首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The singular regenerative abilities of planarians require a population of stem cells known as neoblasts. In response to wounding, or during the course of cell turnover, neoblasts are signaled to divide and/or differentiate, thereby replacing lost cell types. The study of these pluripotent stem cells and their role in planarian regeneration has been severely hampered by the reported inability of planarians to incorporate exogenous DNA precursors; thus, very little is known about the mechanisms that control proliferation and differentiation of this stem cell population within the planarian. Here we show that planarians are, in fact, capable of incorporating the thymidine analogue bromodeoxyuridine (BrdU), allowing neoblasts to be labeled specifically during the S phase of the cell cycle. We have used BrdU labeling to study the distribution of neoblasts in the intact animal, as well as to directly demonstrate the migration and differentiation of neoblasts. We have examined the proposal that a subset of neoblasts is arrested in the G2 phase of the cell cycle by double-labeling with BrdU and a mitosis-specific marker; we find that the median length of G2 (approximately 6 h) is sufficient to account for the initial mitotic burst observed after feeding or amputation. Continuous BrdU-labeling experiments also suggest that there is not a large, slow-cycling population of neoblasts in the intact animal. The ability to label specifically the regenerative stem cells, combined with the recently described use of double-stranded RNA to inhibit gene expression in the planarian, should serve to reignite interest in the flatworm as an experimental model for studying the problems of metazoan regeneration and the control of stem cell proliferation.  相似文献   

2.
Planarians (Platyhelminthes) possess an abundant population of adult stem cells, the neoblasts, capable to give rise to both somatic and germ cells. Although neoblasts share similar morphological features, several pieces of evidence suggest that they constitute a heterogeneous population of cells with distinct ultrastructural and molecular features. We found that in planarians treated with low X-ray doses (5 Gy), only a few neoblasts survive. Among these cells, those located close to the nervous system activate an intense proliferation program and migrate to reconstitute the whole complex neoblast population. This phenomenon is inhibited by the substance P receptor antagonist spantide, and accompanied by the up-regulation of a number of genes implicated in neuronal signalling and plasticity, suggesting that signals of neural origin modulate neoblast proliferation and/or migration. Here, we review these findings and the literature available on the influence of the nervous system on stem cell activity, both in planarians and vertebrates, and we propose 5 Gy-treated planarians as a unique model system to study the influence of neural signalling on stem cell biology.  相似文献   

3.
Planarians are a model system for studying adult stem cells, as they possess the neoblasts, a population of pluripotent adult stem cells able to give rise to both somatic and germ cells. Although over the last years several efforts have been made to shed light on neoblast biology, only recent evidence indicate that this population of cells is heterogeneous. In this study we irradiated planarians with different non-lethal X-ray doses (1-5 Gy) and we identified subpopulations of neoblasts with diverse levels of tolerance to X-rays. We demonstrated that a dramatic reduction of neoblasts occurred soon after non-lethal irradiations and that de-novo proliferation of some radioresistant cells re-established the primary neoblast number. In particular, a strong proliferation activity occurred at the ventral side of irradiated animals close to the nervous system. The produced cells migrated towards the dorsal parenchyma and, together with some dorsal radioresistant cells, reconstituted the entire neoblast population demonstrating the extreme plasticity of this adult stem cell system.  相似文献   

4.
5.
6.
The robust regenerative abilities of planarians absolutely depend on a unique population of pluripotent stem cells called neoblasts, which are the only mitotic somatic cells in adult planarians and are responsible for blastema formation after amputation. Little is known about the molecular mechanisms that drive blastema formation during planarian regeneration. Here we found that treatment with the c-Jun N-terminal kinase (JNK) inhibitor SP600125 blocked the entry of neoblasts into the M-phase of the cell cycle, while allowing neoblasts to successfully enter S-phase in the planarian Dugesia japonica. The rapid and efficient blockage of neoblast mitosis by treatment with the JNK inhibitor provided a method to assess whether temporally regulated cell cycle activation drives blastema formation during planarian regeneration. In the early phase of blastema formation, activated JNK was detected prominently in a mitotic region (the "postblastema") proximal to the blastema region. Furthermore, we demonstrated that undifferentiated mitotic neoblasts in the postblastema showed highly activated JNK at the single cell level. JNK inhibition by treatment with SP600125 during this period caused a severe defect of blastema formation, which accorded with a drastic decrease of mitotic neoblasts in regenerating animals. By contrast, these animals still retained many undifferentiated neoblasts near the amputation stump. These findings suggest that JNK signaling plays a crucial role in feeding into the blastema neoblasts for differentiation by regulating the G2/M transition in the cell cycle during planarian regeneration.  相似文献   

7.
8.
Planarians have high regenerative ability, which is dependent on pluripotent adult somatic stem cells called neoblasts. Recently, canonical Wnt/β-catenin signaling was shown to be required for posterior specification, and Hedgehog signaling was shown to control anterior-posterior polarity via activation of the Djwnt1/P-1 gene at the posterior end of planarians. Thus, various signaling molecules play an important role in planarian stem cell regulation. However, the molecular mechanisms directly involved in stem cell differentiation have remained unclear. Here, we demonstrate that one of the planarian LIM-homeobox genes, Djislet, is required for the differentiation of Djwnt1/P-1-expressing cells from stem cells at the posterior end. RNA interference (RNAi)-treated planarians of Djislet [Djislet(RNAi)] show a tail-less phenotype. Thus, we speculated that Djislet might be involved in activation of the Wnt signaling pathway in the posterior blastema. When we carefully examined the expression pattern of Djwnt1/P-1 by quantitative real-time PCR during posterior regeneration, we found two phases of Djwnt1/P-1 expression: the first phase was detected in the differentiated cells in the old tissue in the early stage of regeneration and then a second phase was observed in the cells derived from stem cells in the posterior blastema. Interestingly, Djislet is expressed in stem cell-derived DjPiwiA- and Djwnt1/P-1-expressing cells, and Djislet(RNAi) only perturbed the second phase. Thus, we propose that Djislet might act to trigger the differentiation of cells expressing Djwnt1/P-1 from stem cells.  相似文献   

9.
Undifferentiated cells of planarians (Platyhelminthes, Turbellaria), also called neoblasts, are totipotent stem cells, which give rise to all differentiated cell types, while maintaining their own density by cell proliferation. Neoblasts are the only somatic cells of planarians bearing chromatoid bodies in their cytoplasm; these organelles disappear as differentiation takes place. Studies on germinal cells of several groups of organisms have shown that chromatoid bodies contain substantial amounts of RNA. To test its presence in neoblasts, we have used an RNase–gold technique. We found chromatoid bodies labeled with RNase–gold particles. Heterogeneity in the density of the label, may be correlated with the functionality and complexity of these organelles. The gold marker was also present over the nucleus and rough endoplasmic reticulum, but mitochondria, secretory granules, and the extracellular space were devoid of label. This specific localization of RNA in planarian chromatoid bodies supports earlier findings on germ cells and embryonic cells in a variety of organisms, indicating that chromatoid bodies are information-storage structures, essential during the process of cell differentiation. © 1993 Wiley-Liss, Inc.  相似文献   

10.
Planarians are capable of profound regenerative feats dependent upon a population of self-renewing adult stem cells called neoblasts. The key features of neoblasts are their capacity for indefinite self-renewal, their totipotency and the ability of their progeny to interpret differentiation and polarity signals and correctly replace lost structures after tissue damage. Regeneration in planarians offers a paradigm for understanding the molecular and cellular control of the repair and regeneration of animal tissues, and could provide valuable insights for the safe use of stem cells to repair damaged, diseased and ageing human tissues with little or no regenerative capacities. Here, I review recent progress in understanding neoblasts in regeneration and the growing potential this research has to be broadly informative for human biology.  相似文献   

11.
Planarians have been established as an ideal model organism for stem cell research and regeneration. Planarian regeneration and homeostasis require an exquisite balancing act between cell death and cell proliferation as new tissues are made (epimorphosis) and existing tissues remodeled (morphallaxis). Some of the genes and mechanisms that control cell proliferation and pattern formation are known. However, studies about cell death during remodeling are few and far between. We have studied the gene Gtdap-1, the planarian ortholog of human death-associated protein-1 or DAP-1. DAP-1 together with DAP-kinase has been identified as a positive mediator of programmed cell death induced by gamma-interferon in HeLa cells. We have found that the gene functions at the interface between autophagy and cell death in the remodeling of the organism that occurs during regeneration and starvation in sexual and asexual races of planarians. Our data suggest that autophagy of existing cells may be essential to fuel the continued proliferation and differentiation of stem cells by providing the necessary energy and building blocks to neoblasts.  相似文献   

12.
Regeneration in planarians is an intriguing phenomenon, based on the presence of pluripotent stem cells, known as neoblasts. Following amputation, these cells activate mitotic divisions, migrate distally and undergo differentiation, giving rise to the regeneration blastema. We have identified two msh/msx-related genes, Djmsh1 and Djmsh2, which are expressed in distinct cell populations of the planarian Dugesia japonica and activated, with different patterns, during head regeneration. We demonstrate that RNA interference of Djmsh1 or Djmsh2 generates a delay in the growth of cephalic blastema, interfering with the dynamics of mitoses during its initial formation. Our data also reveal that the activity of the two planarian msh genes is required to regulate Djbmp expression during head regeneration. This study identifies, for the first time, a functional association between muscle segment homeobox (MSH) homeoproteins and BMP signaling during stem cell-based regeneration of the planarian head and provides a functional analysis of how msh genes may regulate in vivo the regenerative response of planarian stem cells.  相似文献   

13.
The remarkable capability of planarian regeneration is mediated by a group of adult stem cells referred to as neoblasts. Although these cells possess many unique cytological characteristics (e.g. they are X-ray sensitive and contain chromatoid bodies), it has been difficult to isolate them after cell dissociation. This is one of the major reasons why planarian regenerative mechanisms have remained elusive for a long time. Here, we describe a new method to isolate the planarian adult stem cells as X-ray-sensitive cell populations by fluorescence-activated cell sorting (FACS). Dissociated cells from whole planarians were labeled with fluorescent dyes prior to fractionation by FACS. We compared the FACS profiles from X-ray-irradiated and non-irradiated planarians, and thereby found two cell fractions which contained X-ray-sensitive cells. These fractions, designated X1 and X2, were subjected to electron microscopic morphological analysis. We concluded that X-ray-sensitive cells in both fractions possessed typical stem cell morphology: an ovoid shape with a large nucleus and scant cytoplasm, and chromatoid bodies in the cytoplasm. This method of isolating X-ray-sensitive cells using FACS may provide a key tool for advancing our understanding of the stem cell system in planarians.  相似文献   

14.
Planarians have a remarkable regenerative ability owing to their adult pluripotent stem cells (aPSCs), which are called “neoblasts.” Planarians maintain a considerable number of neoblasts throughout their adulthood to supply differentiated cells for the maintenance of tissue homeostasis and asexual reproduction (fission followed by regeneration). Thus, planarians serve as a good model to study the regulatory mechanisms of in vivo aPSCs. In asexually reproducing invertebrates, such as sponge, Hydra, and planaria, piwi family genes are the markers most commonly expressed in aPSCs. While piwi family genes are known as guardians against transposable elements in the germline cells of animals that only sexually propagate, their functions in the aPSC system have remained elusive. In this review, we introduce recent knowledge on the PIWI family proteins in the aPSC system in planarians and other organisms and discuss how PIWI family proteins contribute to the regulation of the aPSC system.  相似文献   

15.
16.
Heterogeneity of planarian stem cells has been categorised on the basis of single cell expression analyses and subsequent experiments to demonstrate lineage relationships. Some data suggest that despite heterogeneity in gene expression amongst cells in the cell cycle, in fact only one sub-population, known as sigma neoblasts, can self-renew. Without the tools to perform live in vivo lineage analysis, we instead took an alternative approach to provide independent evidence for defining the self-renewing stem cell population. We exploited the role of highly conserved condensin family genes to functionally assay neoblast self-renewal properties. Condensins are involved in forming properly condensed chromosomes to allow cell division to proceed during mitosis, and their abrogation inhibits mitosis and can lead to repeated endoreplication of the genome in cells that make repeated attempts to divide. We find that planarians possess only the condensin I complex, and that this is required for normal stem cell function. Abrogation of condensin function led to rapid stem cell depletion accompanied by the appearance of ‘giant’ cells with increased DNA content. Using previously discovered markers of heterogeneity we show that enlarged cells are always from the sigma-class of the neoblast population and we never observe evidence for endoreplication for the other neoblast subclasses. Overall, our data establish that condensins are essential for stem cell maintenance and provide independent evidence that only sigma-neoblasts are capable of multiple rounds of cell division and hence self-renewal.  相似文献   

17.
18.
A Bruno-like gene is required for stem cell maintenance in planarians   总被引:1,自引:0,他引:1  
The regenerative abilities of freshwater planarians are based on neoblasts, stem cells maintained throughout the animal's life. We show that a member of the Bruno-like family of RNA binding proteins is critical for regulating neoblasts in the planarian Schmidtea mediterranea. Smed-bruno-like (bruli) mRNA and protein are expressed in neoblasts and the central nervous system. Following bruli RNAi, which eliminates detectable Bruli protein, planarians initiate the proliferative response to amputation and form small blastemas but then undergo tissue regression and lysis. We characterize the neoblast population by using antibodies recognizing SMEDWI-1 and Histone H4 (monomethyl-K20) and cell-cycle markers to label subsets of neoblasts and their progeny. bruli knockdown results in a dramatic reduction/elimination of neoblasts. Our analyses indicate that neoblasts lacking Bruli can respond to wound stimuli and generate progeny that can form blastemas and differentiate; yet, they are unable to self-renew. These results suggest that Bruli is required for stem cell maintenance.  相似文献   

19.
Adult planarians are capable of undergoing regeneration and body remodelling in order to adapt to physical damage or extreme environmental conditions. Moreover, most planarians can tolerate long periods of starvation and during this time, they shrink from an adult size to, and sometimes beyond, the initial size at hatching. Indeed, these properties have made them a classic model to study stem cells and regeneration. Under such stressful conditions, food reserves from the gastrodermis and parenchyma are first used up and later the testes, copulatory organs and ovaries are digested. More surprisingly, when food is again made available to shrunken individuals, they grow back to adult size and all their reproductive structures reappear. These cycles of growth and shrinkage may occur over long periods without any apparent impairment to the individual, or to its future maturation and breeding capacities. This plasticity resides in a mesoderm tissue known as the parenchyma, which is formed by several differentiated non-proliferating cell types and only one mitotically active cell type, the neoblasts, which represent approximately 20–30% of the cells in the parenchyma. Neoblasts are generally thought to be somatic stem-cells that participate in the normal continuous turnover of all cell types in planarians. Hence, planarians are organisms that continuously adapt their bodies (morphallaxis) to different environmental stresses (i.e.: injury or starvation). This adaptation involves a variety of processes including proliferation, differentiation, apoptosis and autophagy, all of which are perfectly orchestrated and tightly regulated to remodel or restore the body pattern. While neoblast biology and body re-patterning are currently the subject of intense research, apoptosis and autophagy remain much less studied. In this review we will summarize our current understanding and hypotheses regarding where and when apoptosis and autophagy occur and fulfil an essential role in planarians.  相似文献   

20.
 To obtain specific immunological probes for studying molecular mechanisms involved in cell renewal, cell differentiation, and pattern formation in intact and regenerating planarians, we have produced a hybridoma library specific for the asexual race of the freshwater planarian Dugesia (Girardia) tigrina. Among the 276 monoclonal antibodies showing tissue-, cell-, cell subtype-, subcellular- and position-specific staining, we have found monoclonal antibodies against all tissues and cell types with the exception of neoblasts, the undifferentiated totipotent stem-cells in planarians. We have also detected position-specific antigens that label anterior, central, and posterior regions. Patterns of expression uncovered an unexpected heterogeneity among previously thought single cell types, as well as interesting cross-reactivities that deserve further study. Characterization of some of these monoclonal antibodies suggests they may be extremely useful as molecular markers for studying cell renewal and cell differentiation in the intact and regenerating organism, tracing the origin, lineage, and differentiation of blastema cells, and characterizing the stages and mechanisms of early pattern formation. Moreover, two position-specific monoclonals, the first ones isolated in planarians, will be instrumental in describing in molecular terms how the new pattern unfolds during regeneration and in devising the pattern formation model that best fits classical data on regeneration in planarians. Accepted: 16 September 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号