-derived factor2 (SDF2)-type proteins are highly conserved throughout the plant and animal kingdoms. In this study we have characterized AtSDF2 as crucial component of the UPR in Arabidopsis thaliana. Using a combination of biochemical and cell biological methods, we demonstrate that SDF2 is induced in response to ER stress conditions causing the accumulation of unfolded proteins. Transgenic reporter plants confirmed induction of SDF2 during ER stress. Under normal growth conditions SDF2 is highly expressed in fast growing, differentiating cells and meristematic tissues. The increased production of SDF2 due to ER stress and in tissues that require enhanced protein biosynthesis and secretion, and its association with the ER membrane qualifies SDF2 as a downstream target of the UPR. Determination of the SDF2 three-dimensional crystal structure at 1.95 Å resolution revealed the typical β-trefoil fold with potential carbohydrate binding sites. Hence, SDF2 might be involved in the quality control of glycoproteins. Arabidopsis sdf2 mutants display strong defects and morphological phenotypes during seedling development specifically under ER stress conditions, thus establishing that SDF2-type proteins play a key role in the UPR.  相似文献   

10.
To identify potentially novel and essential components of plant membrane trafficking mechanisms we performed a GFP-based forward genetic screen for seedling-lethal biosynthetic membrane trafficking mutants in Arabidopsis thaliana. Amongst these mutants, four recessive alleles of GSH2, which encodes glutathione synthase (GSH2), were recovered. Each allele was characterized by loss of the typical polygonal endoplasmic reticulum (ER) network and the accumulation of swollen ER-derived bodies which accumulated a soluble secretory marker. Since GSH2 is responsible for converting γ-glutamylcysteine (γ-EC) to glutathione (GSH) in the glutathione biosynthesis pathway, gsh2 mutants exhibited γ-EC hyperaccumulation and GSH deficiency. Redox-sensitive GFP revealed that gsh2 seedlings maintained redox poise in the cytoplasm but were more sensitive to oxidative challenge. Genetic and pharmacological evidence indicated that γ-EC accumulation rather than GSH deficiency was responsible for the perturbation of ER morphology. Use of soluble and membrane-bound ER markers suggested that the swollen ER bodies were derived from ER fusiform bodies. Despite the gross perturbation of ER morphology, gsh2 seedlings did not suffer from constitutive oxidative ER stress or lack of an unfolded protein response, and homozygotes for the weakest allele could be propagated. The link between glutathione biosynthesis and ER morphology and function is discussed.  相似文献   

11.
The accumulation of unfolded proteins in the endoplasmic reticulum (ER) triggers the unfolded protein response (UPR), a stress signaling pathway. The UPR coordinates the induction of ER chaperones with decreased protein synthesis and growth arrest in G1 phase of the cell cycle. However, the molecular mechanism underlying UPR-induced G1 cell cycle arrest remains largely unknown. Here we report that activation of the UPR response by tunicamycin (TM), an ER stress inducer, leads to accumulation of p27 and G1 cell cycle arrest in melanoma cells. This accumulation of p27 is due to the inhibition on its polyubiquitination and subsequent degradation upon TM treatment. Correlated with p27 stabilization, the levels of Skp2, an E3 ligase for p27, are decreased in response to TM treatment. More importantly, knockdown of p27 greatly reduces TM-induced G1 cell cycle arrest. Taken together, these data implicate p27 as a critical mediator of ER stress-induced growth arrest.  相似文献   

12.
The ER body is a novel compartment that is derived from endoplasmic reticulum (ER) in Arabidopsis. In contrast to whole seedlings which have a wide distribution of the ER bodies, rosette leaves have no ER bodies. Recently, we reported that wound stress induces the formation of many ER bodies in rosette leaves, suggesting that the ER body plays a role in the defense system of plants. ER bodies were visualized in transgenic plants (GFP-h) expressing green fluorescent protein (GFP) with an ER-retention signal, HDEL. These were concentrated in a 1000-g pellet (P1) of GFP-h plants. We isolated an Arabidopsis mutant, nai1, in which fluorescent ER bodies were hardly detected in whole plants. We found that a 65-kDa protein was specifically accumulated in the P1 fraction of GFP-h plants, but not in the P1 fraction of nai1 plants. N-terminal peptide sequencing revealed that the 65-kDa protein was a beta-glucosidase, PYK10, with an ER-retention signal, KDEL. Immunocytochemistry showed that PYK10 was localized in the ER bodies. Compared with the accumulation of GFP-HDEL, which was associated with both cisternal ER and ER bodies, the accumulation of PYK10 was much more specific to ER bodies. PYK10 was one of the major proteins in cotyledons, hypocotyls and roots of Arabidopsis seedlings, while PYK10 was not detected in rosette leaves that have no ER bodies. These findings indicated that PYK10 is the main component of ER bodies. It is possible that PYK10 produces defense compounds when plants are damaged by insects or wounding.  相似文献   

13.
Long chain bases (LCBs) are sphingolipid intermediates acting as second messengers in programmed cell death (PCD) in plants. Most of the molecular and cellular features of this signaling function remain unknown. We induced PCD conditions in Arabidopsis thaliana seedlings and analyzed LCB accumulation kinetics, cell ultrastructure and phenotypes in serine palmitoyltransferase (spt), mitogen-activated protein kinase (mpk), mitogen-activated protein phosphatase (mkp1) and lcb-hydroxylase (sbh) mutants. The lcb2a-1 mutant was unable to mount an effective PCD in response to fumonisin B1 (FB1), revealing that the LCB2a gene is essential for the induction of PCD. The accumulation kinetics of LCBs in wild-type (WT) and lcb2a-1 plants and reconstitution experiments with sphinganine indicated that this LCB was primarily responsible for PCD elicitation. The resistance of the null mpk6 mutant to manifest PCD on FB1 and sphinganine addition and the failure to show resistance on pathogen infection and MPK6 activation by FB1 and LCBs indicated that MPK6 mediates PCD downstream of LCBs. This work describes MPK6 as a novel transducer in the pathway leading to LCB-induced PCD in Arabidopsis, and reveals that sphinganine and the LCB2a gene are required in a PCD process that operates as one of the more effective strategies used as defense against pathogens in plants.  相似文献   

14.
《Autophagy》2013,9(4):622-623
Eukaryotic cells have developed sophisticated strategies to contend with environmental stresses faced in their lifetime. Endoplasmic reticulum (ER) stress occurs when the accumulation of unfolded proteins within the ER exceeds the folding capacity of ER chaperones. ER stress responses have been well characterized in animals and yeast, and autophagy has been suggested to play an important role in recovery from ER stress. In plants, the unfolded protein response signaling pathways have been studied, but changes in ER morphology and ER homeostasis during ER stress have not been analyzed previously. Autophagy has been reported to function in tolerance of several stress conditions in plants, including nutrient deprivation, salt and drought stresses, oxidative stress, and pathogen infection. However, whether autophagy also functions during ER stress has not been investigated. The goal of our study was to elucidate the role and regulation of autophagy during ER stress in Arabidopsis thaliana.  相似文献   

15.
16.
The sustainability of global crop production is critically dependent on improving tolerance of crop plants to various types of environmental stress. Thus, identification of genes that confer stress tolerance in crops has become a top priority especially in view of expected changes in global climatic patterns. Drought stress is one of the abiotic stresses that can result in dramatic loss of crop productivity. In this work, we show that transgenic expression of a highly conserved cell death suppressor, Bax Inhibitor‐1 from Arabidopsis thaliana (AtBI‐1), can confer increased tolerance of sugarcane plants to long‐term (>20 days) water stress conditions. This robust trait is correlated with an increased tolerance of the transgenic sugarcane plants, especially in the roots, to induction of endoplasmic reticulum (ER) stress by the protein glycosylation inhibitor tunicamycin. Our findings suggest that suppression of ER stress in C4 grasses, which include important crops such as sorghum and maize, can be an effective means of conferring improved tolerance to long‐term water deficit. This result could potentially lead to improved resilience and yield of major crops in the world.  相似文献   

17.
18.
过量表达内质网小分子热激蛋白增强番茄的衣霉素抗性   总被引:4,自引:0,他引:4  
真核细胞内质网腔内未折叠蛋白的过度积累会引起内质网胁迫(ER胁迫),继而激活未折叠蛋白应答(UPR)信号途径,诱导内质网定位的分子伴侣的大量表达(如BiP和calnexin等)。本工作将CaMV35S启动子驱动的内质网小分子热激蛋白基因(ER-sHSP)导入番茄,发现ER-sHSP的过量表达提高了转基因番茄整株对衣霉素的抗性。衣霉素处理使未转基因番茄中BiP和calnexin基因的表达迅速升高,转基因番茄中这两个基因的表达也有增加,但表达强度明显低于未转基因番茄。说明ER-sHSP能够减轻ER胁迫,并可能参与UPR信号转导途径。  相似文献   

19.
20.
Plant root development is highly plastic in order to cope with various environmental stresses; many questions on the mechanisms underlying developmental plasticity of root system remain unanswered. Recently, we showed that autophagic PCD occurs in the region of root apical meristem in response to severe water deficit. We provided evidence that reactive oxygen species (ROS) accumulation may trigger the cell death process of the meristematic cells in the stressed root tips. Analysis of BAX inhibitor-1 (AtBI1) expression and the phenotypic response of atbi1-1 mutant under the severe water stress revealed that AtBI1 and the endoplasmic reticulum (ER) stress response pathway modulate water stress-induced PCD. As a result, the thick and short lateral roots with increased tolerance to the stress are induced. We propose that under severe drought condition, plants activate PCD program in the root apical root meristem, so that apical root dominance is removed. In this way, they can remodel their root system architecture to adapt the stress environment.Key words: Arabidopsis, adaptation, PCD, root system architecture, water stressPlant shoot apical dominance is well known. The axillary buds are inhibited by the growing shoot apical meristem, and they would not grow until the shoot apical meristems are decapitated.1 The same phenomenon has been found in the roots of dicot plants. Primary roots exhibit apical dominance over lateral roots and are able to penetrate deeply into the soil. Lateral root primordia were rapidly activated when primary root tips of lettuce (Lactuca sativa) were removed.2 It is apparent that apical meristem activity in shoots and roots determines lateral organs and the shapes of above ground and root system architecture under normal conditions. Many plants have active meristematic activity in their shoot and root tips through their whole life resulting in indeterminate development of their shoots and primary roots, whereas others generate branches at certain developmental stages when the meristematic activity and apical dominance become low.It has long been known that plants modify their root morphology, orientation and increase root biomass to maximize water and nutrient absorption.3,4 However, how the root morphology and architecture are changed in response to water shortage and what the underlying mechanisms are largely unknown. Previously, it has been reported that plants, due to their sessile nature, have developed a very important adaptive mechanism, namely hydrotropism to avoid the damage caused by water shortage. Plant roots can sense the moisture gradient and grow toward to water or moisture when they are grown at conditions with non-uniform water distribution.5 Recently, we found another key mechanism through which plants can remove root apical dominance and remodel their root system architecture, thus to minimize the damage caused by a uniform severe water shortage condition.6Firstly, we found that growth rates of the Arabidopsis plants germinated on normal conditions were reduced when the concentrations of PEG in the growth media was increased, and primary roots of the stressed plants completely ceased growth when the PEG concentrations reached 40% (w/v) in the agar medium, a severe water stress. The results showed that growth cessation of the stressed plants was caused by PCD of the cells in the region of root apical meristems, and the cells underwent autophagic cell death upon the most severe water deficit. Secondly, we demonstrated that AtBI-1, a marker gene which plays a critical role in protecting the cells from ER stress-induced PCD in plants, mediates water stress-induced PCD of the root meristem. Further observation of ROS accumulation in the root tips upon to the severe water stress suggests that the high level of the ROS may disrupt the ER homeostasis and ROS may act as a signal to trigger the PCD. Importantly, we found that the occurrence of PCD of the meristematic cells of the stressed plants promoted the development of lateral roots. These short and tublized lateral roots grew slowly under severe water stress, but they could immediately become normal lateral roots and resume their elongation and after rehydration. Plant growth is subsequently restored to complete their entire life cycle. However, the lateral roots induced by decapitating primary root tips under normal conditions did not continue elongation like the stress induced lateral roots, and they cannot restore their growth after rehydration.Based on these results, we propose that plants can sense the severity of water stress, initiate autophagic PCD of meristematic cells in Arabidopsis root tips through ER stress signaling pathway and stimulate lateral root development (Fig. 1). Death of meristematic cells results in the loss of mitotic cell division activity in meristem and eventual root meristem function. The outcome of PCD caused-loss of root meristem activity is same as the surgical removal of apical root tips. In both cases, lateral root primordia are activated and lateral root emergence is promoted. However, the main difference between water stress induced-loss of root meristem function and surgical decapitation of root tips is that the former induces lateral roots with enhanced stress tolerance plays key roles in post-stress recovery, whereas the latter promotes development of lateral roots do not alter stress response. This implicates that stress-induced loss of meristem function and subsequent occurrence of specified lateral roots are adaptive mechanisms for plants to cope with the severe water stress. In other words, plants induce cell death of root meristem for living better.Open in a separate windowFigure 1A simplified model depicting the role of PCD in root meristem in plastic development of root system architecture in response to water stress.It is known that auxin distribution and maxima play key roles in lateral root initiation and emergence.710 Alteration in auxin polar transport has been proposed as the main reason of decapitation induced lateral root development.11 It is conceivable that auxin is also involved in stress induced-lateral root formation and development, but it is clear that interplay between stress signaling cascades and developmental signalings occurs after perception of the stress signals by plant cells resulting in root system development remodeling. These findings provide novel insights into mechanisms of plants to adapt to the uniform severe water stress at organ, cellular and molecular levels. However, the research of plastic development of root system in response to water stress is still in its infancy. Combinatorial strategies for the investigation of stress induced-PCD of root meristematic cells and subsequent lateral root development will help to uncover the molecular mechanisms underlying this positive response of plants in response to severe water stress. In particular, further study of auxin redistribution under water stress and interaction between auxin and stress hormone signalings in remodeling root system architecture will further our understanding of how developmental plasticity of plant root system is regulated. The results will facilitate the improvement of drought tolerance in crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号