首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ends of eukaryotic chromosomes have special properties and roles in chromosome behavior. Selection for telomere function in yeast, using a Chinese hamster hybrid cell line as the source DNA, generated a stable yeast artificial chromosome clone containing 23 kb of DNA adjacent to (TTAGGG)n, the vertebrate telomeric repeat. The common repetitive element d(GT)n appeared to be responsible for most of the other stable clones. Circular derivatives of the TTAGGG-positive clone that could be propagated in E. coli were constructed. These derivatives identify a single pair of hamster telomeres by fluorescence in situ hybridization. The telomeric repeat tract consists of (TTAGGG)n repeats with minor variations, some of which can be cleaved with the restriction enzyme MnlI. Blot hybridization with genomic hamster DNA under stringent conditions confirms that the TTAGGG tracts are cleaved into small fragments due to the presence of this restriction enzyme site, in contrast to mouse telomeres. Additional blocks of (TTAGGG)n repeats are found 4–5 kb internally on the clone. The terminal region of the clone is dominated by a novel A-T rich 78 bp tandemly repeating sequence; the repeat monomer can be subdivided into halves distinguished by more or less adherence to the consensus sequence. The sequence in genomic DNA has the same tandem organization in probably a single primary locus of >20–30 kb and is thus termed a minisatellite.  相似文献   

2.
Telomeres of mammalian chromosomes are composed of long tandem repeats (TTAGGG)n which bind in a sequence-specific manner two proteins-TRF1 and TRF2. In human somatic cells both proteins are mostly associated with telomeres and TRF1 overexpression resulting in telomere shortening. However, chromosomes of some mammalian species, e.g., Chinese hamster, have large interstitial blocks of (TTAGGG)n sequence (IBTs) and the blocks are involved in radiation-induced chromosome instability. In normal somatic cells of these species chromosomes are stable, indicating that the IBTs are protected from unequal homologous recombination. In this study we expressed V5-epitope or green fluorescent protein (GFP)-tagged human TRF1 in different lines of mammalian cells and analyzed distribution of the fusion proteins in interphase nucleus. As expected, transient transfection of human (A549) or African green monkey cells with GFP-N-TRF1 or TRF1-C-V5 plasmids resulted in the appearance in interphase nuclei of multiple faint nuclear dots containing GFP or V5 epitope which we believe to represent telomeres. Transfection of immortalized Chinese hamster ovary (CHO) cell line K1 which have extremely short telomeres with GFP-N-TRF1 plasmid leads to the appearance in interphase nuclei of large GFP bodies corresponding in number to the number of IBTs in these cells. Simultaneous visualization of GFP and IBTs in interphase nuclei of transfected CHO-K1 cells showed colocalization of both signals indicating that expressed TRF1 actually associates with IBTs. These results suggest that TRF1 may serve as general sensor of (TTAGGG)n repeats controlling not only telomeres but also interstitial (TTAGGG)n sequences.  相似文献   

3.
Hara T  Chida K 《Gene》2002,283(1-2):11-16
In Chinese hamster extended blocks of telomeric-like repeats were previously detected by in situ hybridization at the pericentromeric region of most chromosomes and short arrays were localized at several interstitial sites. In this work, we analyzed the molecular organization of internal telomeric sequences (ITs) in the Chinese hamster genome. In genomic transfers hybridized with a telomeric probe, multiple Bal31 insensitive fragments were detected. Most of the fragments ranged in size between less than 1 kb and more than 100 kb and some were polymorphic. Fluorescence in situ hybridization experiments on DNA fibers and on elongated chromosomes showed that the pericentromeric ITs are composed of extensive and essentially continuous arrays of telomeric-like sequences. We then isolated three genomic regions which contain short ITs. These ITs are localized at interstitial sites (3q13-15, 3q21-26, 1p26) and are composed of 29-126 bp of (TTAGGG)(n) repeats. A peculiar feature of all the three ITs is the AT richness of the flanking sequences. Since AT-rich DNA is known to be unstable and characteristic of several mammalian fragile sites, we propose that the three ITs were inserted at these sites during the repair of double strand breaks.  相似文献   

4.
Telomeres are a class of repetitive DNA sequences that are located at chromosome termini and that act to stabilize the chromosome ends. The rapid karyotypic evolution of the genus Equus has given rise to ten taxa, all with different diploid chromosome numbers. Using fluorescence in situ hybridization (FISH) we localized the mammalian telomere sequence, (TTAGGG)(n), to the chromosomes of nine equid taxa. TTAGGG signal was located at chromosome termini in all species, however additional signal was seen at interstitial sites on some chromosomes in the Burchell's zebra, Equus quagga burchelli, the Hartmann's zebra, Equus zebra hartmannae, and at large heterochromatin-associated regions on the chromosomes of the donkey, Equus asinus. The interstitial signal in the zebras may be a relic of an ancient telomere-telomere fusion and mark the point at which two ancestral chromosomes may have fused. For the donkey, the heterochromatin-associated signal may represent degenerate telomere-like satellite sequences and identify a second type of satellite DNA for this taxon.  相似文献   

5.
The majority of chromosomes in Oreochromis niloticus, as with most fish karyotyped to date, cannot be individually identified owing to their small size. As a first step in establishing a physical map for this important aquaculture species of tilapia we have analyzed the location of the vertebrate telomeric repeat sequence, (TTAGGG)n, in O. niloticus. Southern blot hybridization analysis and a Bal31 sensitivity assay confirm that the vertebrate telomeric repeat is indeed present at O. niloticus chromosomal ends with repeat tracts extending for 4-10 kb on chromosomal ends in erythrocytes. Fluorescent in situ hybridization revealed that (TTAGGG)n is found not only at telomeres, but also at two interstitial loci on chromosome 1. These data support the hypothesis that chromosome 1, which is significantly larger than all the other chromosomes in the karyotype, was produced by the fusion of three chromosomes and explain the overall reduction of chromosomal number from the ancestral teleost karyotype of 2n=48 to 2n=44 observed in tilapia.  相似文献   

6.
Chromosomal mapping of the butterfly lizards Leiolepis belliana belliana and L. boehmei was done using the 18S-28S and 5S rRNA genes and telomeric (TTAGGG)n sequences. The karyotype of L. b. belliana was 2n = 36, whereas that of L. boehmei was 2n = 34. The 18S-28S rRNA genes were located at the secondary constriction of the long arm of chromosome 1, while the 5S rRNA genes were found in the pericentromeric region of chromosome 6 in both species. Hybridization signals for the (TTAGGG)n sequence were observed at the telomeric ends of all chromosomes, as well as interstitially at the same position as the 18S-28S rRNA genes in L. boehmei. This finding suggests that in L. boehmei telomere-to-telomere fusion probably occurred between chromosome 1 and a microchromosome where the 18S-28S rRNA genes were located or, alternatively, at the secondary constriction of chromosome 1. The absence of telomeric sequence signals in chromosome 1 of L. b. belliana suggested that its chromosomes may have only a few copies of the (TTAGGG)n sequence or that there may have been a gradual loss of the repeat sequences during chromosomal evolution.  相似文献   

7.
We present a strategy for the cloning of DNA sequences adjacent to the tandemly repeated DNA sequence (TTAGGG)n. Sequence analysis of 14 independently isolated clones revealed the presence of non-repetitive sequences immediately adjacent to or flanked by blocks of the simple repeat (TTAGGG)n. In addition, we provide sequence information on two previously undescribed tandemly repeated sequences, including a 9 bp repeat and a modification of the (TTAGGG)n repeat. Using different mapping approaches six sub-clones, free of the TTAGGG repeat, were assigned to a single human chromosome. Moreover, in situ hybridization mapped one of these subclones, G2 - 1H, definitively to the telomeric band on chromosome 4q. However, Bal 31 insensitivity suggests a location in a more subterminal region. All the (TTAGGG)n-adjacent unique sequences tested are highly conserved among primates but are not present in other mammalian species. Identification and mapping of TTAGGG-adjacent sequences will provide a refined insight into the genomic organization of the (TTAGGG)n repeat. The isolation of chromosome specific TTAGGG-adjacent sequences from subtelomeric regions of all human chromosomes will serve as important end points for the genetic maps and will be useful for the molecular characterization of chromosomal rearrangements involving telomeres.  相似文献   

8.
Most mammalian chromosomes have satellite DNA sequences located at or near the centromeres, organized in arrays of variable size and higher order structure. The implications of these specific repetitive DNA sequences and their organization for centromere function are still quite cloudy. In contrast to most mammalian species, the domestic cat seems to have the major satellite DNA family (FA-SAT) localized primarily at the telomeres and secondarily at the centromeres of the chromosomes. In the present work, we analyzed chromosome preparations from a fibrosarcoma, in comparison with nontumor cells (epithelial tissue) from the same individual, by in situ hybridization of the FA-SAT cat satellite DNA family. This repetitive sequence was found to be amplified in the cat tumor chromosomes analyzed. The amplification of these satellite DNA sequences in the cat chromosomes with variable number and appearance (marker chromosomes) is discussed and might be related to mitotic instability, which could explain the exhibition of complex patterns of chromosome aberrations detected in the fibrosarcoma analyzed.  相似文献   

9.
Spermatocyte chromosomes of Melarhaphe neritoides (Mollusca, Prosobranchia, Caenogastropoda) were studied using fluorescent in situ hybridization (FISH) with four repetitive DNA probes (18S rDNA, 5S rDNA, (TTAGGG)n and (GATA)n). Single-colour FISH consistently mapped one chromosome pair per spread using either 18S or 5S rDNA as probes. The telomeric sequence (TTAGGG)n hybridized with termini of all chromosomes whereas the (GATA)n probe did not label any areas. Simultaneous 18S-5S rDNA and 18S-(TTAGGG)n FISH demonstrated that repeated units of the three multicopy families are closely associated on the same chromosome pair.  相似文献   

10.
Mammalian telomeres contain long tandem (TTAGGG)n repeats, which are protected by a complex of different proteins. Telomeric repeat-binding factors TRF1 and TRF2 play the key role in protection of telomeres through the formation of terminal loops (called T-loop). A T-loop isolates the 3' strand telomeric end and with this mechanism protects telomeres from the influence of enzymes of DNA reparation and telomere fusions and also interferes with the interaction of telomerase with telomeres. Many vertebrate species also contain large blocks of (TTAGGG)n sequences in pericentric and interstitial chromosome bands. The Chinese hamster genome contains a total of 18 arrays of these non-telomeric internal (TTAGGG)n sequences (ITs). Chromosome bands containing these arrays are unstable and should be protected with the help of another mechanism, rather than that using telomeres. In this study we analysed association of Green Fluorescent Protein (GFP)-tagged TRF1 in Chinese hamster V79 cells with ITs. We found that in these cells GFP-TRF1 associates with ITs in the interphase nucleus. We detected a little overlap between IT-associated GFP-TRF1 and random DSB sites visualized after the treatment of V79 cells with ionizing radiation. We found that the treatment of V79 cells with WM significantly increases the frequency of spontaneous chromosome aberrations. These WM effects are possible due to inhibiting phosphorylation of TRF1 by ATM. TRF1 is known to be eliminated from telomeres by overexpression of TANK1, which induces TRF1 poly(ADP-ribosyl)ation. We transfected V79 cells by plasmid encoding TANK1 and found that the frequency of chromosome rearrangements increased in these cells independently of their treatment by IR. Taken together, our results suggest that TRF1 may be involved in the sequence-specific protection of internal non-telomeric (TTAGGG)n repeats.  相似文献   

11.
Monoclonal antibodies (Mabs) were raised against isolated Chinese hamster protein-depleted chromosomes Chromosome scaffolds) in order to probe for components involved in the higher-order structure of mammalian chromosomes. One of the Mabs detected a ring-like structure in metaphase at the centromere, which is conserved between Chinese hamster and human cells. Additionally, the Mab stained the centrioles in interphase cells in these two species. The antigen was enriched in chromosomal protein preparations by comparison with nuclear protein samples, and has an apparent Mr=170,000. The centromere antigen remained present in chromosome scaffold preparations, indicating that it was tightly associated with DNA. The antigen was distinct in its centromeric localisation from any of the centromere antigens reported to date. A possible role of the antigen in stabilising the centromere, by holding the sister chromatids together until their separation at the metaphase-anaphase transition is presented.  相似文献   

12.
Fu S  Gao Z  Birchler J  Han F 《遗传学报》2012,39(3):125-130
Plant centromeres are generally composed of tandem arrays of simple repeats that form a complex chromosome locus where the kinetochore forms and microtubules attach during mitosis and meiosis. Each chromosome has one centromere region, which is essential for accurate division of the genetic material. Recently, chromosomes containing two centromere regions (called dicentric chromosomes) have been found in maize and wheat. Interestingly, some dicentric chromosomes are stable because only one centromere is active and the other one is inactivated. Because such arrays maintain their typical structure for both active and inactive centromeres, the specification of centromere activity has an epigenetic component independent of the DNA sequence. Under some circumstances, the inactive centromeres may recover centromere function, which is called centromere reactivation. Recent studies have highlighted the important changes, such as DNA methylation and histone modification, that occur during centromere inactivation and reactivation.  相似文献   

13.
We describe the construction and analysis of recombinant DNA libraries representative of chromosomes 1 and 2 of Chinese hamster (Cricetulus griseus). Propidium-iodide stained chromosomes were purified by flow cytometric analysis and sorting, and EcoRI digests of purified DNA were cloned into the bacteriophage vector Charon 4A. These libraries contain DNA complementary to 63% and 69% of nick-translated DNA derived from flow-purified chromosomes 1 and 2, respectively. However, sequences complementary to only 24% and 35% of a total Chinese hamster genomic DNA tracer were hybridized in parallel renaturation experiments. The chromosome 2 library contained DNA sequences encoding dihydrofolate reductase (dhfr), a gene previously mapped to Chinese hamster chromosome 2. No sequences complementary to dhfr were found in the library constructed from chromosome 1 DNA. These analyses are discussed with regard to the current limitations and future strategies for the construction of chromosome-specific DNA sequence libraries of high purity and completeness.  相似文献   

14.
Huang X  Hu J  Hu X  Zhang C  Zhang L  Wang S  Lu W  Bao Z 《Genes & genetic systems》2007,82(3):257-263
The chromosomes of Argopecten irradians irradians were studied by various cytogenetic approaches. Conventional chromosome characterization built on C-banding, DAPI-staining, and silver staining was complemented by the physical mapping of ribosomal DNA and telomeric sequence (TTAGGG)n by FISH. Results showed that the constitutive heterochromatin revealed by C-banding was mainly distributed at telomeric and centromeric regions. However, interstitial C-bands were also observed. The pattern of DAPI banding was almost consistent with that of C-banding. Silver staining revealed that NORs were located on the short arms of chromosome 3 and 10, and this was further confirmed by FISH using 18S-28S rDNA. 5S rDNA was mapped as two distinguishable loci on the long arm of chromosome 11. 18S-28S and 5S rDNA were located on different chromosomes by sequential FISH. FISH also showed that the vertebrate telomeric sequence (TTAGGG)n was located on both ends of each chromosome and no interstitial signals were detected. Sequential 18S-28S rDNA and (TTAGGG)n FISH demonstrated that repeated units of the two multicopy families were closely associated on the same chromosome pair.  相似文献   

15.
It has been suggested that the chromosome set of the Indian muntjac, Muntiacus muntjak vaginalis (female, 2n = 6; male, 2n = 7), evolved from small acrocentric chromosomes, such as those found in the complement of the Chinese muntjac, M. reevesi (2n = 46), by a series of tandem fusions and other rearrangements. The location of the highly conserved human telomeric sequence (TTAGGG)n in the metaphase chromosomes of M.m. vaginalis and its close relative, M. reevesi, was investigated by non-radioactive in situ hybridization. The (TTAGGG)n repeat was found adjacent to the centromeres in the short arm and at the telomeres in the long arm of M. reevesi acrocentric metaphase chromosomes. Tandem fusions present in the karyotype of M.m. vaginalis chromosomes were not reflected by interstitial signals of the telomere repeat, as these chromosomes displayed hybridization signals only at the ends of the chromatids. Mechanisms that might have played a role in the evolution of the reduced karyotype of the Indian muntjac are discussed.  相似文献   

16.
17.
The TTAGG repeat, the only determined telomerase-dependent sequence in the Insecta, is generally reputed to be the canonical telomeric motif within the class. By studying the distribution of telomeric DNAs in 30 coleopteran beetles using Southern hybridization, BAL 31 DNA end-degradation assay and fluorescence in situ hybridization, we showed that arrays built of a TCAGG repeat substitute for (TTAGG)n sequences in all tested species within the superfamily Tenebrionoidea. We also provided the experimental evidence that (TCAGG)n repeats represent the terminal sequences on all chromosomes of the model species Tribolium castaneum. (TCAGG)n repeats are therefore promoted as the first sequence-motif alternative to TTAGG-type chromosome ends in insects. Detection of species negative for both TTAGG and TCAGG reveals that, although widespread, these motifs are not ubiquitous telomeric sequences within the order Coleoptera. In addition, Timarcha balearica proved to be a species that harbors (TTAGG)n repeats, but not at telomeric positions, thus further increasing the complexity of telomeric DNAs. Our experiments discarded CTAGG, CTGGG, TTGGG, and TTAGGG variants as potential replacements in TTAGG/TCAGG-negative species, indicating that chromosome termini of these beetles comprise other form(s) of telomeric sequences and telomere maintenance mechanisms.  相似文献   

18.
Summary The sequence of centromere separation in spermatogonial chromosomes of untreated and cyclophosphamide-treated Chinese hamsters is described.Centromeres of chromosome 1 and 2 separated much earlier than all other chromosomes, especially 6–8. Cyclophosphamide significantly inhibits the centromere separation in all chromosome groups but does not alter the sequence of separation.  相似文献   

19.
The karyotype of the tamaraw (Bubalus mindorensis, 2n = 46) was investigated by RBG-banding technique and compared with those of the river and the swamp cytotypes of domestic water buffalo (B. bubalis). The tamaraw karyotype consisted of 6 submetacentric and 16 acrocentric autosome pairs (NAA = 56), and X and Y chromosomes. The RBG-banded karyotype of the three taxa had a high degree of homology, and the tamaraw karyotype could be explained by a Robertsonian translocation between chromosomes 7 and 15 and by a telomere-centromere tandem fusion between chromosomes 4p and 12 of the standardized river buffalo cytotype (2n = 50, NAA = 58). The buffalo satellite I and II DNAs were localized to the centromeric regions of all the tamaraw chromosomes. The biarmed chromosome 2 of the tamaraw resulting from the fusion between chromosomes 7 and 15 of the standard contained much larger amounts of the satellite I DNA than the other biarmed chromosomes, suggesting that this chromosome was formed by a relatively recent Robertsonian fusion. The (TTAGGG)n telomeric sequence was specifically localized to the telomeric region of all the buffalo chromosomes. The 18S + 28S rDNA was localized to the telomeric regions of the chromosomes 5p, 7, 19, 21, and 22 of the tamaraw and of their homologous chromosomes in the river and swamp buffalo cytotypes.  相似文献   

20.
We report here the results of a telomere length analysis in four male Chinese hamsters by quantitative fluorescence in situ hybridization (Q-FISH). We were able to measure telomere length of 64 (73%) of 88 Chinese hamster telomeres. We could not measure telomere length in chromosome 10 or in the short arms of chromosomes 5, 6, 7 and 8 because of the overlaps between the interstitial and terminal telomeric signals. Our analysis in the 73% of Chinese hamster telomeres indicate that their average length is approximately 38 kb. Therefore, Chinese hamster telomeres are comparable in length to mouse telomeres, but are much longer than human telomeres. Similar to previous Q-FISH studies on human and mouse chromosomes, our results indicate that individual Chinese hamster chromosomes may have specific telomere lengths, suggesting that chromosome-specific factors may be involved in telomere length regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号