首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Proteoglycans of the articulating and growing zones of maximum and minimum contact of bovine fetal articular cartilage were studied and compared to proteoglycans of immature calf and adult steer. During fetal maturation, localized changes were observed as early as the second trimester of fetal life but were restricted to the most superficial zones. Proteoglycans extracted from the growing zones were purified by density-gradient ultracentrifugation. The majority of proteoglycan monomers were able to interact with endogenous hyaluronate to form aggregates. Monomers had, at all fetal stages, similar elution profiles on Sepharose 2B and similar ratios of chondroitin sulfate chains/keratan sulfate chains/O-glycosidically linked oligosaccharides. Keratan sulfate chains were of similar size at all stages, but chondroitin sulfate chain size decreased markedly with fetal maturation. In the first and second trimesters of fetal life, the proteoglycans were poorly substituted with glycosaminoglycans. A major increase in the absolute number of glycosaminoglycans and oligosaccharides attached to core protein was detected during the third trimester of fetal life. No further changes in substitution occurred in early postnatal life. Enzymatic digestion of proteoglycan monomer demonstrated that the increase in substitution with keratan sulfate occurred to the same extent in the main polysaccharide attachment region and in the keratan sulfate-rich region.  相似文献   

2.
Four bovine articular cartilages have been compared with regard to the chemical composition of the whole cartilages, the amount of proteoglycan selectively extracted with 3 M MGCl2 or with 3 M guanidine-HCl, and the compositions and physical properties of the isolated proteoglycans. The whole cartilages differ but slightly in composition. Occipital condylar cartilage, a thin cartilage from the smallest joint, contains 4% more collagen and proportionately less proteoglycan than proximal humeral, the thickest cartilage from the largest joint. Each cartilage contains a pool of proteoglycan that resists extraction with 3 M MgCl2 but is extracted with 3 M guanidine-HCl. The proteoglycan extracted from each cartilage with 3 M guanidine-HCl contains a high molecular weight proteoglycan-collagen complex demonstrated by analytical ultracentrifugation and by the turbidity of its visible and ultra-violet spectra. The four cartilages appear to differ most remarkably in the fraction of total proteoglycan extracted from each as proteoglycan-collagen complex.  相似文献   

3.
Proteoglycans were extracted from the articular cartilage of foetal, calf and adult bovine metacarpal–phalangeal joints with 4m-guanidinium chloride. After extraction, the high-density proteoglycans (PG-I fractions) were prepared by sedimentation in two sequential CsCl-density-gradient procedures [Swann, Powell & Sotman (1979) J. Biol. Chem. 254, 945–954]. The PG-I fractions from foetal, calf and adult tissues accounted for 75%, 52% and 46% respectively of the extracted components. The glucosamine, galactose, N-acetylneuraminic acid and protein contents increased with age. The overall amino acid compositions of PG-I fractions were similar. Fractionation of PG-I-fraction samples on a Bio-Gel A-50m column indicated that the molecular weight decreased with age. The PG-I fractions were specifically 3H-labelled by treatment with galactose oxidase followed by reduction with NaB3H4. The 3H radioactivity was incorporated into both galactose and galactosamine residues of different carbohydrate side chains. The elution profiles of alkaline borohydride-treated foetal, calf and adult PG-I-fraction samples on a Sepharose 6B column showed that the molecular weights of chondroitin sulphate chains were 13500, 12000 and 10500 in foetal, calf and adult tissues respectively. Fractionation of the alkaline borohydride-treated foetal, calf and adult PG-I-fraction samples and 3H-labelled calf and adult PG-I-fraction samples on a Bio-Gel P-10 column showed that there was an inverse relationship between the low-molecular-weight O-linked oligosaccharides and the higher-molecular-weight sialic acid-containing constituents at different ages. The oligosaccharide components of foetal, calf and adult PG-I-fraction samples represented 79%, 69% and 36% respectively of the total sialic acid content of the proteoglycans. Similarly in the 3H-labelled calf and adult samples 75% and 30% of the total radioactivity were present in the oligosaccharide components respectively. Digestion with chondroitinase AC-II and infrared analyses showed that the PG-I-fraction F and C samples contained primarily chondroitin 4-sulphate chains whereas PG-I-fraction sample A was 6-sulphated. These studies show that the major proteoglycans (PG-I fractions) in the articular cartilage of foetal, calf and adult animals differ in the content, types and structure of the chondroitin sulphate, keratan sulphate and oligosaccharide constituents. These changes in proteoglycan structure reflect the gross age-related changes in the chemical composition of the tissue.  相似文献   

4.
Thrombospondin, a multifunctional adhesive glycoprotein originally identified in platelets, was isolated and identified from an extract of ovine articular cartilage. Immunoreactive material from a cartilage extract comigrated on gel electrophoresis with purified human platelet thrombospondin. When articular chondrocytes were cultured in the presence of 35S-methionine, metabolically labeled thrombospondin was immunoprecipitated from the culture medium and cell layer extract. These results demonstrate that thrombospondin is present in articular cartilage and is synthesized by articular chondrocytes.  相似文献   

5.
Turnover of proteoglycans in cultures of bovine articular cartilage   总被引:8,自引:0,他引:8  
Proteoglycans in cultures of adult bovine articular cartilage labeled with [35S]sulfate after 5 days in culture and maintained in medium containing 20% fetal calf X serum had longer half-lives (average 11 days) compared with those of the same tissue maintained in medium alone (average 6 days). The half-lives of proteoglycans in cultures of calf cartilage labeled after 5 days in culture and maintained in medium with serum were considerably longer (average 21 days) compared to adult cartilage. If 0.5 mM cycloheximide was added to the medium of cultures of adult cartilage, or the tissue was maintained at 4 degrees C after labeling, the half-lives of the proteoglycans were greater, 24 and greater than 300 days, respectively. Analyses of the radiolabeled proteoglycans remaining in the matrix of the tissue immediately after labeling the tissue and at various times in culture revealed two main populations of proteoglycans; a large species eluting with Kav of 0.21-0.24 on Sepharose CL-2B, of high bouyant density and able to form aggregates with hyaluronate, and a small species eluting with a Kav of 0.63-0.70 on Sepharose CL-2B, of low buoyant density, containing only chondroitin sulfate chains, and unable to form aggregates with hyaluronate. The larger proteoglycan had shorter half-lives than the smaller proteoglycan; in cartilage maintained with serum, the half-lives were 9.8 and 14.5 days, respectively. Labeling cartilage with both [3H]leucine and [35S]sulfate showed the small proteoglycan to be a separate synthetic product. The size distribution of 35S-labeled proteoglycans lost into the medium was shown to be polydisperse on Sepharose CL-2B, the majority eluting with a Kav of 0.27 to 0.35, of high buoyant density, and unable to aggregate with hyaluronate. The size distribution of glycosaminoglycans from 35S-labeled proteoglycans appearing in the medium did not differ from that associated with labeled proteoglycans remaining in the matrix.  相似文献   

6.
Chick high-density culture chondrocytes synthesize cartilage-specific proteoglycans with much structural similarity to the proteoglycans made by cartilage in vivo. Such cultures can be maintained in a defined medium formulated in this laboratory in which chondrogenesis occurs without the addition of serum. The proteoglycans synthesized by the chondrocytes in the presence of defined medium are of a cartilage-specific structure but differ in some aspects from the proteoglycans made in serum-containing medium. While their buoyant density, ability to aggregate with hyaluronic acid, and keratan sulfate chain size are unchanged, the proteoglycans synthesized in defined medium have altered chondroitin sulfate chains. This chondroitin sulfate is of significantly larger size and has a different sulfation pattern relative to that produced in serum-containing medium. The larger size of the chondroitin sulfate results in a larger monomer size of the defined medium proteoglycans. These differences have implications about the regulation of the structure of chondroitin sulfate proteoglycans.  相似文献   

7.
Punch biopsies of bovine hip articular cartilage was sectioned according to depth and the proteoglycans were isolated. The mid-sections of the cartilage contained more proteoglycans than did either the superficial or the deepest portions of the cartilage proteoglycans than did either the superficial or the deepest portions of the cartilage. The most superficial 40 micrometer of the cartilage contained relatively more glucosaminoglycans compared with the remainder of the cartilage. The proteoglycans recovered from the surface 200 micrometer layer contained less chondroitin sulphate, were smaller and almost all of these molecules were able to interact with hyaluronic acid to form aggregates. From about 200 micrometer and down to 1040 micrometer from the surface, the proteoglycans became gradually somewhat smaller, probably owing to decreasing size of the chondroitin sulphate-rich region. The proportion of molecules that were able to interact with the hyaluronic acid was about 90% and remained constant with depth. The proteoglycans from the deepest layer near the cartilage-bone junction contained a large proportion of non-aggregating molecules, and the average size of the proteoglycans was somewhat larger. The alterations of proteoglycan structure observed with increasing depth of the articular cartilage beneath the surface layer (to 200 micrometer) are of the same nature as those observed with increasing age in full-thickness articular cartilage. The articular-cartilage proteoglycans were smaller and had much higher keratan sulphate and protein contents that did molecules isolated from bovine nasal or tracheal cartilage.  相似文献   

8.
Proteoglycans were extracted from normal human articular cartilage of various ages with 4M-guanidinium chloride and were purified and characterized by using preformed linear CsCl density gradients. With advancing age, there was a decrease in high-density proteoglycans of low protein/uronic acid weight ratio and an increase in the proportion of lower-density proteoglycans, richer in keratan sulphate and protein. Proteoglycans of each age were also shown to disaggregate in 4M-guanidinium chloride and at low pH and to reaggregate in the presence of hyaluronic acid and/or low-density fractions. Osteoarthrotic-cartilage extracts had an increased content of higher-density proteoglycans compared with normal cartilage of the same age, and results also suggested that these were not mechanical or enzymic degradation products, but were possibly proteoglycans of an immature nature.  相似文献   

9.
Cartilage proteoglycan was isolated from bovine nasal septum and fractionated according to buoyant density after dissociative CsCl density gradient centrifugation. Gel-exclusion chromatography showed that hyaluronic acid was present in fractions of density lower than 1.69 g/mL. The molecular weight, assessed by sedimentation equilibrium analysis, of the proteoglycan present in the fractions with density > 1.69 g/mL, which appeared chromatographically homogeneous and constituted 54% of the preparation, ranged from 1.0 to 2.6 × 106 for v = 0.55 cm3 g?1. Carbodiimide-induced modification of the carboxyl groups by methylamine resulted in a reduction of the molecular weight to 0.74 – 1.25 × 106. An analogous reduction in molecular weight was obtained after equilibration of this proteoglycan fraction with hyaluronic acid oligomers containing five disaccharide units. Since both procedures are known to cause inhibition of the interaction between proteoglycans and hyaluronic acid, it is suggested that this lower molecular-weight range represents the true degree of polydispersity of the sub-units of hyaline cartilage proteoglycan constituting this fraction, while the higher values obtained for the intact proteoglycan are the result of the presence of hyaluronic acid in the sample. The molecular-weight range of the whole proteoglycan subunit preparation, assessed after carboxyl group modification, was 0.5–1.2 × 106. Apparently normal and abnormal cartilage was excised from single human osteoarthrosic femoral heads. Proteoglycans extracted by 4M guanidine hydrochloride were isolated after dissociative density gradient centrifugation and subjected to carboxyl group modification. Preparations from normal tissue exhibited molecular-weight averages ranging from 5 to 9 × 105. A molecular-weight reduction was observed with proteoglycans isolated from abnormal areas.  相似文献   

10.
The effect of transforming growth factor-beta (TGF-beta, 1 ng/ml) on proteoglycan synthesis by rabbit articular chondrocytes in culture was studied in the presence of fetal bovine serum. Exposure of confluent cells for 24 h to the factor resulted in a marked increase of 35S-labeled sulfate incorporation in the newly synthesized proteoglycans (PG), as estimated by glycosaminoglycan (GAG) radioactivity (+58%). The onset was observed 6 h after addition of the factor but was significant after 12 h. TGF-beta also enhanced the uptake of [35S]sulfate by chondrocytes, but had no effect on the release of PG by these cells. The effect of TGF-beta on the distribution of PG between the medium and the cell layer was shown to be dependent on the serum concentration in the medium: the relative proportion of cell-layer associated GAG of TGF-beta-treated cells decreased with increasing concentration of fetal bovine serum. The proportion of aggregated PG, the hydrodynamic size of PG monomers and GAG chains were not modified by TGF-beta, but the relative distribution of disaccharides 6- and 4-sulfate in GAG chains was altered by the factor: the proportion of chondroitin 6-sulfate (C6S) was decreased while that of chondroitin 4-sulfate (C4S) was augmented in presence of TGF-beta, leading to a decrease of the ratio C6S/C4S (-11 to -22%, P less than 0.01). The present study indicates that TGF-beta promotes the synthesis of a modified extracellular matrix in cultured articular chondrocytes. This mechanism could be relevant to some aspects of cartilage repair in osteoarticular diseases.  相似文献   

11.
Cartilage from the avian mutant nanomelia has been reported to synthesize cartilage-specific proteoglycans, PGS(SC)-I, at 1-2% of normal values [McKeown & Goetinck (1979) Dev. Biol. 71, 203-215]. Proteoglycans were endogenously labelled with [35S]sulphate and extracted from cartilage in 4 M-guanidine hydrochloride and chromatographed on controlled-pore glass 1400. PGS(SC)-I was obtained from the void volume of these columns. Dissociative sucrose-density-gradient analysis revealed a greater than normal polydispersity in the nanomelic PGS(SC)-I. Fractions from both the controlled-pore glass 1400 void volume and sucrose gradients were tested for their ability to bind specific antibody against cartilage proteoglycan monomer. In all instances, binding of normal fractions was greater than 90%, whereas binding to nanomelic fractions ranged from 20 to 65%. Chromatography of PGS(SC)-I on controlled-pore glass 2500 resulted in 70% of the normal and 25% of the mutant proteoglycans eluting as aggregates. Chondroitin sulphate chains from mutant PGS(SC)-I appeared slightly larger than normal when chromatographed on controlled-pore glass 500. In addition, PGS(SC)-I from nanomelic cartilage is more susceptible to proteolysis in vitro than the PGS(SC)-I from normal cartilage. This evidence suggests that the small amount of cartilage-specific proteoglycan synthesized by nanomelic cartilage is not normal.  相似文献   

12.
Bovine articular cartilage normally synthesizes a collagen containing three identical α-chains. After pre-incubation with rat liver lysosomal enzymes, it begins to synthesize significant amounts of the more ubiquitous collagen of the (α1)2α2 type. Since lysosomes are increased in osteoarthritis, it is possible that the abnormal biosynthetic patterns exhibited by cells in areas of degeneration are caused by such enzymes.Articular cartilage is an avascular tissue with very low cell density, composed primarily of extracellular substances such as collagen, proteoglycans, and glycoproteins. The structural integrity of this tissue depends on the relative proportion, nature, and structural organization of these components. Until recently, the destruction of cartilage seen in osteoarthritis was considered to result from a “wear and tear” process. This concept is not substantiated by recent ultrastructural and biochemical findings. Cellular activity in the involved areas leads to enlarged clones of chondrocytes containing increased numbers of intracellular organelles reflecting synthetic and secretory activity (1). There is an inverse correlation between the severity of the degenerative changes and the glycosaminoglycan content of the tissue (2–7). On the other hand, radioactive sulfate incorporation increases in osteoarthritis, an indication of the attempts made by the cells involved to repair the lesion (2). The nature of the proteoglycans synthesized under these conditions (less keratan sulfate and more chondroitin-4-sulfate) reflect the behaviour of immature chondroblasts (3–8). Lysosomal proteases have been associated with the degradation of the matrix (9–12). Cathepsin-D and a neutral protease which degrade proteoglycans at pH 5.0 and 7.0 respectively are considerably increased in early osteoarthritic lesions (13–15). Although the collagen content of cartilage does not change in osteoarthritis, qualitative differences may exist. Recently, we have shown that whereas normal human cartilage synthesizes only cartilage type collagen or (α1-Type II)3, osteoarthritic cartilage synthesizes in addition significant amounts of (α1)2α2 collagen (skin type) (16). Articular cartilage collagen is quite different from other ubiquitous forms of mammalian collagens. In addition to containing three identical α-chains, it has four to five times more hydroxylysine and glycosidically associated carbohydrate than collagen from other tissues (17). It is quite possible that the abnormal collagen deposited by the cells at the site of degeneration may give rise to a mechanically weaker structure and lead to a loss of cartilage. While attempting to elucidate the mechanism underlying this abnormal metabolic pattern, it became apparent that lysosomal enzymes can alter the function of normal cartilage cells causing them to synthesize non-specific collagen molecules.  相似文献   

13.
Studies were performed to investigate the capacity of proteoglycans for being extracted by salt solutions from unchanged and degeneratively changed articular cartilage of children and people of mature and elderly age. The content of proteoglycans and capacity for extraction depend on the age and degenerative changes in the cartilage tissue.  相似文献   

14.
15.
This study presents direct experimental evidence for assessing the electrostatic and non-electrostatic contributions of proteoglycans to the compressive equilibrium modulus of bovine articular cartilage. Immature and mature bovine cartilage samples were tested in unconfined compression and their depth-dependent equilibrium compressive modulus was determined using strain measurements with digital image correlation analysis. The electrostatic contribution was assessed by testing samples in isotonic and hypertonic saline; the combined contribution was assessed by testing untreated and proteoglycan-depleted samples.Though it is well recognized that proteoglycans contribute significantly to the compressive stiffness of cartilage, results demonstrate that the combined electrostatic and non-electrostatic contributions may add up to more than 98% of the modulus, a magnitude not previously appreciated. Of this contribution, about two thirds arises from electrostatic effects. The compressive modulus of the proteoglycan-depleted cartilage matrix may be as low as 3 kPa, representing less than 2% of the normal tissue modulus; experimental evidence also confirms that the collagen matrix in digested cartilage may buckle under compressive strains, resulting in crimping patterns. Thus, it is reasonable to model the collagen as a fibrillar matrix that can sustain only tension. This study also demonstrates that residual stresses in cartilage do not arise exclusively from proteoglycans, since cartilage remains curled relative to its in situ geometry even after proteoglycan depletion. These increased insights on the structure–function relationships of cartilage can lead to improved constitutive models and a better understanding of the response of cartilage to physiological loading conditions.  相似文献   

16.
Collagen extraction from bovine articular cartilage   总被引:1,自引:0,他引:1  
D Herbage  C Buffevant 《Biochimie》1974,56(5):775-777
  相似文献   

17.
Chondrocytes from rabbit ear cartilage were isolated and cultured as monolayers in Ham's F-12 medium. The proteoglycans synthesized by short-term cultures formed a high proportion of aggregates and contained chrondroitin-4- and -6-sulfate in a 2:1 proportion. Dermatan sulfate was not present. The average molecular weight of the chondroitin sulfate was about 20,000. Keratan sulfate with an average molecular weight of about 6000 could be isolated from the proteoglycan monomers. Rabbit ear chondrocytes in culture thus produced proteoglycans comparable to those isolated from hyaline cartilage. Culture for longer periods and plating at lower density caused a decrease in the proportion of aggregated proteoglycans. Primary cultures continued to synthesize aggregated proteoglycans for at least 2 weeks, while subdivision of the cultures caused a shift toward the production of small-sized “ubiquitous proteoglycans.” The synthesis of proteoglycan aggregates could, however, be partly restored by transfer of the monolayer cells to a suspension culture.  相似文献   

18.
Two forms of dermatan sulfate proteoglycans, called DS-PGI and DS-PGII, have been isolated from both bovine fetal skin and calf articular cartilage and characterized. The proteoglycans were isolated using either (a) molecular sieve chromatography under conditions where DS-PGI selectively self-associates or (b) chromatography on octyl-Sepharose, which separates DS-PGI from DS-PGII based on differences in the hydrophobic properties of their core proteins. The NH2-terminal amino acid sequence of DS-PGI from skin and cartilage is identical. The NH2-terminal amino acid sequence of DS-PGII from skin and cartilage is identical. However, the amino acid sequence data and tryptic peptide maps demonstrate that the core proteins of DS-PGI and DS-PGII differ in primary structure. In DS-PGI from bovine fetal skin, 81-84% of the glycosaminoglycan was composed of IdoA-GalNAc(SO4) disaccharide repeating units. In DS-PGI from calf articular cartilage, only 25-29% of the glycosaminoglycan was composed of IdoA-GalNAc(SO4). In DS-PGII from bovine fetal skin, 85-93% of the glycosaminoglycan was IdoA-GalNAc(SO4), whereas in DS-PGII from calf articular cartilage, only 40-44% of the glycosaminoglycan was IdoA-GalNAc(SO4). Thus, analogous proteoglycans from two different tissues, such as DS-PGI from skin and cartilage, possess a core protein with the same primary structure, yet contain glycosaminoglycan chains which differ greatly in iduronic acid content. These differences in the composition of the glycosaminoglycan chains must be determined by tissue-specific mechanisms which regulate the degree of epimerization of GlcA-GalNAc(SO4) into IdoA-GalNAc(SO4) and not by the primary structure of the core protein.  相似文献   

19.
20.
Control of chondrocyte pH (pH(i)) determines articular cartilage matrix metabolism. However, the transporters of chondrocytes in situ throughout cartilage zones are unclear, and we tested the hypothesis that chondocytes within the superficial zone (SZ) utilise a HCO(3) (-)-dependent system absent from other zones. Imaging of single BCECF-labelled cells was used to monitor the pH(i) of in situ chondrocytes within the cartilage zones, and also that of cells isolated from the SZ or full depth (FD) explants. Resting pH(i) and intrinsic buffering power (beta(i)) in HEPES-buffered saline was not different between SZ and DZ cells, however the pH(i) of SZ chondrocytes was lower in HCO(3) (-) saline. Ammonium pre-pulse was used to acid-load cells and pH(i) recovery by in situ or isolated SZ chondrocytes shown to be totally dependent on HCO(3) (-). pH(i) recovery rate was significantly (P < 0.05) greater for in situ cells, suggesting that isolation damaged the HCO(3) (-)-dependent system. Recovery of pH(i) by in situ cells was blocked by the anion transport inhibitor DIDS, and partially inhibited by EIPA probably non-specifically. Recovery of pH(i) by acidified MZ or DZ cells or those isolated from FD explants was not affected by HCO(3) (-) (P > 0.05). Na(+)-dependent HCO(3) (-)-(NBC) transporters were identified in SZ chondrocytes by fluorescence immunohistochemistry suggesting that this system might account for the HCO(3) (-)-dependent recovery of pH(i). Bovine articular cartilage chondrocytes possess a HCO(3) (-)-dependent transporter which plays a key role in pH(i) regulation in cells in the SZ, but not in chondrocytes within deeper cartilage zones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号