首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lack of specific, low-cost, rapid, sensitive, and easy detection of biomolecules has resulted in the development of biosensor technology. Innovations in biosensor technology have enabled many biosensors to be commercialized and have enabled biomolecules to be detected onsite. Moreover, the emerging technologies of lab-on-a-chip microdevices and nanosensors offer opportunities for the development of new biosensors with much better performance. Biosensors were first introduced into the laboratory by Clark and Lyons. They developed the first glucose biosensor for laboratory conditions. Then in 1973, a glucose biosensor was commercialized by Yellow Springs Instruments. The commercial biosensors have small size and simple construction and they are ideal for point-of-care biosensing. In addition to glucose, a wide variety of metabolites such as lactate, cholesterol, and creatinine can be detected by using commercial biosensors. Like the glucose biosensors (tests) other commercial tests such as for pregnancy (hCG), Escherichia coli O157, influenza A and B viruses, Helicobacter pylori, human immunodeficiency virus, tuberculosis, and malaria have achieved success. Apart from their use in clinical analysis, commercial tests are also used in environmental (such as biochemical oxygen demand, nitrate, pesticide), food (such as glutamate, glutamine, sucrose, lactose, alcohol, ascorbic acid), and biothreat/biowarfare (Bacillus anthracis, Salmonella, Botulinum toxin) analysis. In this review, commercial biosensors in clinical, environmental, food, and biowarfare analysis are summarized and the commercial biosensors are compared in terms of their important characteristics. This is the first review in which all the commercially available tests are compiled together.  相似文献   

2.
Xi B  Yu N  Wang X  Xu X  Abassi YA 《Biotechnology journal》2008,3(4):484-495
Cell-based assays are an important part of the drug discovery process allowing for interrogation of targets and pathways in a more physiological setting compared to biochemical assays. One of the main hurdles in the cell-based assay field is to design sufficiently robust assays with adequate signal to noise parameters while maintaining the inherent physiology of the pathway or target being investigated. Conventional label and reporter-based cell assays may be more prone to artifacts due to considerable manipulation of the cell either by the label or over-expression of targets or reporter proteins. Cell-based label-free technologies preclude the need for cellular labeling or over-expression of reporter proteins, utilizing the inherent morphological and adhesive characteristics of the cell as a physiologically relevant and quantitative readout for various cellular assays. Furthermore, these technologies utilize non-invasive measurements allowing for time resolution and kinetics in the assay. In this article, we have reviewed the various label-free technologies that are being used in drug discovery settings and have focused our discussion on impedance-based label-free technologies and its main applications in drug discovery.  相似文献   

3.
Aims:  To assess the changes in acute toxicity and biodegradation of benzene, toluene, ethylbenzene and xylene (collectively referred to as BTEX) compounds in soil over time and compare the performances of biological and chemical techniques.
Methods and Results:  Biological methods ( lux -based bacterial biosensors, basal respiration and dehydrogenase activity) were related to changes in the concentration of the target compounds. There was an initial increase in toxicity determined by the constitutively expressed biosensor, followed by a continual reduction as degradation proceeded. The biosensor with the BTEX-specific promoter was most induced when BTEX concentrations were highest. The treatment with nutrient amendment had a significant increase in microbial activity, while the sterile control produced the lowest level of degradation.
Significance and Impact of the Study:  Luminescent biosensors were able to monitor changes in contaminant toxicity and bioavailability in aqueous extracts from BTEX-impacted soils as degradation proceeded. The integration of biological tests with chemical analysis enables a fuller understanding of the biodegradation processes occurring at their relative rates.
Conclusions:  The biological methods were successfully used in assessing the performance of different treatments for enhancing natural attenuation of BTEX from contaminated soils. While, chemical analysis showed biodegradation of parent BTEX compounds in biologically active soils, the biosensor assays reported on changes in bioavailability and potentially toxic intermediate fractions as they estimated the integrative effect of contaminants.  相似文献   

4.
Immune rejection and scarcity of donor tissues are the restrictions of islets transplantation. In this study, the cytoprotection of chitosan hydrogels in xenogeneic islet transplantation was demonstrated. Wistar rat islets encapsulated in chitosan hydrogels were performed glucose challenge test and live/dead cell staining in vitro. Islets/chitosan hydrogels were transplanted into the renal subcapsular space of diabetic C57BL/6 mice. Non-fasting blood glucose level (NFBG), body weight, intraperitoneal glucose tolerance test (IPGTT), and glucose disappearance rate were determined perioperatively. The serum insulin level was analyzed, and the kidney transplanted with islets/chitosan hydrogels were retrieved for histological examination after sacrifice. The present results showed that islets encapsulated in chitosan hydrogels secreted insulin in response to the glucose stimulation as naked islets with higher cell survival. The NFBG of diabetic mice transplanted with islets/chitosan hydrogels decreased from 487 ± 46 to 148 ± 32 at one day postoperation and maintained in the range of 201 ± 36 mg/dl for four weeks with an increase in body weight. IPGTT showed the glucose disappearance rate of mice transplanted with islets/chitosan hydrogels was significant faster than that of mice transplanted with naked islets; the serum insulin level increased from 0.29 ± 0.06 to 1.69 ± 0.65 μg/dl postoperatively. Histological examination revealed that the islets successfully engrafted at renal subcapsular space with positive insulin staining. The immunostain was negative for neither the T-cell lineages nor the monocyte/macrophages. This study indicates that the chitosan hydrogels deliver and protect encapsulated islets successfully in xenotransplantation.  相似文献   

5.
Here we describe for the first time a cell-based scintillation proximity assay using membrane soluble scintillants (MSS). MSS have a scintillant "head" group (2,5-diphenyloxazole) attached to a lipophilic "tail." MSS do not scintillate in an aqueous environment in the presence of a radioactive source: however, in a non-aqueous environment, such as a lipid bilayer (e.g., liposome or cell membrane), scintillation does occur. MSS can be incorporated into liposomes. When these MSS-containing liposomes are fused with the plasma membranes of cells in culture the MSS are incorporated into the cell membrane. Radiolabelled molecules in close proximity to the cell membrane will then elicit a scintillation signal. This system has been used to successfully monitor [(14)C]methionine uptake in HeLa cells and may be used in radiochemical and radioligand binding assays either in vivo or on microsomal preparations obtained from tissues. This new scintillation proximity technology could be readily adapted for high-throughput screening.  相似文献   

6.
Mounting evidence has emphasized the potential of cell therapies in treating various diseases by restoring damaged tissues or replacing defective cells in the body. Cell therapies have become a strong therapeutic modality by applying noninvasive in vivo molecular imaging for examining complex cellular processes, understanding pathophysiological mechanisms of diseases, and evaluating the kinetics/dynamics of cell therapies. In particular, mesenchymal stem cells (MSCs) have shown promise in recent years as drug carriers for cancer treatment. They can also be labeled with different probes and tracked in vivo to assess the in vivo effect of administered cells, and to optimize therapy. The exact role of MSCs in oncologic diseases is not clear as MSCs have been shown to be involved in tumor progression and inhibition, and the exact interactions between MSCs and specific cancer microenvironments are not clear. In this review, a multitude of labeling approaches, imaging modalities, and the merits/demerits of each strategy are outlined. In addition, specific examples of the use of MSCs and in vivo imaging in cancer therapy are provided. Finally, present limitations and future outlooks in terms of the translation of different imaging approaches in clinics are discussed.  相似文献   

7.
To date, the wide application of cell-based biomaterials in tissue engineering and regeneration is remarkably hampered by immune rejection. Reducing the immunogenicity of cell-based biomaterials has become the latest direction in biomaterial research. Recently, genetically modified cell-based biomaterials with immunomodulatory genes have become a feasible solution to the immunogenicity problem. In this review, recent advances and future challenges of genetically modified immunomodulatory cell-based biomaterials are elaborated, including fabrication approaches, mechanisms of common immunomodulatory genes, application and, more importantly, current preclinical and clinical advances. The fabrication approaches can be categorized into commonly used (e.g., virus transfection) and newly developed approaches. The immunomodulatory mechanisms of representative genes involve complicated cell signaling pathways and metabolic activities. Wide application in curing multiple end-term diseases and replacing lifelong immunosuppressive therapy in multiple cell and organ transplantation models is demonstrated. Most significantly, practices of genetically modified organ transplantation have been conducted on brain-dead human decedent and even on living patients after a series of experiments on nonhuman primates. Nevertheless, uncertain biosecurity, nonspecific effects and overlooked personalization of current genetically modified immunomodulatory cell-based biomaterials are shortcomings that remain to be overcome.  相似文献   

8.
In vitro 3D cancer models that provide a more accurate representation of disease in vivo are urgently needed to improve our understanding of cancer pathology and to develop better cancer therapies. However, development of 3D models that are based on manual ejection of cells from micropipettes suffer from inherent limitations such as poor control over cell density, limited repeatability, low throughput, and, in the case of coculture models, lack of reproducible control over spatial distance between cell types (e.g., cancer and stromal cells). In this study, we build on a recently introduced 3D model in which human ovarian cancer (OVCAR-5) cells overlaid on Matrigel spontaneously form multicellular acini. We introduce a high-throughput automated cell printing system to bioprint a 3D coculture model using cancer cells and normal fi broblasts micropatterned on Matrigel. Two cell types were patterned within a spatially controlled microenvironment (e.g., cell density, cell-cell distance) in a high-throughput and reproducible manner; both cell types remained viable during printing and continued to proliferate following patterning. This approach enables the miniaturization of an established macro-scale 3D culture model and would allow systematic investigation into the multiple unknown regulatory feedback mechanisms between tumor and stromal cells and provide a tool for high-throughput drug screening.  相似文献   

9.
The clinical success of cell-based therapeutic angiogenesis has been limited in diabetic patients with critical limb ischemia. We previously reported that an injectable cell scaffold (ICS), which is a nano-scaled hydroxyapatite (HAp)-coated polymer microsphere, enhances therapeutic angiogenesis. Subsequently, we developed a modified ICS for clinical use, measuring 50 μm in diameter using poly(l-lactide-co-ε-caprolactone) as a biodegradable polymer, which achieved appropriately accelerated absorption in vivo. The aim of the present study was to evaluate the effectiveness of this practical ICS in diabetic hindlimb ischemia.  相似文献   

10.
Mutant p53 is not only deficient in tumor suppression but also acquires additional activity, called gain of function. Mutant p53 gain of function is recapitulated in knock-in mice that carry one null allele and one mutant allele of the p53 gene. These knock-in mice develop aggressive tumors compared with p53-null mice. Recently, we and others showed that tumor cells carrying a mutant p53 are addicted to the mutant for cell survival and resistance to DNA damage. To further define mutant p53 gain of function, we used the MCF-10A three-dimensional model of mammary morphogenesis. MCF-10A cells in three-dimensional culture undergo a series of morphological changes and form polarized and growth-arrested spheroids with hollow lumen, which resembles normal glandular architectures in vivo. Here, we found that endogenous wild-type p53 in MCF-10A cells was not required for acinus formation, but knockdown of endogenous wild-type p53 (p53-KD) led to partial clearance of cells in the lumen due to decreased apoptosis. Consistent with this, p53-KD altered expression patterns of the cell adhesion molecule E-cadherin, the cytoskeletal marker β-catenin, and the extracellular matrix protein laminin V. We also found that ectopic expression of the mutant G245S led to a phenotype similar to p53-KD, whereas a combination of ectopic expression of siRNA-resistant G245S with p53-KD led to a less cleared lumen. In contrast, ectopic expression of mutant R248W, R175H, and R273H disrupted normal acinus architectures with filled lumen and led to formation of irregular and multiacinus structures regardless of p53-KD. In addition, these mutants altered normal expression patterns and/or levels of E-cadherin, β-catenin, laminin V, and tight junction marker ZO-1. Furthermore, epithelial-to-mesenchymal transitions (EMT) markers, Snail, Slug, and Twist, were highly induced by mutant p53 and/or p53-KD. Together, we postulate that EMT represents a mutant p53 gain of function and mutant p53 alters cell polarity via EMT.  相似文献   

11.
We present a novel assay for rapid and highly sensitive detection of specific nucleic acid fragments in human serum. In a magnetic modulation biosensing (MMB) system, magnetic beads and fluorescently labeled probes are attached to the target analyte and form a “sandwich” complex. An alternating external magnetic field gradient condenses the magnetic beads (and hence the target molecules with the fluorescently labeled probes) to the detection volume and sets them in a periodic motion, in and out of a laser beam. A synchronous detection enables the removal of background signal from the oscillating target signal without complicated sample preparation. The high sensitivity of the MMB system, combined with the specificity of a sandwich hybridization assay, enables detection of DNA fragments without enzymatic signal amplification. Here, we demonstrate the sensitivity of the assay by directly detecting the EML4‐ALK oncogenic translocation sequence spiked in human serum. The calculated limit of detection is 1.4 pM, which is approximately 150 times better than a conventional plate reader. In general, the MMB‐assisted SHA can be implemented in many other applications for which enzymatic amplification, such as PCR, is not applicable and where rapid detection of specific nucleic acid targets is required.  相似文献   

12.
兔角膜缘干细胞的研究进展   总被引:2,自引:0,他引:2  
白靓  周余来  成岩  顾国贞 《现代生物医学进展》2007,7(10):1578-1581,1593
目前,角膜移植是临床上治疗角膜疾患的最有效途径,但供体角膜非常有限。新近兴起的干细胞技术,为组织工程角膜的研制和应用提供了契机。对于以角膜缘干细胞缺乏或功能障碍为特征的疾病也有治疗效果。采取角膜缘干细胞移植应是一种合理有效的治疗手段。本文主要介绍了兔角膜缘干细胞的体外分离、培养、鉴定及一些生长因子对其增殖的影响。  相似文献   

13.
肿瘤是机体在各种致瘤因子作用下,局部组织细胞异常增生所形成的赘生物。肿瘤治疗一直是临床上的一个难题,而放疗、化疗和手术等常规的肿瘤治疗方法均具有明显的局限性。早期研究发现某些厌氧菌或兼性厌氧菌具有抗肿瘤效应,例如兼性厌氧菌鼠伤寒沙门氏菌可以通过某些机制选择性定殖于肿瘤并抑制肿瘤生长,其应用于肿瘤治疗具有许多潜在的优势。过去的一二十年里,已有不少研究者通过遗传操作减弱沙门菌毒力,提高其定殖肿瘤的靶向性,或以减毒沙门菌作为载体向肿瘤靶向递呈各种治疗分子,并在许多动物试验中观察到遗传改造沙门菌的良好抗肿瘤效应。随着沙门菌抗肿瘤研究的不断深入,应用遗传改造的沙门菌有希望成为一条更有效的肿瘤治疗途径。本文将从沙门菌的抗肿瘤机制、遗传改造的沙门菌介导肿瘤治疗的研究进展和目前研究存在的问题等方面进行综述。  相似文献   

14.
毒性分子-抗毒性分子系统(toxin-antitoxin systems,TA systems)被发现广泛存在于细菌染色体、质粒以及古细菌基因组中。TA系统是由2个基因组成的操纵子,这2个基因分别编码稳定的毒性分子和不稳定的抗毒性分子。毒性分子总是蛋白质,抗毒性分子可能是蛋白质或RNA。因此,根据抗毒性分子的性质和作用方式的不同可将TA系统家族分为5种类型。Ⅰ型和Ⅲ型的抗毒性分子是RNA,能抑制毒性分子的合成或者与其隔离;II、IV和V型的抗毒性分子是蛋白质,能隔离、平衡毒性分子作用或抑制其合成。TA系统具有多种生物学功能。目前研究表明,TA系统可能在细菌应激应答、程序化细胞死亡、多重耐药的形成、防止DNA入侵、稳定大基因组片段等方面有重要的作用。  相似文献   

15.
An optical array biosensor encapsulated with hydrolase and oxidoreductase using sol-gel immobilization technique has been fabricated for simultaneous analysis and screening of multiple samples to determine the presence of multianalytes which are clinically important in relation to renal failure. Urease and creatinine deiminase were used to detect urea and creatinine, while glucose oxidase and uricase were coimmobilized with horseradish peroxidase to quantify glucose and uric acid. Moreover, the concentrations of analytes in fetal calf serum were measured and quantified using the developed sensing system. The array biosensor showed good specificity for the simultaneous analysis of multiple samples for multianalytes without obvious cross-interference. The analytical ranges of the four analytes were between 0.01 and 10mM with detection limits of 2.5-80 microM. High precision with relative standard deviations of 3.8-9.2% (n=45) was also demonstrated. The reproducibility of array-to-array in 3 consecutive months was 5.4% (n=3). Moreover, the concentrations of analytes in fetal calf serum were 5.9 mM for urea, 0.13 mM for creatinine, 3.3mM for glucose, and 0.15 mM for uric acid, which were in good agreement with results obtained using the traditional spectroscopic methods. These results demonstrate the first use of a sol-gel-derived optical array biosensor for simultaneous analysis of multiple samples for the presence of multiple clinically important renal analytes.  相似文献   

16.
《Theriogenology》2015,83(9):1246-1253
The aim of this study was to evaluate the development and estradiol production of isolated bovine secondary follicles in two-dimensional (2D, experiment 1) and three-dimensional (3D using alginate, experiment 2) long-term culture systems in the absence (control group; only α-MEM+) or presence of vascular endothelial growth factor (VEGF), insulin-like growth factor-1, or GH alone, or a combination of all. A total of 363 isolated secondary follicles were cultured individually for 32 days at 38.5 °C in 5% CO2 in a humidified incubator with addition of medium (5 μL) every other day. In 2D culture system, follicular growth and antrum formation rates were higher (P < 0.05) in VEGF treatment compared with the other treatments. In 3D culture system, only estradiol concentration was greater (P < 0.05) in the GH than in the control group, whereas the other end points were similar (P > 0.05). In summary, this study demonstrated that the benefits of using a certain type of medium supplement depended on the culture system (2D vs. 3D). Vascular endothelial growth factor was an effective supplement for the in vitro culture of bovine secondary follicles when the 2D culture system was used, whereas GH only affected estradiol production using the 3D culture system. This study sheds light on advancements in methodology to facilitate subsequent studies on bovine preantral follicle development.  相似文献   

17.
Effective clone selection is a crucial step toward developing a robust mammalian cell culture production platform. Currently, clone selection is done by culturing cells in well plates and picking the highest producers. Ideally, clone selection should be done in a stirred tank bioreactor as this would best replicate the eventual production environment. The actual number of clones selected for future evaluation in bioreactors at bench‐scale is limited by the scale‐up and operational costs involved. This study describes the application of miniaturized stirred high‐throughput bioreactors (35 mL working volume; HTBRs) with noninvasive optical sensors for clone screening and selection. We investigated a method for testing several subclones simultaneously in a stirred environment using our high throughput bioreactors (up to 12 clones per HTBR run) and compared it with a traditional well plate selection approach. Importantly, it was found that selecting clones solely based on results from stationary well plate cultures could result in the chance of missing higher producing clones. Our approach suggests that choosing a clone after analyzing its performance in a stirred bioreactor environment is an improved method for clone selection. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

18.
生理药动- 药效学模型通过对生物学过程的描述,可预测体内药物的吸收、分布、代谢、排泄以及进一步的生理生化反应。这类模型是通过已知的生化/ 生理基础来构建,采用了一种“自下而上”的建模方法,并利用数学方法对生理过程及药物的作用机制作出准确的描述。其中药效学部分,根据预测目的和药物作用的复杂性,可进一步分为基于经验的和基于机制的效应模型,这两种模型均可与基于机制的生理药动学模型相连接,最终预测药物的体内处置和效应。基于机制的生理药动- 药效学模型的优势在于:可外推性、新的影响因素的可纳入性以及可用于未知领域的预测等。随着实验技术的不断革新,药物作用机制的逐渐明确,这类模型越来越多的被成功应用于药物研发及风险评估中。综述生理药动- 药效学模型的构建策略与分类以及在药物研发和风险评估中的应用研究。  相似文献   

19.
Wu M  Yu Z  Fan J  Caron A  Whiteway M  Shen SH 《FEBS letters》2006,580(13):3246-3256
Calpains are a family of calcium-dependent cysteine proteases involved in a variety of cellular functions. Two isoforms, m-calpain and mu-calpain, have been implicated in cell migration. However, since conventional inhibitors used for the studies of the functions of these enzymes lack specificity, the individual physiological function and biochemical mechanism of these two isoforms, especially mu-calpain, are not clear. In contrast, RNA interference has the potential to allow a sequence-specific destruction of target RNA for functional assay of gene of interest. In the present study, we found that small interfering RNAs-mediated knockdown of mu-calpain expression in MCF-7 cells that do not express m-Calpain led to a reduction of cell migration. This isoform-specific function of mu-calpain was further confirmed by the rescue experiment as overexpression of mu-calpain but not m-calpain could restore the cell migration rate. Knockdown of mu-calpain also altered cell morphology with increased filopodial projections and a highly elongated tail that seemed to prevent cell spreading and migration with reduced rear detachment ability. Furthermore, knockdown of mu-calpain decreased the proteolytic products of filamin and talin, which were specifically rescued by overexpression of mu-calpain but not m-calpain, suggesting that their proteolysis could be one of the key mechanisms by which mu-calpain regulates cell migration.  相似文献   

20.
This experimental study describes the fabrication and analysis of a micro-perfusion system that can be used in many bioengineering experiments to create rapid, large regional intracellular changes within single ventricular myocytes. The myocyte was a kind of osmometer since the cell volume was found to be strongly dependent on the perfusion solution osmolarity. This volume change was measured, indirectly, by measuring the cell width change using video-microscopy and image analysis software. Jacob's equation was used to model these results successfully. Some dual perfusion experiments to see the effects of the localized perfusion of different osmotic solutions to generate an osmotic gradient inside myocytes were also investigated. This device can be useful for studying the effects of localized pH or osmotic gradients inside myocytes, estimating intracellular ion diffusion rates, and inducing regional changes in other important intracellular ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号