首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of Notch signalling by non-visual beta-arrestin   总被引:1,自引:0,他引:1  
Signalling activity of the Notch receptor, which plays a fundamental role in metazoan cell fate determination, is controlled at multiple levels. We uncovered a Notch signal-controlling mechanism that depends on the ability of the non-visual beta-arrestin, Kurtz (Krz), to influence the degradation and, consequently, the function of the Notch receptor. We identified Krz as a binding partner of a known Notch-pathway modulator, Deltex (Dx), and demonstrated the existence of a trimeric Notch-Dx-Krz protein complex. This complex mediates the degradation of the Notch receptor through a ubiquitination-dependent pathway. Our results establish a novel mode of regulation of Notch signalling and define a new function for non-visual beta-arrestins.  相似文献   

2.
Chastagner P  Israël A  Brou C 《EMBO reports》2006,7(11):1147-1153
Deltex (DTX) and AIP4 are the human orthologues of the Drosophila deltex and Suppressor of deltex, which have been genetically described as being antagonistically involved in the Notch signalling pathway. Both genes encode E3 ubiquitin ligases of the RING (Really interesting new gene)-H2 and HECT (Homologous to E6AP carboxyl terminus) families, respectively. In an attempt to understand the molecular basis of their genetic interactions, we studied the relationship between DTX and AIP4 in the absence of activation of the Notch pathway. We show here that both molecules interact and partially colocalize to endocytic vesicles, and that AIP4 targets DTX for lysosomal degradation. Furthermore, AIP4-generated polyubiquitin chains are mainly conjugated through lysine 29 of ubiquitin in vivo, indicating a link between this type of chain and lysosomal degradation.  相似文献   

3.
4.
Signaling through the transmembrane receptor Notch is widely used throughout animal development and is a major regulator of cell proliferation and differentiation. During canonical Notch signaling, internalization and recycling of Notch ligands controls signaling activity, but the involvement of endocytosis in activation of Notch itself is not well understood. To address this question, we systematically assessed Notch localization, processing, and signaling in a comprehensive set of Drosophila melanogaster mutants that block access of cargo to different endocytic compartments. We find that gamma-secretase cleavage and signaling of endogenous Notch is reduced in mutants that impair entry into the early endosome but is enhanced in mutants that increase endosomal retention. In mutants that block endosomal entry, we also uncover an alternative, low-efficiency Notch trafficking route that can contribute to signaling. Our data show that endosomal access of the Notch receptor is critical to achieve physiological levels of signaling and further suggest that altered residence in distinct endocytic compartments could underlie pathologies involving aberrant Notch pathway activation.  相似文献   

5.
The generation of functional structures during development requires tight spatial regulation of signaling pathways. Thus, in Drosophila legs, in which Notch pathway activity is required to specify joints, only cells distal to ligand-producing cells are capable of responding. Here, we show that the asymmetric distribution of planar cell polarity (PCP) proteins correlates with this spatial restriction of Notch activation. Frizzled and Dishevelled are enriched at distal sides of each cell and hence localize at the interface with ligand-expressing cells in the non-responding cells. Elimination of PCP gene function in cells proximal to ligand-expressing cells is sufficient to alleviate the repression, resulting in ectopic Notch activity and ectopic joint formation. Mutations that compromise a direct interaction between Dishevelled and Notch reduce the efficacy of repression. Likewise, increased Rab5 levels or dominant-negative Deltex can suppress the ectopic joints. Together, these results suggest that PCP coordinates the spatial activity of the Notch pathway by regulating endocytic trafficking of the receptor.  相似文献   

6.
The role of phospholipids in the regulation of membrane trafficking and signaling is largely unknown. Phosphatidylcholine (PC) is a main component of the plasma membrane. Mutants in the Drosophila phosphocholine cytidylyltransferase 1 (CCT1), the rate-limiting enzyme in PC biosynthesis, show an altered phospholipid composition with reduced PC and increased phosphatidylinositol (PI) levels. Phenotypic features of dCCT1 indicate that the enzyme is not required for cell survival, but serves a role in endocytic regulation. CCT1- cells show an increase in endocytosis and enlarged endosomal compartments, whereas lysosomal delivery is unchanged. As a consequence, an increase in endocytic localization of EGF receptor (Egfr) and Notch is observed, and this correlates with a reduction in signaling strength and leads to patterning defects. A further link between PC/PI content, endocytosis, and signaling is supported by genetic interactions of dCCT1 with Egfr, Notch, and genes affecting endosomal traffic.  相似文献   

7.
BACKGROUND: Ligand-induced proteolytic cleavage and internalization of the plasma membrane receptor Notch leads to its activation. Ligand-independent, steady-state internalization of Notch, however, does not lead to activation. The mechanism by which downstream effectors discriminate between these bipartite modes of Notch internalization is not understood. Nedd4 is a HECT domain-containing E3 ubiquitin ligase that targets transmembrane receptors containing the PPSY motif for endocytosis. Deltex is a positive Notch signaling regulator that encodes a putative ubiquitin ligase of the ring finger type. RESULTS: We used the Drosophila system to show that Notch is ubiquitinated and destabilized by Nedd4 in a manner requiring the PPSY motif in the Notch intracellular domain. Loss of Nedd4 function dominantly suppresses the Notch and Deltex mutant phenotypes, and its hyperactivation attenuates Notch activity. In tissue culture cells, the dominant-negative form of Nedd4 blocks steady-state Notch internalization and activates Notch signaling independently of ligand binding. This effect was further potentiated by Deltex. Nedd4 destines Deltex for degradation in a Notch-dependent manner. CONCLUSIONS: Nedd4 antagonizes Notch signaling by promoting degradation of Notch and Deltex. This Nedd4 function may be important for protecting unstimulated cells from sporadic activation of Notch signaling.  相似文献   

8.
In the Drosophila wing, the Nedd4 ubiquitin ligases (E3s), dNedd4 and Su(dx), are important negative regulators of Notch signaling; they ubiquitinate Notch, promoting its endocytosis and turnover. Here, we show that Drosophila Nedd4 family interacting protein (dNdfip) interacts with the Drosophila Nedd4-like E3s. dNdfip expression dramatically enhances dNedd4 and Su(dx)-mediated wing phenotypes and further disrupts Notch signaling. dNdfip colocalizes with Notch in wing imaginal discs and with the late endosomal marker Rab7 in cultured cells. In addition, dNdfip expression in the wing leads to ectopic Notch signaling. Supporting this, expression of dNdfip suppressed Notch(+/-) wing phenotype and knockdown of dNdfip enhanced the Notch(+/-) wing phenotype. The increase in Notch activity by dNdfip is ligand independent as dNdfip expression also suppressed deltex RNAi and Serrate(+/-) wing phenotypes. The opposing effects of dNdfip expression on Notch signaling and its late endosomal localization support a model whereby dNdfip promotes localization of Notch to the limiting membrane of late endosomes allowing for activation, similar to the model previously shown with ectopic Deltex expression. When dNedd4 or Su(dx) are also present, dNdfip promotes their activity in Notch ubiquitination and internalization to the lysosomal lumen for degradation.  相似文献   

9.
《Cellular signalling》2014,26(12):3016-3026
Notch signaling pathway unravels a fundamental cellular communication system that plays an elemental role in development. It is evident from different studies that the outcome of Notch signaling depends on signal strength, timing, cell type, and cellular context. Since Notch signaling affects a spectrum of cellular activity at various developmental stages by reorganizing itself in more than one way to produce different intensities in the signaling output, it is important to understand the context dependent complexity of Notch signaling and different routes of its regulation. We identified, TRAF6 (Drosophila homolog of mammalian TRAF6) as an interacting partner of Notch intracellular domain (Notch-ICD). TRAF6 genetically interacts with Notch pathway components in trans-heterozygous combinations. Immunocytochemical analysis shows that TRAF6 co-localizes with Notch in Drosophila third instar larval tissues. Our genetic interaction data suggests that the loss-of-function of TRAF6 leads to the rescue of previously identified Kurtz–Deltex mediated wing notching phenotype and enhances Notch protein survival. Co-expression of TRAF6 and Deltex results in depletion of Notch in the larval wing discs and down-regulates Notch targets, Wingless and Cut. Taken together, our results suggest that TRAF6 may function as a negative regulator of Notch signaling.  相似文献   

10.
The Notch pathway is an evolutionarily conserved signaling mechanism that is essential for cell-cell interactions. The Drosophila deltex gene regulates Notch signaling in a positive manner, and its gene product physically interacts with the intracellular domain of Notch through its N-terminal domain. Deltex has two other domains that are presumably involved in protein-protein interactions: a proline-rich motif that binds to SH3-domains, and a RING-H2 finger motif. Using an overexpression assay, we have analyzed the functional involvement of these Deltex domains in Notch signaling. The N-terminal domain of Deltex that binds to the CDC10/Ankyrin repeats of the Notch intracellular domain was indispensable for the function of Deltex. A mutant form of Deltex that lacked the proline-rich motif behaved as a dominant-negative form. This dominant-negative Deltex inhibited Notch signaling upstream of an activated, nuclear form of Notch and downstream of full-length Notch, suggesting the dominant-negative Deltex might prevent the activation of the Notch receptor. We found that Deltex formed a homo-multimer, and mutations in the RING-H2 finger domain abolished this oligomerization. The same mutations in the RING-H2 finger motif of Deltex disrupted the function of Deltex in vivo. However, when the same mutant was fused to a heterologous dimerization domain (Glutathione-S-Transferase), the chimeric protein had normal Deltex activity. Therefore, oligomerization mediated by the RING-H2 finger motif is an integral step in the signaling function of Deltex.  相似文献   

11.
The signaling of plasma membrane proteins is tuned by internalization and sorting in the endocytic pathway prior to recycling or degradation in lysosomes. Ubiquitin modification allows recognition and association of cargo with endosomally associated protein complexes, enabling sorting of proteins to be degraded from those to be recycled. The mechanism that provides coordination between the cellular machineries that mediate ubiquitination and endosomal sorting is unknown. We report that the ubiquitin ligase UBE4B is recruited to endosomes in response to epidermal growth factor receptor (EGFR) activation by binding to Hrs, a key component of endosomal sorting complex required for transport (ESCRT) 0. We identify the EGFR as a substrate for UBE4B, establish UBE4B as a regulator of EGFR degradation, and describe a mechanism by which UBE4B regulates endosomal sorting, affecting cellular levels of the EGFR and its downstream signaling. We propose a model in which the coordinated action of UBE4B, ESCRT-0, and the deubiquitinating enzyme USP8 enable the endosomal sorting and lysosomal degradation of the EGFR.  相似文献   

12.
It is well established that Notch signalling is activated in response to ligand binding through a series of proteolytic cleavages that release the Notch intracellular domain, allowing it to translocate to the nucleus to regulate downstream target gene expression. However there is still much to learn about the mechanisms that can bring about these proteolytic events in the numerous physiological contexts in which signal activation occurs. A number of studies have suggested that endocytosis of Notch contributes to the signal activation process, but the molecular details are unclear and controversial. There is conflicting data as to whether endocytosis of the receptor is essential for ligand-induced signalling or supplements it. Other studies have revealed that Notch can be activated in the endosomal pathway, independently of its ligands, through the activity of Deltex, a Ring-domain Ubiquitin ligase that binds to the Notch intracellular domain. However, it is unclear how the Deltex-activation mechanism relates to that of ligand-induced signalling, or to ectopic Notch signalling brought about by disruption of ESCRT complexes that affect multivesicular body formation. This review will address these issues and argue that the data are best reconciled by proposing distinct activation mechanisms in different cellular locations that contribute to the cellular pool of the soluble Notch intracellular domain. The resulting signalling network may provide developmental robustness to environmental and genetic variation.  相似文献   

13.
Deltex is known as a Notch signal mediator, but its physiological action mechanism is poorly understood. Here we identified a new regulatory role of Deltex in T-cell activation. Deltex expression was constitutive in resting T cells and was reduced upon T-cell receptor (TCR)-stimulated activation. The biological role of Deltex is supported by the enhanced T-cell activation when Deltex1 was down-regulated by small interfering RNA. Overexpression of Deltex1 suppressed T-cell activation but not the proximal TCR activation events. The impaired activation of mitogen-activated protein kinase by Deltex could be partly attributed to a selective down-regulation of MEKK1 protein in T cells. We further found that Deltex promoted degradation of the C-terminal catalytic fragment of MEKK1 [MEKK1(C)]. Deltex1 interacted directly with MEKK1(C) and stimulated the ubiquitination of MEKK1(C) as shown by in vivo and in vitro ubiquitination analysis. Therefore, MEKK1(C), the dominant form of MEKK1 in T cells, is a target of Deltex E3 ubiquitin ligase. Our results reveal a novel mechanism as to how Deltex selectively suppresses T-cell activation through degradation of a key signaling molecule, MEKK1.  相似文献   

14.
The Notch signaling pathway plays a central role in animal growth and patterning, and its deregulation leads to many human diseases, including cancer. Mutations in the tumor suppressor lethal giant discs (lgd) induce strong Notch activation and hyperplastic overgrowth of Drosophila imaginal discs. However, the gene that encodes Lgd and its function in the Notch pathway have not yet been identified. Here, we report that Lgd is a novel, conserved C2-domain protein that regulates Notch receptor trafficking. Notch accumulates on early endosomes in lgd mutant cells and signals in a ligand-independent manner. This phenotype is similar to that seen when cells lose endosomal-pathway components such as Erupted and Vps25. Interestingly, Notch activation in lgd mutant cells requires the early endosomal component Hrs, indicating that Hrs is epistatic to Lgd. These data suggest that Lgd affects Notch trafficking between the actions of Hrs and the late endosomal component Vps25. Taken together, our data identify Lgd as a novel tumor-suppressor protein that regulates Notch signaling by targeting Notch for degradation or recycling.  相似文献   

15.
The Notch3 signaling pathway is thought to play a critical role in cancer development, as evidenced by the Notch3 amplification and rearrangement observed in human cancers. However, the molecular mechanism by which Notch3 signaling contributes to tumorigenesis is largely unknown. In an effort to identify the molecular modulators of the Notch3 signaling pathway, we screened for Notch3-intracellular domain (N3-ICD) interacting proteins using a human proteome microarray. Pathway analysis of the Notch3 interactome demonstrated that ubiquitin C was the molecular hub of the top functional network, suggesting the involvement of ubiquitination in modulating Notch3 signaling. Thereby, we focused on functional characterization of an E3 ubiquitin-protein ligase, WWP2, a top candidate in the Notch3 interactome list. Co-immunoprecipitation experiments showed that WWP2 interacted with N3-ICD but not with intracellular domains from other Notch receptors. Wild-type WWP2 but not ligase-deficient mutant WWP2 increases mono-ubiquitination of the membrane-tethered Notch3 fragment, therefore attenuating Notch3 pathway activity in cancer cells and leading to cell cycle arrest. The mono-ubiquitination by WWP2 may target an endosomal/lysosomal degradation fate for Notch3 as suggested by the fact that the process could be suppressed by the endosomal/lysosomal inhibitor. Analysis of The Cancer Genome Atlas dataset showed that the majority of ovarian carcinomas harbored homozygous or heterozygous deletions in WWP2 locus, and there was an inverse correlation in the expression levels between WWP2 and Notch3 in ovarian carcinomas. Furthermore, ectopic expression of WWP2 decreased tumor development in a mouse xenograft model and suppressed the Notch3-induced phenotypes including increase in cancer stem cell-like cell population and platinum resistance. Taken together, our results provide evidence that WWP2 serves as a tumor suppressor by negatively regulating Notch3 signaling in ovarian cancer.  相似文献   

16.
17.
18.
Delta/Notch signalling is of major importance for embryonic development and adult life. While endocytosis is often viewed as a way to down-regulate biological signals, ligand and receptor internalization are essential for Notch activation. The development of Drosophila mecanosensory bristles is a powerful model to study Delta/Notch signalling. Following the asymmetric division of bristle precursor cells, Delta ligands and Notch receptors traffic differently in the two daughter cells, leading to directional signal activation. Recent evidence suggests that in addition to differential ligand endocytosis after division, a subpopulation of multivesicular endosomes ensures the directional transport of Delta/Notch already during asymmetric cell division. Biochemical analysis suggests that different phases of endocytic Delta trafficking exert complementary but distinct actions required for ligand recycling, ligand/receptor interaction and ligand-mediated receptor activation, respectively. Finally, novel data suggest that different endosomal compartments may act as Delta/Notch signalling platforms. In this review, we discuss the implications of these novel findings for our cell biological understanding of Delta/Notch signalling.  相似文献   

19.
The endosomal compartment is a major sorting station controlling the balance between endocytic recycling and lysosomal degradation, and its homeostasis is emerging as a central factor in various neurodegenerative diseases such as Alzheimer's and Parkinson's. Membrane trafficking is generally coordinated by the recognition of specific signals in transmembrane protein cargos by different transport machineries. A number of different protein trafficking complexes are essential for sequence-specific recognition and retrieval of endosomal cargos, recycling them to other compartments and acting to counter-balance the default endosomal sorting complex required for transport–mediated degradation pathway. In this review, we provide a summary of the key endosomal transport machineries, and the molecular mechanisms by which different cargo sequences are specifically recognised.  相似文献   

20.
The Notch signaling pathway plays essential roles in both animal development and human disease. Regulation of Notch receptor levels in membrane compartments has been shown to affect signaling in a variety of contexts. Here we used steady-state and pulse-labeling techniques to follow Notch receptors in sensory organ precursor cells in Drosophila. We find that the endosomal adaptor protein Numb regulates levels of Notch receptor trafficking to Rab7-labeled late endosomes but not early endosomes. Using an assay we developed that labels different pools of Notch receptors as they move through the endocytic system, we show that Numb specifically suppresses a recycled Notch receptor subpopulation and that excess Notch signaling in numb mutants requires the recycling endosome GTPase Rab11 activity. Our data therefore suggest that Numb controls the balance between Notch receptor recycling and receptor targeting to late endosomes to regulate signaling output after asymmetric cell division in Drosophila neural progenitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号