首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In addition to the virus-specified tumor antigens, simian virus 40-transformed cells contain at least one other protein which can be immunoprecipitated with serum from animals bearing simian virus 40-induced tumors. This protein, which is designated Tau antigen, has an apparent molecular weight of 56,000 as determined by electrophoresis on acrylamide gels. The relationship among Tau antigens isolated from different lines of simian virus 40-transformed cells was examined by comparing the methionine-labeled tryptic peptides of these proteins by two-dimensional fingerprinting on thin-layer cellulose plates. In this fashion, we initially determined that the Tau antigens isolated from three different lines of transformed mouse cells were very similar. Second, we found that Tau antigen isolated from a line of rat transformants was closely related, but not identical, to the mouse cell Tau antigens. Approximately 70% of their methionine peptides comigrated in two dimensions. Finally, we showed that Tau antigen isolated from a line of transformed human cells was only partially related to the mouse and rat proteins. About 40% of the methionine peptides of the human protein were also contained in the Tau antigens from the other two species. These results strongly indicate that the Tau antigens isolated from these various simian virus 40-transformed cell lines contain common amino acid sequences.  相似文献   

2.
Differential screening of a cDNA library was used to isolate probes for mRNAs that are induced in simian virus 40 (SV40)-transformed human keratinocytes. Several of these cDNAs hybrid select mRNAs which encode transformation-induced proteins found in the cytoskeletal component of SV40-transformed keratinocytes. One of these cDNAs was used to study the phenotype of normal and transformed cell lines derived from various tissues. We found that mRNA encoding the novel transformation-induced proteins is expressed in two squamous carcinoma cell lines derived from the oral epithelium, four SV40-transformed keratinocyte cell lines, and two SV40-transformed fibroblasts. Normal or transformed lymphoid cells or cell lines derived from carcinoma of the cervix do not express mRNAs which hybridize to these probes. The results from this study suggest that these probes may be used to detect markers of transformation in certain cell types.  相似文献   

3.
Intermediate in SV40 DNA Chain Growth   总被引:19,自引:0,他引:19  
PREVIOUS studies of the DNA replication of simian virus 40 (SV40), an oncogenic member of the papoyavirus group, have been concerned with separation and characterization of replicative intermediates1–4. Circular replicating intermediates have been identified for SV401–3, as well as for the similar replication system of polyoma viral DNA5,6. The replicative intermediates of SV40 DNA have been observed by electron microscopy to contain two forks, three branches and no free ends1–3 as is the case for the circular replicating molecules of polyoma, bacteriophage λ7, Escherichia coli8 and colicin E1 in mini-cells9,10. An important property of replicative intermediates of SV40 DNA that has also been observed in replicating molecules of colicin E110 is that most molecules contain a superhelical region in the unreplicated portion of the molecule1.  相似文献   

4.
Infectious deoxyribonucleic acid (DNA) was extracted from green monkey kidney (CV-1) cultures at various times after the cultures were infected with simian virus 40 (SV40) at input multiplicities of 0.01 and 0.1 plaque-forming unit (PFU) per cell. A pronounced decrease in infectious DNA was observed from 3 to 16 hr after virus infection, suggesting that structurally altered intracellular forms may have been generated early in infection. Evidence is also presented that SV40 DNA synthesis requires concurrent protein synthesis. DNA replication was studied in the presence and absence of cycloheximide in: (i) SV40-infected and uninfected cultures of CV-1 cells; (ii) cultures synchronized with 1-β-d-arabinofuranosylcytosine (ara-C) for 24 to 30 hr prior to the addition of cycloheximide; and (iii) in heterokaryons of SV40-transformed hamster and susceptible monkey kidney cells. DNA synthesis was determined by pulse-labeling the cultures with 3H-thymidine at various times from 24 to 46 hr after infection. In addition, the total infectious SV40 DNA was measured. Addition of cycloheximide, even after early proteins had been induced, grossly inhibited both SV40 and cellular DNA syntheses. The activities of thymidine kinase, DNA polymerase, deoxycytidylate deaminase, and thymidylate kinase were measured; these enzyme activities remained high for at least 9 hr in the presence of cycloheximide. SV40 DNA prelabeled with 3H-thymidine before the addition of cycloheximide was also relatively stable during the time required for cycloheximide to inhibit further DNA replication.  相似文献   

5.
AFTER infection of monkey kidney cells with simian virus 40 (SV40), several species of SV40 specific RNA are synthesized1. Most SV40 RNA have a molecular weight of about 6×105 and 8×105 as measured by polyacrylamide gel electrophoresis1. In addition to these classes of RNA, a large heterogeneous SV40 specific RNA species of up to three times the length of the monomeric SV40 DNA molecule has been observed1–4. Nothing is known about the structure of this large heterogeneous virus specific RNA.  相似文献   

6.
J S Butel  C Wong    B K Evans 《Journal of virology》1986,60(2):817-821
Higher-molecular-weight forms of the simian virus 40 (SV40) large tumor antigen (T-Ag), designated super T-Ag, are commonly found in SV40-transformed rodent cells. We examined the potential role of super T-Ag in neoplastic progression by using a series of clonal SV40-transformed mouse mammary epithelial cell lines. We confirmed an association between the presence of super T-Ag and cellular anchorage-independent growth in methylcellulose. However, tumorigenicity in nude mice did not correlate with the expression of super T-Ag. In the tumors that developed in nude mice, super T-Ag expression fluctuated almost randomly. Cell surface iodination showed that super T-Ag molecules were transported to the epithelial cell surface. The biological functions of super T-Ag remain obscure, but it is clear that it is not important for tumorigenicity by SV40-transformed mouse mammary epithelial cells. Super T-Ag may be most important as a marker of genomic rearrangements by the resident viral genes in transformed cells.  相似文献   

7.
Cell surface T antigen, detected by a radioimmune assay that uses 125I-labeled Staphylococcus aureus protein A and antibodies against either authentic T antigen or D2 hybrid T antigen, was found in simian virus 40-transformed and -infected cells and in cells infected with an adenovirus-simian virus 40 hybrid, Ad2+D2. In simian virus 40 lytic infection, the surface T antigen appeared at the same time as the nuclear T antigen.  相似文献   

8.
We analyzed large and small species of T-antigen by immunoprecipitation and two-dimensional gel electrophoresis. The T-antigen species were subjected to electrophoresis either directly or after reduction and alkylation with N-ethylmaleimide. Treatment with N-ethylmaleimide improved the resolution of large-T by two-dimensional gel electrophoresis and was a requirement for the resolution of small-t antigen on two dimensional gels. Large-T did not form a discrete protein spot, but rather formed a streak from approximately pH 6.5 to 6.9 on isoelectric focusing gels. Small-t formed a sharp protein spot at approximately pH 7.2 when subjected to electrophoresis under non-equilibrium conditions which extended the pH gradient to include proteins with basic isoelectric points. Treatment with N-ethylmaleimide decreased the mobility of the T-antigen species during sodium dodecyl sulfate gel electrophoresis. We suggest that the apparent increase in molecular weight was due to the association of N-ethylmaleimide with cysteine-rich regions of these proteins. Viable deletion mutants of simian virus 40 which do not induce the synthesis of small-t but product small-t-related polypeptides were used to localize the cysteine-rich region of small-t to between 0.54 and 0.59 on the genetic map of simian virus 40.  相似文献   

9.
Tau antigens (also known as cellular or nonviral tumor antigens) were detected in uninfected and simian virus 40-infected monkey cells after immunoprecipitation with serum from hamsters bearing simian virus 40-induced tumours (anti-T serum). These two proteins (56,000 daltons) were digested to similarly sized peptides with various amounts of Staphylococcus aureus V8 protease. The Tau antigen isolated from infected monkey cells was closely related but was not identical to the corresponding protein from human cells transformed by simian virus 40, as determined by two-dimensional mapping of their methionine-labeled tryptic peptides. Hamster cells transformed by various primate papovaviruses (simian virus 40, BK virus, and JC virus) synthesized indistinguishable Tau antigens, as determined by two-dimensional peptide mapping. When tested by the same procedure, these proteins and the ones made in monkey and human cells were found to be related to the Tau antigens isolated from simian virus 40-transformed mouse and rat cells. Based on these results, an "evolutionary tree" was constructed to show the relationship among the methionine-containing tryptic peptides of all of these proteins.  相似文献   

10.
SV40-transformed simian cells support the replication of early SV40 mutants   总被引:650,自引:0,他引:650  
Y Gluzman 《Cell》1981,23(1):175-182
CV-1, an established line of simian cells permissive for lytic growth of SV40, were transformed by an origin-defective mutant of SV40 which codes for wild-type T antigen. Three transformed lines (COS-1, -3, -7) were established and found to contain T antigen; retain complete permissiveness for lytic growth of SV40; support the replication of tsA209 virus at 40 degrees C; and support the replication of pure populations of SV40 mutants with deletions in the early region. One of the lines (COS-1) contains a single integrated copy of the complete early region of SV40 DNA. These cells are possible hosts for the propagation of pure populations of recombinant SV40 viruses.  相似文献   

11.
A bacterial plasmid carrying the early region of SV40 (pOT) has been stably established in high molecular weight (hmw) DNA of mouse L cells by selection for the herpes virus thymidine kinase (tk) gene. DNA blotting has demonstrated that most cell lines contain multiple discrete copies of pOT, generally with an intact SV40 early region. No free copies of pOT have been detected. Both pOT and tk sequences may be amplified up to 20–200 copies of the SV40 early region. In contrast to the uniform staining pattern normally observed in SV40-transformed lines, indirect immunofluorescence using antiserum to the SV40 T antigen has demonstrated that the expression of the early region is heterogeneous in these cell lines. This fraction expressing T is characteristic of a given cell line, and varies from 0 to 99% positive. Several pOT cell lines have been fused to simian cells, and replicating low molecular weight DNAs were isolated from the heterokaryons. Transformation of E. coli with this DNA demonstrates that pOT can be rescued from hmw DNA in L cells and reestablished as a plasmid in E. coli. Excision is generally precise when pOT is introduced to the murine cells as a supercoiled molecule, and imprecise when pOT is introduced in linear form.  相似文献   

12.
HeLa cells infected with the nondefective adenovirus 2 (Ad2)-simian virus 40 (SV40) hybrid viruses (Ad2(+)ND1, Ad2(+)ND2, Ad2(+)ND4, and Ad2(+)ND5) synthesize SV40-specific proteins ranging in size from 28,000 to 100,000 daltons. By analysis of their methionine-containing tryptic peptides, we demonstrated that all these proteins shared common amino acid sequences. Most methionine-containing tryptic peptides derived from proteins of smaller size were contained within the proteins of larger size. Seventeen of the 21 methionine-containing tryptic peptides of the largest SV40-specific protein (100,000 daltons) from Ad2(+)ND4-infected cells were identical to methionine-containing peptides of SV40 T-antigen immunoprecipitated from extracts of SV40-infected cells. All of the methionine-containing tryptic peptides of the Ad2(+)ND4 100,000-dalton protein were found in SV40 T-antigen immunoprecipitated from SV40-transformed cells. All SV40-specific proteins observed in vivo could be synthesized in vitro using the wheat germ cell-free system and SV40-specific RNA from hybrid virus-infected cells that was purified by hybridization to SV40 DNA. As proof of identity, the in vitro products were shown to have methionine-containing tryptic peptides identical to those of their in vivo counterparts. Based on the extensive overlap in amino acid sequence between the SV40-specific proteins from hybrid virus-infected cells and SV40 T-antigen from SV40-infected and -transformed cells, we conclude that at least the major portion of the SV40-specific proteins cannot be Ad2 coded. From the in vitro synthesis experiments with SV40-selected RNA, we further conclude that the SV40-specific proteins must be SV40 coded and not host coded. Since SV40 T-antigen is related to the SV40-specific proteins, it must also be SV40 coded.  相似文献   

13.
Structural Proteins of Simian Virus 40   总被引:17,自引:15,他引:2       下载免费PDF全文
Sodium dodecyl sulfate acrylamide gel electrophoresis of the solubilized proteins from purified simian virus 40 (SV40) virions revealed two major and two minor structural polypeptide components. The major components which comprise over 75% of the total virion were shown to be the capsid proteins by immunological and isoelectric focusing fractionation analysis. These two polypeptides have estimated molecular weights of 45,000 daltons as determined by gel electrophoresis. One of the two minor components was identified as the nucleocapsid protein and has an approximate molecular weight of 16,000. The other unidentified minor component has an average molecular weight of 29,000.  相似文献   

14.
D I Linzer  A J Levine 《Cell》1979,17(1):43-52
SV40 infection or transformation of murine cells stimulated the production of a 54K dalton protein that was specifically immunoprecipitated, along with SV40 large T and small t antigens, with sera from mice or hamsters bearing SV40-induced tumors. The same SV40 anti-T sera immunoprecipitated a 54K dalton protein from two different, uninfected murine embryonal carcinoma cell lines. These 54K proteins from SV40-transformed mouse cells and the uninfected embryonal carcinomas cells had identical partial peptide maps which were completely different from the partial peptide map of SV40 large T antigen. An Ad2+ND4-transformed hamster cell line also expressed a 54K protein that was specifically immunoprecipitated by SV40 T sera. The partial peptide maps of the mouse and hamster 54K protein were different, showing the host cell species specificity of these proteins. The 54K hamster protein was also unrelated to the Ad2+ND4 SV40 T antigen. Analogous proteins immunoprecipitated by SV40 T sera, ranging in molecular weight from 44K to 60K, were detected in human and monkey SV40-infected or -transformed cells. A wide variety of sera from hamsters and mice bearing SV40-induced tumors immunoprecipitated the 54K protein of SV40-transformed cells and murine embryonal carcinoma cells. Antibody produced by somatic cell hybrids between a B cell and a myeloma cell (hybridoma) against SV40 large T antigen also immunoprecipitated the 54K protein in virus-infected and -transformed cells, but did not do so in the embryonal carcinoma cell lines. We conclude that SV40 infection or transformation of mouse cells stimulates the synthesis or enhances the stability of a 54K protein. This protein appears to be associated with SV40 T antigen in SV40-infected and -transformed cells, and is co-immunoprecipitated by hybridomas sera to SV40 large T antigen. The 54K protein either shares antigenic determinants with SV40 T antigen or is itself immunogenic when in association with SV40 large T antigen. The protein varies with host cell species, and analogous proteins were observed in hamster, monkey and human cells. The role of this protein in transformation is unclear at present.  相似文献   

15.
A rabbit antiserum (A2) directed against the detergent-solubilized fraction of the simian virus 40-transformed mouse embryo fibroblast cell line VLM detects common antigens in primary cell cultures from BALB/c mouse embryos and in transformed cell lines from various species. Positively reacting cell cultures show a set of polypeptides with molecular weight species p86, p74, p68, p46, p42, p40, and p35. As tested by Western blotting procedures, all immunoprecipitated proteins carry immunologically reactive determinants. By analysis with two-dimensional gel electrophoresis, all precipitated polypeptides show charge heterogeneities. Concerning the two major members of the protein set, p40 consists of at least four subspecies with isoelectric points in the range of pH 6.2-6.8, whereas p35 is composed of two subspecies focusing between pH 6.4 and pH 7.2. By comparison of the two-dimensional patterns of p35 of various transformed cell lines, a basic (pH 6.6-7.2) and an acidic (6.4-6.6) charge type of p35 could be observed. Comparative analyses of primary cell cultures from 12-16-day mouse embryos show the immunoprecipitated set of polypeptides only in the 16-day embryo cell cultures. After six further propagations, these cells express the immunoreactive proteins as strongly as the primary cell cultures. In embryonic cell cultures of day 14 of gestation the expression of this set of antigens is induced only when cells are propagated at least six times. Under identical conditions these proteins could not be induced in cell cultures of 18-day-old mouse embryos. None of the polypeptides could be immunoprecipitated from primary mouse kidney cell cultures of 12-day-old mice even when the cultures were propagated at least 15 times. This set of polypeptides is also present in simian virus 40-transformed cells of hamster, rat, monkey, and human origin. These findings suggest that in simian virus 40-transformed mouse cells, in addition to p53, the synthesis of other embryonic antigens is reactivated. The presence of the described set of polypeptides in polyoma virus-transformed cells of rat and mouse origin and in cell lines derived from malignant human tumors might indicate common functions in metabolic patterns of transformed cells.  相似文献   

16.
The number of initiation points for DNA synthesis per unit length of DNA in rapidly growing cells is greater for simian virus 40-transformed than for nontransformed BALB/c 3T3 cells.  相似文献   

17.
Evidence that the resistance of simian virus (SV40)-transformed permissive cells to superinfection with SV40 is due to lack of virus uptake is presented. When virus uptake is enhanced, the events of infection proceed as in normal permissive cells, resulting in production of infectious virus.  相似文献   

18.
By using a photoaffinity ligand, cell extracts from transformed macrophages that were established by infection with temperature-sensitive mutants (tsA640) of simian virus 40 (SV40) were examined for cyclic adenosine 3':5'-monophosphate (cAMP)-binding proteins. At the nonpermissive temperature for SV40 large T antigen, 39.0 degrees C, no significant cAMP-binding proteins could be detected, such as primary mouse macrophages. At the permissive temperature of 33.0 degrees C, cAMP-binding proteins appeared later than SV40 T antigen expression and cellular DNA synthesis. The profile of cAMP-binding proteins was similar to that of resting, but not proliferating, mouse clonal fibroblasts (BALB/c 3T3). These and previous results suggest that SV40 T antigen influences the expression of cAMP-binding proteins in tsA640-transformed macrophages; the large/small T antigen converts the profile of cAMP-binding proteins from macrophage to fibroblastic cells.  相似文献   

19.
Serum raised against a mouse 53,000-dalton (53K) phosphoprotein precipitates both the 53K immunogen and simian virus 40 large-T from lysates of simian virus 40-transformed 3T3 cells. This serum, designated F5, does not recognize antigenic determinants on native or denatured large-T and precipitates large-T because the 53K phosphoprotein forms a stable complex with large-T. This complex sediments at 23S on sucrose density gradients, corresponding to a molecular weight of 600K to 1,000K, and appears to contain only 53K and large-T as major components. It is held together by noncovalent bonds and is located in the cell nucleus. All the 53K immunoprecipitated from cell lysates by F5 is present in the high-molecular-weight complex, but large-T can be separated into a complexed and a free form on sucrose density gradients. The complexed form of large-T is more readily phosphorylated than the free form. We have been unable to detect an association of large-T with comparable host cell proteins during productive infections with simian virus 40.  相似文献   

20.
The proteins of simian virus 40 (SV40) and two human papovaviruses, the hemagglutinating BK virus and the non-hemagglutinating DAR virus, were analyzed and compared by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The virions of SV40 and DAR contain seven proteins. By molecular weight analysis the constituent proteins of SV40 and DAR are identical. Approximately 84% of the viral protein has a molceular weight of 45,000. The major protein of BK virus is 3,000 to 5,000 daltons lighter than the major proteins of SV40 and DAR viruses. The five most rapidly migrating proteins of BK virus are indistinguishable by molecular weight analysis from the corresponding proteins of SV40 and DAR viruses. Radial immunodiffusion and immunoelectrophoresis of whole virus gave lines of identity between SV40 and DAR when reacted with SV40 antibody. SV40 antiserum tested against BK virus and BK antiserum tested against SV40 virus showed no reactivity by complement fixation, immunodiffusion, or immunoelectrophoresis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号