首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A DNA fragment of about 3.4 kilobase pairs that expressed the HgaI modification activity was cloned from the chromosomal DNA of Haemophilus gallinarum, and its nucleotide sequence was determined. Two open reading frames (ORF) which could code for structurally similar proteins were identified in the upstream and middle regions and a truncated ORF in the downstream region in the same orientation. When the respective ORFs were separately cloned, the clones carrying the upstream and middle ORFs both expressed the modification activity, indicating that the two genes are involved in modification of the HgaI restriction-modification system. In order to determine the sites of modification precisely, the respective genes were recloned into an expression vector, from which gene products were purified. A short DNA fragment carrying the HgaI recognition site was treated with each of these enzymes, and, after separation of the two strands by duplex formation with M13 viral DNAs carrying the respective strands, the presence or absence of modification was judged from susceptibility to HgaI endonuclease. The results of analysis showed that different strands were modified in an asymmetric way by each gene product. Analysis of the species and positions of modified bases by the Maxam-Gilbert method further demonstrated that the gene products from the upstream and middle ORFs participated in methylation of the internal cytosine residues of the strands carrying 3'-CTGCG-5' and 5'-GACGC-3', respectively. We concluded that the HgaI modification system consisted of two cytosine methylase genes responsible for modification of different strands in the target DNA.  相似文献   

2.
The genes for FokI, a type-IIS restriction-modification system from Flavobacterium okeanokoites (asymmetric recognition sequence: 5'-GGATG/3'-CCTAC), were cloned into Escherichia coli. Recombinants carrying the fokIR and fokIM genes were found to modify their DNA completely, and to restrict lambdoid phages weakly. The nt sequences of the genes were determined, and the probable start codons were confirmed by aa sequencing. The FokI endonuclease (R · FokI) and methyltransferase (M · FokI are encoded by single, adjacent genes, aligned in the same orientation, in the order M then R. The genes are large by the standards of type-II systems, 1.9 kb for the M gene, and 1.7 kb for the R gene. Preceding each gene is a pair of FokI recognition sites; it is conceivable that interactions between the sites and the FokI proteins could regulate expression of the genes. The aa sequences of the N- and C-terminal halves of M · FokI are similar to one another, and to certain other DNA-adenine methyltransferases, suggesting that the enzyme has a ‘tandem’ structure, such as could have arisen by the fusion of a pair of adjacent, ancestral M genes. Truncated derivatives of M · FokI were constructed by deleting the 5'- or 3' -ends of the fokIM gene. Deleting most of the C-terminus of M · FokI produced derivatives that methylated only the top (GGATG) strand of the recognition sequence. Conversely, deleting most of the N-terminus produced derivatives that methylated only the bottom (CATCC) strand of the recognition sequence. These results indicate that the domains in M · FokI for methylating the two strands of the recognition sequence are largely separate.  相似文献   

3.
4.
Summary The modification genes of Flavobacterium okeanokoites and Haemophilus galinarum have been cloned into the vector pBR322 and expressed in Escherichia coli cells. FokI methylase gene is contained on a 3.80 kb piece of F. okeanokoites DNA. Plasmid constructs carrying this fragment of DNA are resistant to digestion by FokI restriction endonuclease but are sensitive to cleavage by HindIII, EcoRI and PstI. Unmodified DNA molecules, exposed in vitro to cell extracts prepared from cells habouring this plasmid, became resistant to digestion by FokI.The smallest HgaI methylase clone carries the pBR322 plasmid containing a 3.50 kb piece of H. galinarum DNA. This plasmid is resistant to digestion by HgaI.Neither the FokI nor the HgaI restriction endonuclease was detected in either clone. This is the first report of cloning modification genes whose protein products recognise asymmetric nucleotide sequences.  相似文献   

5.
The DdeI restriction-modification system was previously cloned and has been maintained in E. coli on two separate and compatible plasmids (1). The nucleotide sequence of the endonuclease and methylase genes has now been determined; it predicts proteins of 240 amino acids, Mr = 27,808, and 415 amino acids, Mr = 47,081, respectively. Inspection of the DNA sequence shows that the 3' end of the methylase gene had been deleted during cloning. The clone containing the complete methylase gene was made and compared to that containing the truncated gene; only clones containing the truncated form support the endonuclease gene in E. coli. Bal-31 deletion studies show that methylase expression in the Dde clones is also dependent upon orientation of the gene with respect to pBR322. The truncated and complete forms of the methylase protein were purified and compared; the truncated form appears to be more stable and active in vitro. Finally, comparison of the deduced amino acid sequence of M. DdeI with that of other known cytosine methylases shows significant regions of homology.  相似文献   

6.
Two genes from the total genomic DNA of dairy starter culture Lactococcus lactis subsp. cremoris UC503, encoding ScrFI modification enzymes, have been cloned and expressed in Escherichia coli. No homology between the two methylase genes was detected, and inverse polymerase chain reaction of flanking chromosomal DNA indicated that both were linked on the Lactococcus genome. Neither clone encoded the cognate endonuclease. The DNA sequence of one of the methylase genes (encoded by pCI931M) was determined and consisted of an open reading frame 1,170 bp long, which could encode a protein of 389 amino acids (M(r), 44.5). The amino acid sequence contained the highly characteristic motifs of an m5C methylase. Extensive regions of homology were observed with the methylases of NlaX, EcoRII, and Dcm.  相似文献   

7.
8.
9.
Type II DNA topoisomerases mediate the passage of one DNA duplex through a transient break in another, an event essential for chromosome segregation and cell viability. The active sites of the type II topoisomerase dimer associate covalently with the DNA break-points and must separate by at least the width of the second DNA duplex to accommodate transport. A new structure of the Saccharomyces cerevisiae topoisomerase II DNA-binding and cleavage core suggests that in addition to conformational changes in the DNA-opening platform, a dramatic reorganization of accessory domains may occur during catalysis. These conformational differences have implications for both the DNA-breaking and duplex-transport events in the topo II reaction mechanism, suggest a mechanism by which two distinct drug-resistance loci interact, and illustrate the scope of structural changes in the cycling of molecular machines.  相似文献   

10.
In vitro methylation of DNA with Hpa II methylase.   总被引:9,自引:6,他引:9       下载免费PDF全文
The enzyme Hpa II methylase extracted and partially purified from Haemophilus parainfluenza catalyzes the methylation of the tetranucleotide sequence CCGG at the internal cytosine. The enzyme will methylate this sequence if both DNA strands are unmethylated or if only one strand is unmethylated. Conditions have been developed for producing fully methylated DNA from various sources. In vitro methylation of this site protects the DNA against digestion by the restriction enzyme Hpa II as well as the enzyme Sma I which recognizes the hexanucleotide sequence CCCGGG. These properties make this enzyme a valuable tool for analyzing methylation in eukaryotic DNA where the sequence CCGG is highly methylated. The activity of this methylase on such DNA indicates the degree of undermethylation of the CCGG sequence. Several examples show that this technique can be used to detect small changes in the methylation state of eukaryotic DNA.  相似文献   

11.
M.FokI, a type-IIS modification enzyme from Flavobacterium okeanokoites, was purified, and its activity was characterized in vitro. The enzyme was found to be a DNA-adenine methyltransferase and to methylate both strands of the asymmetric FokI recognition sequence: (formula; see text) M.FokI does not methylate single-stranded DNA, nor does it methylate double-stranded DNA at sequences other than FokI sites.  相似文献   

12.
13.
The recA protein from Escherichia coli can homologously align two duplex DNA molecules; however, this interaction is much less efficient than the alignment of a single strand and a duplex. Three strand paranemic joints are readily detected. In contrast, duplex-duplex pairing is detected only when the incoming (second) duplex is negatively supercoiled, and even here the pairing is inefficient. The recA protein-promoted four strand exchange reaction is initiated in a three strand region, with efficiency increasing with the length of potential three strand pairing available for initiation. This indicates that a paranemic joint involving three DNA strands may be an important intermediate in all recA protein-mediated DNA strand exchange reactions and that the presence of three strands rather than four is a fundamental structural parameter of paranemic joints.  相似文献   

14.
A DNA fragment that carried the genes coding for FokI endonuclease and methylase was cloned from the chromosomal DNA of Flavobacterium okeanokoites, and the coding regions were assigned to the nucleotide sequence by deletion analysis. The methylase gene was 1,941 base pairs (bp) long, corresponding to a protein of 647 amino acid residues (Mr = 75,622), and the endonuclease gene was 1,749 bp long, corresponding to a protein of 583 amino acid residues (Mr = 66,216). The assignment of the methylase gene was further confirmed by analysis of the N-terminal amino acid sequence. The endonuclease gene was downstream from the methylase gene in the same orientation, separated by 69 bp. The promoter site, which could be recognized by Escherichia coli RNA polymerase, was upstream from the methylase gene, and the sequences adhering to the ribosome-binding sequence were identified in front of the respective genes. Analysis of the gene products expressed in E. coli cells by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the molecular weights of both enzymes coincided well with the values estimated from the nucleotide sequences, and that the monomeric forms were catalytically active. No significant similarity was found between the sequences of the two enzymes. Sequence comparison with other related enzymes indicated that FokI methylase contained two copies of a segment of tetra-amino acids which is characteristic of adenine-specific methylase.  相似文献   

15.
Type II restriction-modification systems are comprised of a restriction endonuclease and methyltransferase. The enzymes are coded by individual genes and recognize the same DNA sequence. Endonuclease makes a double-stranded break in the recognition site, and methyltransferase covalently modifies the DNA bases within the recognition site, thereby down-regulating endonuclease activity. Coordinated action of these enzymes plays a role of primitive immune system and protects bacterial host cell from the invasion of foreign (for example, viral) DNA. However, uncontrolled expression of the restriction-modification system genes can result in the death of bacterial host cell because of the endonuclease cleavage of host DNA. In the present review, the data on the expression regulation of the type II restriction-modification enzymes are discussed.  相似文献   

16.
Data from plating experiments indicated that Halobacterium cutirubrum NRC34001 has at least two separate restriction-modification systems. A spontaneous or induced loss of one or both systems resulted in four restriction-modification phenotypes. There was a positive correlation between changes in gas vacuolation phenotypes and either restriction-modification system.  相似文献   

17.
Presence of two DNA polymerases in Tetrahymena pyriformis.   总被引:2,自引:0,他引:2       下载免费PDF全文
Two DNA polymerases were detected in Tetrahymena pyriformis, strain GL. One (enzyme I) was sensitive to N-ethylmaleimide, while the other (enzyme II) was insensitive. The molecular weight of the enzymes, as determined by glycerol gradient centrifugation analysis, were approximately 130,000 and 70,000, respectively. Optimal concentration of MgCl2 was 10mM for enzyme I and 18mM for enzyme II. KCl inhibited enzyme I but stimulated enzyme II. Poly (dA-dT) served effectively as a template for enzyme I, while poly(dA).(dT)12-18 was an effective template for enzyme II. Enzyme I activity increased with cell growth and sharply declined after the cells reached the stationary phase. On the other hand, enzyme II activity appeared only at the end of log phase. In cells synchronized by starvation-refeeding technique enzyme I was markedly stimulated in correspondence to the rate of DNA synthesis, whereas the level of enzyme II activity changed to lesser extent. By ethidium bromide treatment, only enzyme I activity was induced.  相似文献   

18.
The sequence specificity of a mammalian DNA methylase.   总被引:4,自引:4,他引:0       下载免费PDF全文
The sequence specificity of an extensively purified DNA methylase preparation from Krebs II mouse ascites cells has been examined. The enzyme appears to be highly sequence dependent. Moreover the sequence distribution of cytosine residues that are methylated, bears a very close resemblance to the sequence distribution of 5'-methyl cytosine found in vivo in a wide range of vertebrate cells and is consistent with methylation of cytosines in the sequence R-Yn-C-R.  相似文献   

19.
Fibrobacter succinogenes is an important cellulolytic bacterium found in the rumen and cecum of herbivores. Numerous attempts to introduce foreign DNA into F. succinogenes S85 have failed, suggesting the presence of genetic barriers in this organism. Results from this study clearly demonstrate that F. succinogenes S85 possesses a type II restriction endonuclease, FsuI, which recognizes the sequence 5'-GG(A/T)CC-3'. Analysis of the restriction products on sequencing gels showed that FsuI cleaves between the two deoxyguanosine residues, yielding a 3-base 5' protruding end. These data demonstrate that FsuI is an isoschizomer of AvaII. A methyltransferase activity has been identified in the cell extract of F. succinogenes S85. This activity modified DNA in vitro and protected the DNA from the restriction by FsuI and AvaII. DNA modified in vivo by a cloned methylase gene, which codes for M.Eco47II, also protected the DNA from restriction by FsuI, suggesting that FsuI is inhibited by methylation at one or both deoxycytosine residues of the recognition sequence. The methyltransferase activity in F. succinogenes S85 is likely modifying the same deoxycytosine residues, but the exact site(s) is unknown. A highly active DNase (DNase A) was also isolated from the cell extract of this organism. DNase A is an endonuclease which showed high activity on all forms of DNA (single stranded, double-stranded, linear, and circular) but no activity on RNA. In vitro, the DNase A hydrolyzed F. succinogenes S85 DNA extensively, indicating the lack of protection against hydrolysis by this enzyme. In the presence of Mg2+, DNA was hydrolyzed to fragments of 8 to 10 nucleotides in length. The presence of DNase A and the type II restriction-modification system of F. succinogenes S85 may be the barriers preventing the introduction of foreign DNA into this bacterium.  相似文献   

20.
A novel plasmid-mediated DNA restriction-modification system in E. coli   总被引:1,自引:0,他引:1  
R plasmids from 101 clinical isolates were transferred to E. coli J62 by conjugation and tested for the presence of R plasmid-mediated restriction-modification DNA systems. Thirty R plasmids were found to inhibit phage λ. vir development. Ten plasmids determined restriction modification system; nine of them proved identical with R.M. EcoRII. One transconjugant, E. coli J62 pLG74, was shown to have a restriction-modification system different from all the known R plasmid-mediated systems. Site-specific endonuclease has been isolated from E. coli J62 pLG74 which differed from all the known restriction endonucleases in the number of cleavage sites on phages λ, φX 174, virus SV40, plasmid pBR322 DNA molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号