首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
In vivo exposure to chronic hypoxia is considered to be a cause of myocardial dysfunction, thereby representing a deleterious condition, but repeated aeration episodes may exert some cardioprotection. We investigated the possible role of ATP-sensitive potassium channels in these mechanisms. First, rats (n = 8/group) were exposed for 14 days to either chronic hypoxia (CH; 10% O(2)) or chronic hypoxia with one episode/day of 1-hr normoxic aeration (CH+A), with normoxia (N) as the control. Second, isolated hearts were Langendorff perfused under hypoxia (10% O(2), 30 min) and reoxygenated (94% O(2), 30 min) with or without 3 microM glibenclamide (nonselective K(+)(ATP) channel-blocker) or 100 microM diazoxide (selective mitochondrial K(+)(ATP) channel-opener). Blood gasses, hemoglobin concentration, and plasma malondialdehyde were similar in CH and CH+A and in both different from normoxic (P < 0.01), body weight gain and plasma nitrate/nitrite were higher in CH+A than CH (P < 0.01), whereas apoptosis (number of TUNEL-positive nuclei) was less in CH+A than CH (P < 0.05). During in vitro hypoxia, the efficiency (ratio of ATP production/pressure x rate product) was the same in all groups and diazoxide had no measurable effects on myocardial performance, whereas glibenclamide increased end-diastolic pressure more in N and CH than in CH+A hearts (P < 0.05). During reoxgenation, efficiency was markedly less in CH with respect to N and CH+A (P < 0.0001), and ratex pressure product remained lower in CH than N and CH+A hearts (P < 0.001), but glibenclamide or diazoxide abolished this difference. Glibenclamide, but not diazoxide, decreased vascular resistance in N and CH (P < 0.005 and < 0.001) without changes in CH+A. We hypothesize that cardioprotection in chronically hypoxic hearts derive from cell depolarization by sarcolemmal K(+)(ATP) blockade or from preservation of oxidative phosphorylation efficiency (ATP turnover/myocardial performance) by mitochondrial K(+)(ATP) opening. Therefore K(+)(ATP) channels are involved in the deleterious effects of chronic hypoxia and in the cardioprotection elicited when chronic hypoxia is interrupted with short normoxic aeration episodes.  相似文献   

4.
Oxygen radicals and protein kinase C (PKC) mediate ischemic preconditioning. Using a cultured chick embryonic cardiomyocyte model of hypoxia and reoxygenation, we found that the oxygen radicals generated by ischemic preconditioning were H(2)O(2). Like preconditioning, H(2)O(2) selectively activated the epsilon-isoform of PKC in the particulate compartment and increased cell viability after 1 h of hypoxia and 3 h of reoxygenation. The glutathione peroxidase ebselen (converting H(2)O(2) to H(2)O) and the superoxide dismutase inhibitor diethyldithiocarbamic acid abolished the increased H(2)O(2) and the protection of preconditioning. PKC activation with phorbol 12-myristate 13-acetate increased cell survival; the protection of preconditioning was blocked by epsilonV(1-2), a selective PKC-epsilon antagonist. Similar to preconditioning, the protection of PKC activation was abolished by mitochondrial K(ATP) channel blockade with 5-hydroxydecanoate or by GABA receptor stimulation with midazolam or diazepam. In addition, PKC, mitochondrial ATP-sensitive K(+) (K(ATP)) channels, and GABA receptors had no effects on H(2)O(2) generated by ischemic preconditioning before prolonged hypoxia and reoxygenation. We conclude that H(2)O(2) opens mitochondrial K(ATP) channels and inhibits GABA receptors via activating PKC-epsilon. Through this signal transduction, preconditioning protects ischemic cardiomyocytes.  相似文献   

5.
Hypoxic preconditioning can play a significant neuroprotective role. However, it has not been employed clinically because of safety concerns. To find a safer preconditioning stimulus that is both practical and effective, we investigated whether ginkgolides are capable of preconditioning as hypoxia to protect C6 cells against ischemic injury. We demonstrated that both ginkgolides (37.5microg/mL) and hypoxia (1% O(2) for 16h) can significantly increase cell viabilities and expression of phosphorylated glycogen synthase kinase (p-GSK), phosphorylated extracellular signal-regulated kinase (p-ERK), hypoxia-inducible factor-1 alpha (HIF-1alpha) and erythropoietin (EPO) in ischemic cells. The inhibitors of mitogen-activated protein kinase (MAPK) or phosphatidylinositol 3'-kinase (PI3K) significantly but not completely reduced the enhanced expression of these proteins and cell viabilities induced by ginkgolides and hypoxic preconditioning. These indicated that ginkgolides could mimic hypoxic preconditioning by increasing expression of HIF-1alpha as well as its target protein EPO and that the ginkgolides and hypoxic preconditioning role might be partly mediated by the activation of the p42/p44-mitogen-activated protein kinase and phosphatidylinositol 3'-kinase/AKT/glycogen synthase kinase 3beta pathways. The similar tendency in the changes of protein expression, cell viabilities and responses to MAPK or PI3K inhibitors of the cells treated with ginkgolides and hypoxia suggests that ginkgolides and hypoxic preconditioning might operate by similar mechanisms. The findings also imply that ginkgolides might have the potential for clinical use to prevent injury in high-risk conditions.  相似文献   

6.
Alterations in a redox oxygen sensing mechanism in chronic hypoxia.   总被引:12,自引:0,他引:12  
The mechanism of acute hypoxic pulmonary vasoconstriction (HPV) may involve the inhibition of several voltage-gated K+ channels in pulmonary artery smooth muscle cells. Changes in PO2 can either be sensed directly by the channel(s) or be transmitted to the channel via a redox-based effector mechanism. In control lungs, hypoxia and rotenone acutely decrease production of activated oxygen species, inhibit K+ channels, and cause constriction. Two-day and 3-wk chronic hypoxia (CH) resulted in a decrease in basal activated oxygen species levels, an increase in reduced glutathione, and loss of HPV and rotenone-induced constriction. In contrast, 4-aminopyridine- and KCl-mediated constrictions were preserved. After 3-wk CH, pulmonary arterial smooth muscle cell membrane potential was depolarized, K+ channel density was reduced, and acute hypoxic inhibition of whole cell K+ current was lost. In addition, Kv1.5 and Kv2.1 channel protein was decreased. These data suggest that chronic reduction of the cytosol occurs before changes in K+ channel expression. HPV may be attenuated in CH because of an impaired redox sensor.  相似文献   

7.
Early detection of an O2 deficit in the bloodstream is essential to initiate corrective changes in the breathing pattern of mammals. Carotid bodies serve an essential role in this respect; their type I cells depolarize when O2 levels fall, causing voltage-gated Ca2+ entry. Subsequent neurosecretion elicits increased afferent chemosensory fiber discharge to induce appropriate changes in respiratory function (1). Although depolarization of type I cells by hypoxia is known to arise from K+ channel inhibition, the identity of the signaling pathway has been contested, and the coupling mechanism is unknown (2). We tested the hypothesis that AMP-activated protein kinase (AMPK) is the effector of hypoxic chemotransduction. AMPK is co-localized at the plasma membrane of type I cells with O2-sensitive K+ channels. In isolated type I cells, activation of AMPK using 5-aminoimidazole-4-carboxamide riboside (AICAR) inhibited O2-sensitive K+ currents (carried by large conductance Ca2+-activated (BKCa) channels and TASK (tandem pore, acid-sensing potassium channel)-like channels, leading to plasma membrane depolarization, Ca2+ influx, and increased chemosensory fiber discharge. Conversely, the AMPK antagonist compound C reversed the effects of hypoxia and AICAR on type I cell and carotid body activation. These results suggest that AMPK activation is both sufficient and necessary for the effects of hypoxia. Furthermore, AMPK activation inhibited currents carried by recombinant BKCa channels, whereas purified AMPK phosphorylated thealpha subunit of the channel in immunoprecipitates, an effect that was stimulated by AMP and inhibited by compound C. Our findings demonstrate a central role for AMPK in stimulus-response coupling by hypoxia and identify for the first time a link between metabolic stress and ion channel regulation in an O2-sensing system.  相似文献   

8.
Chronic hypoxia has been shown to stimulate myocardial microvascular growth and improve cardiac ischemic tolerance in young and adult rats. The aim of this study was to determine whether the ANG II type 1 receptor (AT(1)) pathway was involved in these processes. Newborn Wistar rats, exposed to chronic intermittent hypoxia (8 h/day) for 10 days, were simultaneously treated with AT(1) receptor blocker irbesartan and compared with untreated animals. The major finding is that chronic hypoxia increased the capillary supply of myocardial tissue, which was even more pronounced in hypertrophied right ventricle, whereas increased arteriolar supply was found only in the left ventricle. This angiogenic response was completely prevented by irbesartan. Moreover, chronic hypoxia improved the postischemic recovery of cardiac contractile function during reperfusion, and this protective effect was also completely abolished by irbesartan. Chronic hypoxia increased the myocardial density of AT(1) but not of ANG II type 2 receptor subtypes, whereas the effect of irbesartan was not significant. The expression of caveolin-1alpha markedly increased in response to chronic hypoxia, and irbesartan prevented this effect. Neither hypoxia nor irbesartan treatment altered the expression of nitric oxide synthase 3, heat shock protein 90, and VEGF. It is concluded that the AT(1) receptor pathway plays an important role in coronary angiogenesis and improved cardiac ischemic tolerance induced in neonatal rats by chronic hypoxia.  相似文献   

9.
Effective protection of the heart against ischemia/reperfusion injury is one of the most important goals of experimental and clinical research in cardiology. Besides ischemic preconditioning as a powerful temporal protective phenomenon, adaptation to chronic hypoxia also increases cardiac tolerance to all major deleterious consequences of acute oxygen deprivation such as myocardial infarction, contractile dysfunction and ventricular arrhythmias. Although many factors have been proposed to play a potential role, the detailed mechanism of this long-term protection remains poorly understood. This review summarizes current limited evidence for the involvement of ATP-sensitive potassium channels, reactive oxygen species, nitric oxide and various protein kinases in cardioprotective effects of chronic hypoxia.  相似文献   

10.
Membrane potential in oxygen-sensitive type I cells in carotid body is controlled by diverse sets of voltage-dependent and -independent K(+) channels. Coupling of Po(2) to the open-closed state of channels may involve production of reactive oxygen species (ROS) by NADPH oxidase. One hypothesis suggests that ROS are produced in proportion to the prevailing Po(2) and a subset of K(+) channels closes as ROS levels decrease. We evaluated ROS levels in normal and p47(phox) gene-deleted [NADPH oxidase knockout (KO)] type I cells using the ROS-sensitive dye dihydroethidium (DHE). In normal cells, hypoxia elicited an increase in ROS, which was blocked by the specific NADPH oxidase inhibitor 4-(2-aminoethyl)-benzenesulfonyl fluoride (AEBSF, 3 mM). KO type I cells did not respond to hypoxia, but the mitochondrial uncoupler azide (5 microM) elicited increased fluorescence in both normal and KO cells. Hypoxia had no effect on ROS production in sensory and sympathetic neurons. Methodological control experiments showed that stimulation of neutrophils with a cocktail containing the chemotactic peptide N-formyl-Met-Leu-Phe (1 microM), arachidonic acid (10 microM), and cytochalasin B (5 microg/ml) elicited a rapid increase in DHE fluorescence. This response was blocked by the NADPH oxidase inhibitor diphenyleneiodonium (10 microM). KO neutrophils did not respond; however, azide (5 microM) elicited a rapid increase in fluorescence. Physiological studies in type I cells demonstrated that hypoxia evoked an enhanced depression of K+ current and increased intracellular Ca2+ levels in KO vs. normal cells. Moreover, AEBSF potentiated hypoxia-induced increases in intracellular Ca2+ and enhanced the depression of K+ current in low O(2). Our findings suggest that local compartmental increases in oxidase activity and ROS production inhibit the activity of type I cells by facilitating K+ channel activity in hypoxia.  相似文献   

11.
Ischemia in the heart deprives cardiomyocytes of oxygen, triggering cell death (myocardial infarction). Ischemia and its cell culture model, hypoxia, elicit a stress response program that contributes to cardiomyocyte death; however, the molecular components required to promote this process remain nebulous. Gene 33 is a 50-kDa cytosolic adapter protein that suppresses signaling from receptor Tyr kinases of the epidermal growth factor receptor/ErbB family. Here we show that adenoviral expression of Gene 33 swiftly stimulates cardiomyocyte death coincident with reduced Akt and extracellular signal-regulated kinase (ERK) signaling. Subjecting cardiomyocytes to hypoxia and then reoxygenation induces gene 33 mRNA and Gene 33 protein. RNA interference experiments indicate that endogenous Gene 33 reduces Akt and ERK signaling and is required for maximal hypoxia-induced cardiomyocyte death. Gene 33 levels are also strikingly increased in myocardial ischemic injury and infarction. Our results identify a new role for Gene 33 as a component in the molecular pathophysiology of ischemic injury.  相似文献   

12.
Xie Y  Zhu WZ  Zhu Y  Chen L  Zhou ZN  Yang HT 《Life sciences》2004,76(5):559-572
Adaptation to intermittent high altitude (IHA) hypoxia can protect the heart against ischemia-reperfusion injury. In view of the fact that both Ca2+ paradox and ischemia-reperfusion injury are associated with the intracellular Ca2+ overload, we tested the hypothesis that IHA hypoxia may protect hearts against Ca2+ paradox-induced lethal injury if its cardioprotection bases on preventing the development of intracellular Ca2+ overload. Langendorff-perfused hearts from normoxic and IHA hypoxic rats were subjected to Ca2+ paradox (5 min of Ca2+ depletion followed by 30 min of Ca2+ repletion) and the functional, biochemical and pathological changes were investigated. The Ca2+ paradox incapacitated the contractility of the normoxic hearts, whereas the IHA hypoxic hearts significantly preserved contractile activity. Furthermore, the normoxic hearts subjected to Ca2+ paradox exhibited a marked reduction in coronary flow, increase in lactate dehydrogenase release, and severe myocyte damage. In contrast, these changes were significantly prevented in IHA hypoxic hearts. We, then, tested and confirmed our hypothesis that the protective mechanisms are mediated by mitochondria ATP-sensitive potassium channels (mitoKATP) and Ca2+/calmodulin-dependent protein kinase II (CaMKII), as the protective effect of IHA hypoxia was abolished by 5-hydroxydecanoate, a selective mitoKATP blocker, and significantly attenuated by KN-93, a CaMKII inhibitor. In conclusion, our studies offer for the first time that IHA hypoxia confers cardioprotection against the lethal injury of Ca2+ paradox and give biochemical evidence for the protective mechanism of IHA hypoxia. We propose that researches in this area may lead a preventive regimen against myocardial injury associated with Ca2+ overload.  相似文献   

13.
Kumar P  Phil D 《生理学报》2007,59(2):128-132
颈动脉体可以将低氧和血液中其它刺激信号(可能包括低血糖)转换成不同强度的传入神经放电,沿心肺和神经内分泌反射的传入途径进入中枢,形成反射环路。低氧可抑制颈动脉体Ⅰ型细胞中的多种K+通道,这种作用可能有种属差异; K+通道的抑制使膜电位去极化,启动电压依赖性Ca2+内流,最后导致神经分泌和传入放电。离子通道埘低氧的反应可能是通过间接途径发生的,因此近期的工作集中在研究颈动脉体Ⅰ型细胞中在低氧感受中起关键作用的其它蛋白质。虽然有人认为来源于线粒体和/或NADPH的活性氧(reactive oxygen species,ROS)起一定作用,但是它们在颈动脉体中转导低氧信号的证据还不足。目前正在对另外两种假设进行检验。第一种假设是血红素加氧酶2(haemoxygenase 2,HO-2)通过信号分子CO控制特殊K+通道的活动,而CO的生成量与氧分压高低有关。第二种假设是认为细胞能量感受器腺苷酸活化蛋白激酶(AMP- activated protein kinase,AMPK)起作用;低氧时AMP/ATP比值升高,激活AMPK,从而抑制Ⅰ型细胞的K+通道,传入放电增加。颈动脉体的细胞上具有丰富的对氧敏感的K+通道,低氧感受这个重要的细胞活动可以通过多条途径进行,在总反应中每种蛋白质也可能起不同的作用,例如不同蛋白质对氧的亲合力不同等。关于颈动脉体感受低血糖的机制尚不清楚,但最近有证据提示,它并非由K+通道关闭引起的,因此感受低血糖的机制和感受低氧的机制是不同的。  相似文献   

14.
A key feature of O2 sensing by chemoreceptor tissues is the hypoxic inhibition of K+ channels. However, mechanisms coupling a fall of pO2 to channel closure differ between tissues: O2 regulation of K+ channels in chemoreceptive neuroepithelial bodies and their immortal counterparts, H146 cells, involves altered reactive oxygen species generation by NADPH oxidase. In contrast, this enzyme complex is not involved in O2 sensing by the carotid body and pulmonary vasculature. Here, we provide pharmacological evidence to support a role for NADPH oxidase in hypoxic inhibition of K+ currents in H146 cells. Two structurally unrelated NADPH oxidase inhibitors, diphenylene iodonium and phenylarsine oxide, suppressed hypoxic inhibition of K+ currents recorded using the patch-clamp technique. Most importantly, however, neither inhibitor fully blocked this response. Our findings provide the first evidence that multiple mechanisms may coexist within a specific cell type to account for hypoxic suppression of K+ channel activity.  相似文献   

15.
NOX4 as an oxygen sensor to regulate TASK-1 activity   总被引:1,自引:0,他引:1  
Lee YM  Kim BJ  Chun YS  So I  Choi H  Kim MS  Park JW 《Cellular signalling》2006,18(4):499-507
When oxygen sensing cells are excited by hypoxia, background K+ currents are inhibited. TASK-1, which is commonly expressed in oxygen sensing cells and makes a background K+ current, is inactivated by hypoxia. Thus TASK-1 is a candidate molecule responsible for hypoxic excitation. However, TASK-1 per se cannot sense oxygen and may require a regulatory protein that can. In the present study, we propose that the NADPH oxidase NOX4 functions as an oxygen-sensing partner and that it modulates the oxygen sensitivity of TASK-1. Confocal imaging revealed the co-localization of TASK-1 and NOX4 in the plasma membrane. In HEK293 cells expressing NOX4 endogenously, the activity of expressed TASK-1 was moderately inhibited by hypoxia, and this oxygen response was significantly augmented by NOX4. Moreover, the oxygen sensitivity of TASK-1 was abolished by NOX4 siRNA and NADPH oxidase inhibitors. These results suggest a novel function for NOX4 in the oxygen-dependent regulation of TASK-1 activity.  相似文献   

16.
Aldosterone at normal physiological levels induces rapid increases in intracellular calcium and pH in human distal colon. The end target of these rapid signaling responses are basolateral K+ channels. Using spectrofluorescence microscopy and Ussing chamber techniques, we have shown that aldosterone activates basolateral Na/H exchange via a protein kinase C and calcium-dependent signaling pathway. The resultant intracellular alkalinization up-regulates an adenosine triphosphate (ATP)-dependent K+ channel (K(ATP)) and inhibits a Ca2+ -dependent K+ channel (K(Ca)). In Ussing chamber experiments, we have shown that the K(ATP) channel is required to drive sodium absorption, whereas the K(Ca) channel is necessary for both cyclic adenosine monophosphate and calcium-dependent chloride secretion. The rapid effects of aldosterone on intracellular calcium, pH, protein kinase C and K(ATP), K(Ca) channels are insensitive to cycloheximide, actinomycin D, and spironalactone, indicating a nongenomic mechanism of action. We propose that the physiological role for the rapid nongenomic effect of aldosterone is to prime pluripotential epithelia for absorption by simultaneously up-regulating K(ATP) channels to drive absorption through surface cells and down-regulating the secretory capacity by inhibiting K(Ca) channels involved in secretion through crypt cells.  相似文献   

17.
Accumulating evidence suggests that neuroepithelial bodies are airway O(2) sensors. Recently, we have established the H-146 small cell lung carcinoma line as a suitable model to study the biochemical basis of neuroepithelial body cell chemotransduction. Here we explore the possibility that hypoxic modulation of K(+) channels is intimately linked to activity of NADPH oxidase. Graded hypoxia caused graded inhibition of whole cell K(+) currents, which correlated well with membrane depolarization. Pretreatment with the phorbol ester, 12-O-tetradecanoyl (TPA), inhibited K(+) currents at all potentials. Although 4alpha-phorbol 12,13-didecanoate and TPA in the presence of bisindolylmaleimide were also able to depress K(+) currents, only TPA could significantly ameliorate hypoxic depression of these currents. Thus, protein kinase C (PKC) activation modulates the sensitivity of these cells to changes in pO(2). Furthermore, because the addition of H(2)O(2), a downstream product of NADPH oxidase, could only activate K(+) currents during hypoxia (when endogenous H(2)O(2) production is suppressed), it appears likely that PKC modulates the affinity of NADPH oxidase for O(2) potentially via phosphorylation of the p47(phox) subunit, which is present in these cells. These data show that PKC is an important regulator of the O(2)-transduction pathway and suggests that NADPH oxidase represents a significant component of the airway O(2) sensor.  相似文献   

18.
Epidermal growth factor-activated calcium and potassium channels.   总被引:6,自引:0,他引:6  
The earliest responses to activation of the epidermal growth factor (EGF) receptor include a transient increase in calcium influx and a transient membrane hyperpolarization. The underlying mechanisms are, however, not well understood as yet. In the present study, we have applied patch clamp recording in the cell-attached and the outside-out mode, and fluorimetric cytosolic Ca2+ determinations, to identify the nature of the ion channels involved, to characterize their properties at the level of single channels, and to unravel their mechanism of activation. We provide evidence that activation of the EGF receptor results initially in the activation of voltage-independent Ca2+ channels that can be defined as direct receptor-operated channels. This in turn causes the activation of Ca(2+)-dependent K+ channels, which results in a (delayed) membrane hyperpolarization and then leads to the activation of a second class of Ca2+ channels that are sensitive to hyperpolarization. An autocatalytic generation of further hyperpolarization and Ca2+ influx is the predicted outcome of this ionic cascade. Based on the observed inhibitory effects of protein kinase C activation on the activity of Ca(2+)-dependent K+ channels, we propose that protein kinase C is involved in the negative regulation of this cascade, which explains the transient nature of these responses.  相似文献   

19.
In this report we describe our studies on intracellular signals that mediate neurite outgrowth and long-term survival of cerebellar granule cells. The effect of voltage-gated calcium channel activation on neurite complexity was evaluated in cultured cerebellar granule cells grown for 48 h at low density; the parameter measured was the fractal dimension of the cell. We explored the contribution of two intracellular pathways, Ca2+ calmodulin-dependent protein kinase II and mitogen-activated protein kinase kinase (MEK1), to the effects of high [K+ ]e under serum-free conditions. We found that 25 mm KCl (25K) induced an increase in calcium influx through L subtype channels. In neurones grown for 24-48 h under low-density conditions, the activation of these channels induced neurite outgrowth through the activation of Ca2+ calmodulin-dependent protein kinase II. This also produced an increase in long-term neuronal survival with a partial contribution from the MEK1 pathway. We also found that the addition of 25K increased the levels of the phosphorylated forms of Ca2+ calmodulin-dependent protein kinase II and of the extracellular signal-regulated kinases 1 and 2. Neuronal survival under resting conditions is supported by the MEK1 pathway. We conclude that intracellular calcium oscillations can triggered different biological effects depending on the stage of maturation of the neuronal phenotype. Ca2+ calmodulin-dependent protein kinase II activation determines the growth of neurites and the development of neuronal complexity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号