首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phytophthora species are devastating plant pathogens in both agricultural and natural environments. Due to their significant economic and environmental impact, there has been increasing interest in Phytophthora genetics and genomics, culminating in the recent release of three complete genome sequences (P. ramorum, P. sojae, and P. infestans). In this study, genome and other large sequence databases were used to identify over 225 potential genetic markers for phylogenetic analyses. Here, we present a genus-wide phylogeny for 82 Phytophthora species using seven of the most informative loci (approximately 8700 nucleotide sites). Our results support the division of the genus into 10 well-supported clades. The relationships among these clades were rigorously evaluated using a number of phylogenetic methods. This is the most comprehensive study of Phytophthora relationships to date, and many newly discovered species have been included. A more resolved phylogeny of Phytophthora species will allow for better interpretations of the overall evolutionary history of the genus.  相似文献   

2.
Sixteen microorganisms, including one eukaryote, four archaeons, and 11 eubacteria, have been completely sequenced and published. More than 50 genomes are scheduled to be completed by the year 2000. This explosive growth of information is forcing change in many scientific disciplines (e.g. bioinformatics and molecular genetics), spawning new fields, and even changing the way scientific information is used and shared. Novel, global genome sequence comparisons seem slow to appear but the infrastructure for these projects is being built, and we expect exciting developments in the near future.  相似文献   

3.
As part of an ongoing project to generate a mitochondrial database for terrestrial tortoises based on museum specimens, the complete mitochondrial genome sequences of 10 species and a approximately 14kb sequence from an eleventh species are reported. The sampling of the present study emphasizes Mediterranean tortoises (genus Testudo and their close relatives). Our new sequences are aligned, along with those of two testudinoid turtles from GenBank, Chrysemys picta and Mauremys reevesii, yielding an alignment of 14,858 positions, of which 3238 are parsimony informative. We develop a phylogenetic taxonomy for Testudo and related species based on well-supported, diagnosable clades. Several well-supported nodes are recovered, including the monophyly of a restricted Testudo, T. kleinmanni+T. marginata (the Chersus clade), and the placement of the enigmatic African pancake tortoise (Malacochersus tornieri) within the predominantly Palearctic greater Testudo group (Testudona tax. nov.). Despite the large amount of sequence reported, there is low statistical support for some nodes within Testudona and so we do not propose names for those groups. A preliminary and conservative estimation of divergence times implies a late Miocene diversification for the testudonan clade (6-10 million years ago), matching their first appearance in the fossil record. The multi-continental distribution of testudonan turtles can be explained by the establishment of permanent connections between Europe, Africa, and Asia at this time. The arrival of testudonan turtles to Africa occurred after one or more initial tortoise invasions gave rise to the diverse (>25 species) 'Geochelone complex.' Two unusual genomic features are reported for the mtDNA of one tortoise, M. tornieri: (1) nad4 has a shift of reading frame that we suggest is resolved by translational frameshifting of the mRNA on the ribosome during protein synthesis and (2) there are two copies of the control region and trnF, with the latter having experienced multiple-nucleotide substitutions in a pattern suggesting that each is being maintained by selection.  相似文献   

4.
Microbial genome sequences provide us with the fossil records for inferring their origination and evolution. Assuming that current microbial genomes are the evolutionary results of ancient genomes or fragments and the neighboring genes in ancient genomes are more likely neighbors in current genomes, in this paper we proposed a paleontological algorithm and assembled the orthologous gene groups from 66 complete and current microbial genome sequences into a pseudo-ancient genome, which consists of continuous fragments of various sizes. We performed bootstrap resampling and correlation analyses and the results showed that the assembled ancient genome and fragments are statistically significant and the genes of the same fragment are inherently related and likely derived from common ancestors. This method provides a new computational tool for studying microbial genome structure and evolution.  相似文献   

5.
A strategy for finding regions of similarity in complete genome sequences   总被引:1,自引:2,他引:1  
MOTIVATION: Complete genomic sequences will become available in the future. New methods to deal with very large sequences (sizes beyond 100 kb) efficiently are required. One of the main aims of such work is to increase our understanding of genome organization and evolution. This requires studies of the locations of regions of similarity. RESULTS: We present here a new tool, ASSIRC ('Accelerated Search for SImilarity Regions in Chromosomes'), for finding regions of similarity in genomic sequences. The method involves three steps: (i) identification of short exact chains of fixed size, called 'seeds', common to both sequences, using hashing functions; (ii) extension of these seeds into putative regions of similarity by a 'random walk' procedure; (iii) final selection of regions of similarity by assessing alignments of the putative sequences. We used simulations to estimate the proportion of regions of similarity not detected for particular region sizes, base identity proportions and seed sizes. This approach can be tailored to the user's specifications. We looked for regions of similarity between two yeast chromosomes (V and IX). The efficiency of the approach was compared to those of conventional programs BLAST and FASTA, by assessing CPU time required and the regions of similarity found for the same data set. AVAILABILITY: Source programs are freely available at the following address: ftp://ftp.biologie.ens. fr/pub/molbio/assirc.tar.gz CONTACT: vincens@biologie.ens.fr, hazout@urbb.jussieu.fr   相似文献   

6.
7.
A multi-locus time-calibrated phylogeny of the siphonous green algae   总被引:2,自引:0,他引:2  
The siphonous green algae are an assemblage of seaweeds that consist of a single giant cell. They comprise two sister orders, the Bryopsidales and Dasycladales. We infer the phylogenetic relationships among the siphonous green algae based on a five-locus data matrix and analyze temporal aspects of their diversification using relaxed molecular clock methods calibrated with the fossil record. The multi-locus approach resolves much of the previous phylogenetic uncertainty, but the radiation of families belonging to the core Halimedineae remains unresolved. In the Bryopsidales, three main clades were inferred, two of which correspond to previously described suborders (Bryopsidineae and Halimedineae) and a third lineage that contains only the limestone-boring genus Ostreobium. Relaxed molecular clock models indicate a Neoproterozoic origin of the siphonous green algae and a Paleozoic diversification of the orders into their families. The inferred node ages are used to resolve conflicting hypotheses about species ages in the tropical marine alga Halimeda.  相似文献   

8.

Background  

To date, most fungal phylogenies have been derived from single gene comparisons, or from concatenated alignments of a small number of genes. The increase in fungal genome sequencing presents an opportunity to reconstruct evolutionary events using entire genomes. As a tool for future comparative, phylogenomic and phylogenetic studies, we used both supertrees and concatenated alignments to infer relationships between 42 species of fungi for which complete genome sequences are available.  相似文献   

9.
10.

Background

Uniquely among hominoids, gibbons exist as multiple geographically contiguous taxa exhibiting distinctive behavioral, morphological, and karyotypic characteristics. However, our understanding of the evolutionary relationships of the various gibbons, especially among Hylobates species, is still limited because previous studies used limited taxon sampling or short mitochondrial DNA (mtDNA) sequences. Here we use mtDNA genome sequences to reconstruct gibbon phylogenetic relationships and reveal the pattern and timing of divergence events in gibbon evolutionary history.

Methodology/Principal Findings

We sequenced the mitochondrial genomes of 51 individuals representing 11 species belonging to three genera (Hylobates, Nomascus and Symphalangus) using the high-throughput 454 sequencing system with the parallel tagged sequencing approach. Three phylogenetic analyses (maximum likelihood, Bayesian analysis and neighbor-joining) depicted the gibbon phylogenetic relationships congruently and with strong support values. Most notably, we recover a well-supported phylogeny of the Hylobates gibbons. The estimation of divergence times using Bayesian analysis with relaxed clock model suggests a much more rapid speciation process in Hylobates than in Nomascus.

Conclusions/Significance

Use of more than 15 kb sequences of the mitochondrial genome provided more informative and robust data than previous studies of short mitochondrial segments (e.g., control region or cytochrome b) as shown by the reliable reconstruction of divergence patterns among Hylobates gibbons. Moreover, molecular dating of the mitogenomic divergence times implied that biogeographic change during the last five million years may be a factor promoting the speciation of Sundaland animals, including Hylobates species.  相似文献   

11.
The availability of sequence data derived from shotgun sequencing programs enables mining for simple sequence repeats (SSRs), providing useful genetic markers for crop improvement. This study presents the development and characterization of 40 SSR markers from Brassica oleracea shotgun sequence and their cross‐amplification across Brassica species. The markers show reliable amplification, genome specificity and considerable polymorphism, demonstrating the utility of SSRs for genetic analysis of commercial Brassica germplasm.  相似文献   

12.
Cucurbitaceae contain c. 800 species in 130 genera and are among the economically most important families of plants. We inferred their phylogeny based on chloroplast DNA sequences from two genes, one intron, and two spacers (rbcL, matK, trnL, trnL-trnF, rpl20-rps12) obtained for 171 species in 123 genera. Molecular data weakly support the traditional subfamilies Cucurbitoideae (111 genera) and Nhandiroboideae (19 genera, 60 species), and recover most of the eleven tribes, but almost none of the subtribes. Indofevillea khasiana is sister to all other Cucurbitoideae, and the genera of Joliffieae plus a few Trichosantheae form a grade near the base of Cucurbitoideae. A newly discovered large clade consists of the ancestrally Asian genera Nothoalsomitra, Luffa, Gymnopetalum, Hodgsonia, Trichosanthes, and the New World tribe Sicyeae. Genera that are poly- or paraphyletic include Ampelosicyos, Cucumis, Ibervillea, Neoachmandra, Psiguria, Trichosanthes, and Xerosicyos. Flower characters, especially number of free styles, fusion of filaments and/or anthers, tendril type, and pollen size, exine, and aperture number correlate well with the chloroplast phylogeny, while petal and fruit characters as well as karyotype exhibit much evolutionary flexibility.  相似文献   

13.
Phylogenetic relationships in Dipsacales have long been a major challenge. Although considerable progress has been made during the past two decades, questions remain; the uncertain systematic positions of Heptacodium, Triplostegia, and Zabelia, in particular, impede our understanding of Dipsacales evolution. Here we use 75 complete plastomic sequences to reconstruct the phylogeny of Dipsacales, of which 28 were newly generated. Two primary clades were recovered that form the phylogenetic backbone of Dipsacales. Seven of the primary clades correspond to the recognized families Adoxaceae, Caprifoliaceae s. str., Diervillaceae, Dipsacaceae, Linnaeaceae, Morinaceae, and Valerianaceae, and one corresponds to Zabelia, which was found to be the closest relative of Morinaceae in all analyses. Additionally, our results, with greatly increased confidence in most branches, show that Heptacodium and Triplostegia are members of Caprifoliaceae s. str. and Dipsacaceae, respectively. The results of our study indicate that the complete plastomic sequences provide a fully‐resolved and well‐supported representation of the phylogenetic relationships within Dipsacales.  相似文献   

14.
Species of Diaporthe (anamorph Phomopsis) comprise a diverse and widely distributed group of phytopathogens, saprophytes and endophytes. However, the degree of genetic diversity of endophytic Diaporthe has not yet been fully investigated. In this paper, a survey of endophytes from 28 plants in southeast China yielded 116 Diaporthe isolates, out of which 64 haplotypes were determined using DnaSP ver. 5.1 based on alignment result of internal transcribed spacer of ribosomal nucleotide sequences (ITS rDNA). Many haplotypes turned out to be quite different from known species and displayed high diversity. Among them, 14 strains from 5 discriminating terminal clades were selected to go through further analysis according to partial sequence of translation elongation factor 1-α (tef1-α) and again they got separated from others. The following multi-gene phylogenetic analysis based on ITS rDNA, tef1-α, β tubulin and calmodulin grouped eight most discrepant strains into three distinctive clusters, cluster 1 (Rc001, Eu004 and Eu009), cluster 2 (ZJWCF252, Sjm001 and Ac001) and cluster 3 (Pcs013 and Sfp005) respectively with high support values. These clusters above represent three potentially novel species. This research provides strong evidence of high biodiversity and novelty of Diaporthe endophytes from southeast China, which is thus important not only for better resolving the taxonomy in this genus, but also for further utilization due to their multiple application.  相似文献   

15.
Bread wheat (Triticum aestivum L.) is a hexaploid species with a large and complex genome. A reference genetic marker map, namely the International Triticeae Mapping Initiative (ITMI) map, has been constructed with the recombinant inbred line population derived from a cross involving a synthetic line. But it is not sufficient for a full understanding of the wheat genome under artificial selection without comparing it with intervarietal maps. Using an intervarietal mapping population derived by crossing Nanda2419 and Wangshuibai, we constructed a high-density genetic map of wheat. The total map length was 4,223.1 cM, comprising 887 loci, 345 of which were detected by markers derived from expressed sequence tags (ESTs). Two-thirds of the high marker density blocks were present in interstitial and telomeric regions. The map covered, mostly with the EST-derived markers, approximately 158 cM of telomeric regions absent in the ITMI map. The regions of low marker density were largely conserved among cultivars and between homoeologous subgenomes. The loci showing skewed segregation displayed a clustered distribution along chromosomes and some of the segregation distortion regions (SDR) are conserved in different mapping populations. This map enriched with EST-derived markers is important for structure and function analysis of wheat genome as well as in wheat gene mapping, cloning, and breeding programs.  相似文献   

16.
A molecular phylogeny of Phytophthora and related oomycetes   总被引:11,自引:0,他引:11  
Phylogenetic relationships among 50 Phytophthora species and between Phytophthora and other oomycetes were examined on the basis of the ITS sequences of genomic rDNA. Phytophthora grouped with Pythium, Peronospora, and Halophytophthora, distant from genera in the Saprolegniales. Albugo was intermediate between these two groups. Unlike Pythium, Phytophthora was essentially monophyletic, all but three species forming a cluster of eight clades. Two clades contained only species with nonpapillate sporangia. The other six clades included either papillate and semipapillate, or semipapillate and nonpapillate types, transcending traditional morphological groupings, which are evidently not natural assemblages. Peronospora was related to P. megakarya and P. palmivora and appears to be derived from a Phytophthora that has both lost the ability to produce zoospores and become an obligate biotroph. Three other Phytophthoras located some distance from the main Phytophthora-Peronospora cluster probably represent one or more additional genera.  相似文献   

17.
瓦氏黄颡鱼线粒体全基因组序列分析及系统进化   总被引:3,自引:0,他引:3  
鲿科鱼类种类繁多, 外形相似, 形态学分类较为困难。为了给鲿科鱼类乃至鲇形目鱼类的系统进化研究积累基础资料, 文章采用参照近缘物种线粒体基因组设计覆盖全基因组引物的方法, 利用16对引物对瓦氏黄颡鱼(Pelteobagrus vachelli)线粒体全基因组进行扩增, PCR产物转化到质粒后测序, 最终获得线粒体基因组全序列, 其全长为16 527 bp, 包括2个rRNA基因、22个tRNA基因、13个编码蛋白质基因和一个非编码控制区。瓦氏黄颡鱼(P. vachelli)线粒体基因组结构和基因排列顺序与现已公布的鲇形目鱼类完全一致, 序列分析表明, 与鲇形目其他种属间具有较高的同源性, 与拟鲿属的同源性最高(91%)。利用鲇形目共4科6属9种及3个外群的线粒体全基因组序列, 从线粒体基因组水平探讨了鲿科鱼类及其在鲇形目的系统进化地位, 结果表明: 鲿科鱼类的瓦氏黄颡鱼(P. vachelli)、黄颡鱼(Pelteobagrus fulvidraco)、光泽黄颡鱼(Pelteobagrus nitidus)及越南拟鲿(Pseudobagrus tokiensis)构成一单系群; 拟鲿属与黄颡鱼属的关系较近; 黄颡鱼属中瓦氏黄颡鱼(P. vachelli)与光泽黄颡鱼(P.nitidus)的关系近于黄颡鱼(P. fulvidraco)。  相似文献   

18.
We have determined the complete mitochondrial DNA (mtDNA) sequences of three chytridiomycete fungi, Monoblepharella15, Harpochytrium94 and Harpochytrium105. Our phylogenetic analysis based on concatenated mitochondrial protein sequences confirms the placement of Mono blepharella15 together with Harpochytrium spp. and Hyaloraphidium curvatum within the taxonomic order Monoblepharidales, with overwhelming support. These four mtDNA sequences encode the standard fungal mitochondrial gene complement and, like certain other chytridiomycete fungi, encode a reduced complement of 7–9 tRNAs, some of which require 5′-tRNA editing to be functional. Highly conserved sequence elements were identified upstream of almost all protein-coding genes in the mtDNAs of Monoblepharella15 and both Harpochytrium species. Finally, a guanosine residue is conserved upstream of the predicted ATG or GTG start codons of almost every protein-coding gene in these genomes. The appearance of this G residue correlates with the presence of a non-canonical cytosine residue at position 37 in the anticodon loop of the mitochondrial initiator tRNAs. Based on the unorthodox features in these four genomes, we propose that a 4 bp interaction between the CAUC anticodon of these tRNAs and GAUG/GGUG codons is involved in translation initiation in monoblepharidalean mitochondria. Intriguingly, a similar interaction may also be involved in mitochondrial translation initiation in the sea anemone Metridium senile.  相似文献   

19.
Phylogenetic relationships among 18 species of mainly European muroid rodents that belong to three subfamilies were estimated using complete sequences of the mitochondrial cytochrome b gene. The inferred monophyly of the subfamilies Murinae (mice and rats) and Arvicolinae (voles, lemmings, and muskrats) is in agreement with previous studies. Within the Murinae, the morphology-based division of the genus Apodemus into three subgenera is supported by these DNA sequence data. The relationships among the different genera of the Murinae were generally poorly resolved, and the relationships of Micromys and Acomys to the other murine genera remained unresolved. Within the subfamily Arvicolinae, the relations of the genera Arvicola, Clethrionomys, and Microtus remained tentative with our data. However, within the Microtus group, there is a good molecular support for the phylogenetic relationships. These findings suggest that the origin of the different murine and arvicoline lineages was rapid, indicating an adaptive radiation with fast speciation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号