首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
State of the art of biogranulation technology for wastewater treatment   总被引:62,自引:0,他引:62  
Biogranulation technology developed for wastewater treatment includes anaerobic and aerobic granulation processes. Anaerobic granulation is relatively well known, but research on aerobic granulation commenced only recently. Many full-scale anaerobic granular sludge units have been operated worldwide, but no report exists of similar units for aerobic granulation. This paper reviews the fundamentals and applications of biogranulation technology in wastewater treatment. Aspects discussed include the models of biogranulation, major factors influencing biogranulation, characteristics of biogranules, and their industrial applications. This review hopes to provide a platform for developing novel granules-based bioreactors and devising a unified interpretation of the formation of anaerobic and aerobic granules under various operation conditions.  相似文献   

2.
A generalized model for settling velocity of aerobic granular sludge   总被引:5,自引:0,他引:5  
Aerobic granulation is a novel biotechnology recently receiving intensive research attention. Aerobic granules developed in SBR can be as big as several millimeters, thus the traditional models describing the settling velocity of activated sludge are no long valid in aerobic granules culture. In this study, a new type of model was developed for the settling velocity of aerobic granules. This model shows that the settling velocity of aerobic granules is the function of SVI, mean size of granules and biomass concentration of granules. When the size of bioparticle is small enough, the proposed model reduces to the well-known Vesilind equation. Results indicated that the proposed model could satisfactorily fit experimental results obtained in the course of aerobic granulation under different conditions, while the Vesilind equation failed to or very poorly fit the experimental data. In addition, the proposed model can also be extended to anaerobic granules. The settling velocity is one of the most important parameters in both aerobic and anaerobic granulation, and successful biogranulation is highly related to the manipulation of settling velocity. It was demonstrated that the proposed model can sever as a useful tool for design and operation engineers to properly select the settling velocity for enhanced aerobic and anaerobic granulation.  相似文献   

3.
Aerobic granules are dense and compact microbial aggregates with various bacterial species. Recently, aerobic granulation technology has been extensively explored for treatment of municipal and industrial wastewaters. However, little information is currently available with regard to their structure stability and integrity at levels of energy metabolism and cell communication. In the present study, a typical chemical uncoupler, 3,3′,4′,5-tetrachlorosalicylanilide with the power to dissipate proton motive force and subsequently inhibit adenosine triphosphate (ATP) generation, was used to investigate possible roles of ATP and cell communication in maintaining the structure stability and integrity of aerobic granules. It was found that inhibited ATP synthesis resulted in the reduced production of autoinducer-2 and N-acylhomoserine lactones essential for cell communication, while lowered extracellular polymeric substance (EPS) production was also observed. As a consequence, aerobic granules appeared to break up. This study showed that ATP-dependent quorum sensing and EPS were essential for sustaining the structure stability and integrity of aerobic granules.  相似文献   

4.
Extracellular polymeric substances (EPS) of microbial origin are a complex mixture of biopolymers comprising polysaccharides, proteins, nucleic acids, uronic acids, humic substances, lipids, etc. Bacterial secretions, shedding of cell surface materials, cell lysates and adsorption of organic constituents from the environment result in EPS formation in a wide variety of free-living bacteria as well as microbial aggregates like biofilms, bioflocs and biogranules. Irrespective of origin, EPS may be loosely attached to the cell surface or bacteria may be embedded in EPS. Compositional variation exists amongst EPS extracted from pure bacterial cultures and heterogeneous microbial communities which are regulated by the organic and inorganic constituents of the microenvironment. Functionally, EPS aid in cell-to-cell aggregation, adhesion to substratum, formation of flocs, protection from dessication and resistance to harmful exogenous materials. In addition, exopolymers serve as biosorbing agents by accumulating nutrients from the surrounding environment and also play a crucial role in biosorption of heavy metals. Being polyanionic in nature, EPS forms complexes with metal cations resulting in metal immobilization within the exopolymeric matrix. These complexes generally result from electrostatic interactions between the metal ligands and negatively charged components of biopolymers. Moreover, enzymatic activities in EPS also assist detoxification of heavy metals by transformation and subsequent precipitation in the polymeric mass. Although the core mechanism for metal binding and / or transformation using microbial exopolymer remains identical, the existence and complexity of EPS from pure bacterial cultures, biofilms, biogranules and activated sludge systems differ significantly, which in turn affects the EPS-metal interactions. This paper presents the features of EPS from various sources with a view to establish their role as central elements in bioremediation of heavy metals.  相似文献   

5.
Distribution of EPS and cell surface hydrophobicity in aerobic granules   总被引:2,自引:0,他引:2  
This study described the distribution of extracellular polysaccharides (EPS) and hydrophobicity in aerobic granule as well as the essential role of EPS in maintaining the stable structure of aerobic granules. Aerobic granules showed a heterogeneous structure, which had an outer shell with high biomass density and an inner core having a relatively low biomass density. Results showed that the outer shell of aerobic granule was composed of poorly soluble and noneasily biodegradable EPS, whereas its core part was filled with readily soluble and biodegradable EPS. It was further found that the shell of aerobic granule exhibited a higher hydrophobicity than the core of granule. The insoluble EPS present in the granule shell would play a protective role with respect to the structure stability and integrity of aerobic granules.  相似文献   

6.
Aims: Extracellular polymeric substances (EPS) are an important component of microbial biofilms, and it is becoming increasingly apparent that extracellular DNA (eDNA) has a functional role in EPS. This study characterizes the eDNA extracted from the novel activated sludge biofilm process of aerobic granules. Methods and Results: Exposing the sludge to cation exchange resin (CER) was used for the extraction of eDNA and intracellular DNA (iDNA) from aerobic granules. This was optimized for eDNA yield while causing minimal cell lysis. We then compared the DNA composition of these extractions using randomly amplified polymorphic DNA (RAPD) fingerprinting and PCR‐based denaturing gradient‐gel electrophoresis (DGGE). Upon the analysis of the genomic DNA and the 16S rRNA genes, differences were detected between the sludge biofilm eDNA and iDNA. Conclusions: Different bacteria within the biofilm disproportionally release DNA into the EPS matrix of the biofilm. Significance and Impact of the Study: The findings further the idea that eDNA has a functional role in the biofilm state, which is an important conceptual information for industrial application of biofilms.  相似文献   

7.
This study investigated the biodegradability of extracellular polymeric substances (EPS) produced by aerobic granules. Aerobic granules were precultivated with synthetic wastewater in a lab-scale sequencing batch reactor. EPS were extracted from aerobic granules and were then fed as the sole carbon source to their own producers. Results showed that about 50% of EPS produced by aerobic granules could be utilized by their producers under aerobic starvation condition. The average biodegradation rate of the granule EPS in terms of chemical oxygen demand was five times slower than that of acetate, but 50 times faster than that of nonbiodegradable EPS produced by aerobic granules. The nonbiodegradable EPS was mainly found on the outer shell of aerobic granule. EPS produced by aerobic granules basically comprised two major components, i.e., biodegradable and nonbiodegradable EPS. The biodegradable EPS could serve as a useful energy source to sustain the growth of aerobic granules under starvation. This study provides experimental evidence that part of the EPS produced by aerobic granules would be biodegradable, but only nonbiodegradable EPS would play a crucial role in maintaining the structural integrity of aerobic granule.  相似文献   

8.
Long-term storage and subsequent reactivation of aerobic granules   总被引:5,自引:0,他引:5  
Wang X  Zhang H  Yang F  Wang Y  Gao M 《Bioresource technology》2008,99(17):8304-8309
This study investigated a seven month storage and the subsequent reactivation of aerobic granules. The granule size and structure integrity were remained during storage, whereas some cavities and pleats appeared on the surface and further deteriorated the settleability. Along with the reactivation, the physical characteristics and microbial activities of aerobic granules were gradually improved. Activities of heterotrophs and nitrifiers can be fully recovered within 16days and 11days, respectively. Nitrifiers decayed slower during storage and reinstated rapider during reactivation than heterotrophs. In fresh aerobic granules, the dominated ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were Nitrosomonas and Nitrospira, respectively. During storage, the initially dominated populations decayed rapider than the initially less dominated ones. Extracellular polymeric substances (EPS) significantly decreased within the first month, and then gradually accumulated during the last six months storage. Accumulation of EPS was an effective strategy for maintaining structural integrity of aerobic granules during long-term storage.  相似文献   

9.
N-acyl homoserine lactone (AHL)-based quorum sensing (QS) has been recognized to play an important role in the formation of biofilm. However, aerobic granular sludge is considered as a special biofilm, and its biological implication and role of AHL-based QS still remain unclear. This study investigated the role of AHL-based QS in aerobic granulation. Results showed that AHLs were necessary to the typical aerobic granulation, and AHL-associated coordination of bacteria in sludge aggregation was sludge density dependent only when it reached a threshold of 1.010 g/mL; AHL-based QS was activated to regulate aerobic granulation. Furthermore, a quorum quenching method was firstly adopted to investigate the role of AHLs in aerobic granules. Results showed inhibition of AHL by acylase that reduced the AHL content in aerobic granules and further weakened its attachment potential, which proved that AHLs play an important role in the formation of aerobic granules. Additionally, the assay of quorum quenching not only proved that AHL-based QS could regulate EPS production but also provided additional evidence for the role of AHLs in aerobic granulation by regulating EPS content and its component proportion.  相似文献   

10.
Specific layers in aerobically grown microbial granules   总被引:9,自引:0,他引:9  
AIMS: To determine the optimal size of aerobically grown granules for wastewater treatment by measuring specific layers within the granules. METHODS AND RESULTS: A variety of biological layers were detected by oligonucleotide probes, specific fluorochromes, and fluorescent microspheres. The channels in the granule matrix penetrated to depths of 900 microm. A layer of obligate anaerobic bacteria was detected at a depth of 800 microm below the granule surface. Dead cells were also observed in the granule interior. CONCLUSIONS: Aerobically grown granules contained layers of aerobic and anaerobic micro-organisms. SIGNIFICANCE AND IMPACT OF THE STUDY: The optimal diameter of the aerobic granule is less than 1600 microm. This is twice the distance from the granule surface to the anaerobic layer. This approach can be used to optimize the thickness of other microbial aggregates such as flocs, colonies and biofilms.  相似文献   

11.
Copper (Cu(II)) and nickel (Ni(II)) are often encountered in wastewaters. This study investigated the individual toxic effects of long-term addition of Cu(II) and Ni(II) on the biochemical properties of aerobic granules in sequencing batch reactors (SBRs). The biochemical properties of aerobic granules were characterized by extracellular polymeric substances (EPS) content, dehydrogenase activity, microbial community biodiversity, and SBR performance. One SBR was used as a control system, while another two received respective concentration of Cu(II) and Ni(II) equal to 5 mg/L initially and increased to 15 mg/L on day 27. Results showed that the addition of Cu(II) drastically reduced the biomass concentration, bioactivity, and biodiversity of aerobic granules, and certainly deteriorated the treatment performance. The toxic effect of Ni(II) on the biodiversity of aerobic granules was milder and the aerobic granular system elevated the level of Ni(II) toxicity tolerance. Even at a concentration of 15 mg/L, Ni(II) still stimulated the biomass yield and bioactivity of aerobic granules to some extent. The elevated tolerance seemed to be owed to the concentration gradient developed within granules, increased biomass concentration, and promoted EPS production in aerobic granular systems.  相似文献   

12.
This paper discusses the microbial community structure of anaerobic granules and the effect of phase separation in anaerobic reactor on the characteristics of granules. Electron micrographs revealed that the core of anaerobic granular sludge consists predominantly of Methanosaeta-like cells, a key microorganism in granulation process. Granules in the methanogenic dominant zone of the reactor were stable and densely packed with smooth regular surface. On the other hand, granules subjected to acidogenic activities were less stable structures with broken parts and an irregular fissured surface. Anaerobic granules consisted of a vast diversity of species from the outer surface to the core of the granule and possessed a multi-layered structure. Viruses in the granules suggests the presence of bacteriophage in the granular biomass. These could be responsible for destroying cells and weakening the internal structure of granules, and thus possibly causing the breaking of granules. The observation of protozoa-like microorganism on the exterior zone of granular structure is believed to play an important role as bacterial predator and control the growth of bacterial cells. The images observed in this study shows that anaerobic granule harbour diverse number of microbial species, and act differently in acidogenic and methanogenic microbial zones.  相似文献   

13.
Methanobacterium formicicum and Methanosarcina mazeii are two prevalent species isolated from an anaerobic granular consortium grown on a fatty acid mixture. The extracellular polysaccharides (EPS) were extracted from Methanobacterium formicicum and Methanosarcina mazeii and from the methanogenic granules to examine their role in granular development. The EPS made up approximately 20 to 14% of the extracellular polymer extracted from the granules, Methanobacterium formicicum, and Methanosarcina mazeii. The EPS produced by Methanobacterium formicicum was composed mainly of rhamnose, mannose, galactose, glucose, and amino sugars, while that produced by Methanosarcina mazeii contained ribose, galactose, glucose, and glucosamine. The same sugars were also present in the EPS produced by the granules. These results indicate that the two methanogens, especially Methanobacterium formicicum, contributed significantly to the production of the extracellular polymer of the anaerobic granules. Growth temperature, substrates (formate and H(inf2)-CO(inf2)), and the key nutrients (nitrogen and phosphate concentrations) affected polymer production by Methanobacterium formicicum.  相似文献   

14.
Aerobic granules were firstly developed in a completely mixed tank reactor (CMTR) by seeding micro-mycelial pellets (MMPs) of Phanerochaete chrysosporium. During phenol wastewater treatment, sludge granulation rate reached 67 % after 15-day operation. The granules in CMTR are different from aerobic granules described in literature in morphology, and a majority of them are rod-shaped or rodlike sludge besides spherical granules. The polymorphic granules, having no essential difference with aerobic granules previously reported, achieve advantages over conventional activated sludge in settling ability, biomass concentration, density, integrity coefficient and removal ability to phenol wastewater. The optimized parameters for sludge granulation in CMTR including temperature, inoculum quantity, rotary speed and superficial air upflow velocity are 30 °C, 5–7 g/l, 150 rpm, and 0.5 cm/s, respectively. Analysis on sludge granulation mechanism indicates that MMPs not only result in the formation of aerobic granules containing MMPs as nuclei, but also induce the formation of biogranules which do not have MMP at their cores. The work challenges the general belief that the homogenous circular flow pattern of microbial aggregates is necessary for aerobic sludge granulation.  相似文献   

15.
Two sequencing batch reactors were synchronously operated to investigate the effect of manganese (II) (Mn2+) augmentation on aerobic granulation. Reactor 1 (R1) was added with 10 mg/L Mn2+, while there was no Mn2+ augmentation in reactor 2 (R2). Results showed that R1 had a faster granulation process than R2 and R1 performed better in chemical oxygen demand (COD) and ammonium nitrogen (NH4+–N) removal efficiencies. Moreover, the mature granules augmented with Mn2+ behaved better on their physical characteristics and size distributions, and they also had higher production of extracellular polymeric substances (EPS) content. The result of three-dimensional excitation and emission matrix fluorescence showed that Mn2+ had the function of causing organic material diversity (especially proteins diversity) in EPS fraction from granules. Polymerase chain reaction and denaturing gradient gel electrophoresis techniques were employed to analyze the microbial and genetic characteristics in mature granules. The results exhibited that Mn2+ augmentation was mainly responsible for the higher microbial diversity of granules from R1 compared with that from R2. Uncultured sludge bacterium A16 (AF234726) and Rhodococcus sp. WTZ-R2 (HM004214) were the major species in R1, while only uncultured sludge bacterium A16 (AF234726) in R2. Moreover, there were eight species of organisms found in both two aerobic granules, and three species were found only in aerobic granules from R1. It could be concluded that Mn2+ could enhance the sludge granulation process and have a key effect role on the biological properties during the sludge granulation.  相似文献   

16.
Physicochemical characteristics of microbial granules   总被引:2,自引:0,他引:2  
Microbial granules play an important role in the field of biological wastewater treatment due to their advantages over the conventional sludge flocs, such as a denser and stronger aggregate structure, better settleability and ensured solid-effluent separation, higher biomass concentration, and greater ability to withstand shock loadings. A better understanding of microbial granules may help in engineering biological wastewater treatment systems. Recent studies have greatly expanded our vision over the physicochemical characteristics of microbial granules. This paper provides an up-to-date review on recent work in the understanding of physicochemical characteristics of both anaerobic and aerobic granules with regard to settleability, permeability, morphology, mechanical stability, rheology, porosity, surface adsorbability, surface hydrophobicity and thermodynamics, and extracellular polymeric substances. Our growing knowledge on such characteristics might facilitate the engineering and optimization of microbial granulation as one of the most promising techniques in biological wastewater treatment.  相似文献   

17.
Evidence shows that almost all aerobic granules can only be cultivated in sequencing batch reactor (SBR). Compared to continuous process, the unique feature of SBR is its cycle operation, which results in a periodical starvation in the reactor. So far, the effect of such a periodical starvation on aerobic granulation process remains unknown. Thus, this study investigated the responses of aerobic granules to the respective carbon-, nitrogen-, phosphorus-, potassium-starvation and also their collective effects in terms of cell surface hydrophobicity, surface zeta potential, extracelluar polysaccharides content, specific oxygen utilization rate and biomass growth. Results showed that short-term C-, N-, P- and K- starvations would pose negative effects on aerobic granules, e.g. reduce EPS content, inhibit microbial activity, weaken structural integrity and worsen settleability of aerobic granules. This study likely provides primary evidence that the substrate and nutrients starvation would not contribute to the stability of aerobic granules in a significant way.  相似文献   

18.
Understanding the properties of aerobic sludge granules as hydrogels   总被引:2,自引:0,他引:2  
Aerobic sludge granules are larger, denser microbial aggregates than activated sludge flocs with a smoother and more regular surface, which facilitates greater wastewater treatment intensity. Factors important in their growth are still poorly understood, which is an impediment to the construction and operation of full-scale aerobic sludge granule processes. Data in this article obtained with granules treating an abattoir wastewater provide evidence that aerobic sludge granules are hydrogels. The results also demonstrate a method for characterizing macromolecular associations. The rheological profile of these granules was found to be analogous with that of typical polymer gels. Water uptake or swelling reflects an equilibrium between granule elastic modulus and osmotic pressure, whereby uptake is increased by reducing solute concentration or the elastic modulus. A weakening of the extracellular polymeric substance (EPS) matrix as demonstrated with mechanical spectroscopy was induced by several environmental factors including temperature, pH and ionic strength. Uniform and elastic deformation was observed at low strain. Enzymatic degradation studies indicate that proteins and alpha-polysaccharides were the major granule structural materials. The aerobic sludge granules in the current study were therefore protein-polysaccharide composite physical hydrogels. While aerobic sludge granules treating an abattoir wastewater are used as a case study, many of the fundamental principles detailed here are relevant to other granulation processes. The paradigm established in this study can potentially be applied to better understand the formation of aerobic sludge granules and thus overcome a hurdle in the acceptance of aerobic sludge granulation as an alternative to more traditional wastewater treatment processes.  相似文献   

19.
The roles of extracellular polymer substances (EPS) in the shear stability of aerobic and anaerobic flocs were investigated. Both pH and EDTA concentration had a significant effect on the floc stability. The sludge flocs became much weaker as the solution pH increase to above 10. Addition of 1 mM EDTA or more could cause considerable cell erosion and deflocculation of the anaerobic flocs, whereas more than 3 mM EDTA was needed to show its adverse effect on the stability of aerobic flocs. A fraction of the EPS, around 10 mg/g SS for the aerobic flocs and 15 mg/g SS for the anaerobic flocs, could be extracted by fluid shear when the dispersed mass concentration approached the equilibrium. This suggests that most of the dispersed particles were glued by a small amount of readily-extractable EPS fraction. In addition to the abundance of this EPS fraction, its proteins/carbohydrates ratio, about 0.22:1 for the aerobic flocs and 2.66:1 for the anaerobic flocs, also appeared to be an important factor governing the microbial floc stability. A lower content of the readily-extractable EPS fraction and a lower ratio of proteins/carbohydrates were responsible for the greater stability of microbial flocs. The total content of the EPS, however, did not show a direct correlation with the floc stability. A hypothesis about biological flocs with two distinct structural regions was proposed. The outer part contained dispersible cells loosely entangled by the readily-extractable EPS fraction. This part was layered and would become completely dispersed at an infinite shear intensity. On the other hand, the inner part contains biomass in a stable structure tightly glued by EPS, which could not be dispersed by shear except under unfavorable conditions.  相似文献   

20.
Efficient dissociation of microorganisms from their aggregate matrix is required to study the microorganisms without interaction with their native environment (e.g., biofilms, flocs, granules, etc.) and to assess their community composition through the application of molecular or microscopy techniques. To this end, we combined enzymatic treatments and a cell extraction by density gradient to efficiently recover anaerobic microorganisms from urban wastewater treatment plant sludge. The enzymes employed (amylase, cellulase, DNase, and pectinase) as a pretreatment softly disintegrated the extrapolymeric substances (EPS) interlocked with the microorganisms. The potential damaging effects of the applied procedure on bacterial and archaeal communities were assessed by studying the variations in density (using quantitative PCR), diversity (using capillary electrophoresis single-strand conformation polymorphism fingerprinting [CE-SSCP]), and activity (using a standard anaerobic activity test) of the extracted microorganisms. The protocol preserved the general capacity of the microbial community to produce methane under anaerobic conditions and its diversity; particularly the archaeal community was not affected in terms of either density or structure. This cell extraction procedure from the matrix materials offers interesting perspectives for metabolic, microscopic, and molecular assays of microbial communities present in complex matrices constituted by bioaggregates or biofilms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号