首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A DNA fragment of about 3.4 kilobase pairs that expressed the HgaI modification activity was cloned from the chromosomal DNA of Haemophilus gallinarum, and its nucleotide sequence was determined. Two open reading frames (ORF) which could code for structurally similar proteins were identified in the upstream and middle regions and a truncated ORF in the downstream region in the same orientation. When the respective ORFs were separately cloned, the clones carrying the upstream and middle ORFs both expressed the modification activity, indicating that the two genes are involved in modification of the HgaI restriction-modification system. In order to determine the sites of modification precisely, the respective genes were recloned into an expression vector, from which gene products were purified. A short DNA fragment carrying the HgaI recognition site was treated with each of these enzymes, and, after separation of the two strands by duplex formation with M13 viral DNAs carrying the respective strands, the presence or absence of modification was judged from susceptibility to HgaI endonuclease. The results of analysis showed that different strands were modified in an asymmetric way by each gene product. Analysis of the species and positions of modified bases by the Maxam-Gilbert method further demonstrated that the gene products from the upstream and middle ORFs participated in methylation of the internal cytosine residues of the strands carrying 3'-CTGCG-5' and 5'-GACGC-3', respectively. We concluded that the HgaI modification system consisted of two cytosine methylase genes responsible for modification of different strands in the target DNA.  相似文献   

2.
StsI endonuclease (R.StsI), a type IIs restriction endonuclease found in Streptococcus sanguis 54, recognizes the same sequence as FokI but cleaves at different positions. A DNA fragment that carried the genes for R.StsI and StsI methylase (M.StsI) was cloned from the chromosomal DNA of S.sanguis 54, and its nucleotide sequence was analyzed. The endonuclease gene was 1,806 bp long, corresponding to a protein of 602 amino acid residues (M(r) = 68,388), and the methylase gene was 1,959 bp long, corresponding to a protein of 653 amino acid residues (M(r) = 76,064). The assignment of the endonuclease gene was confirmed by analysis of the N-terminal amino acid sequence. Genes for the two proteins were in a tail-to-tail orientation, separated by a 131-nucleotide intercistronic region. The predicted amino acid sequences between the StsI system and the FokI system showed a 49% identity between the methylases and a 30% identity between the endonucleases. The sequence comparison of M.StsI with various methylases showed that the N-terminal half of M.StsI matches M.NIaIII, and the C-terminal half matches adenine methylases that recognize GATC and GATATC.  相似文献   

3.
A DNA fragment that carried the genes coding for FokI endonuclease and methylase was cloned from the chromosomal DNA of Flavobacterium okeanokoites, and the coding regions were assigned to the nucleotide sequence by deletion analysis. The methylase gene was 1,941 base pairs (bp) long, corresponding to a protein of 647 amino acid residues (Mr = 75,622), and the endonuclease gene was 1,749 bp long, corresponding to a protein of 583 amino acid residues (Mr = 66,216). The assignment of the methylase gene was further confirmed by analysis of the N-terminal amino acid sequence. The endonuclease gene was downstream from the methylase gene in the same orientation, separated by 69 bp. The promoter site, which could be recognized by Escherichia coli RNA polymerase, was upstream from the methylase gene, and the sequences adhering to the ribosome-binding sequence were identified in front of the respective genes. Analysis of the gene products expressed in E. coli cells by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the molecular weights of both enzymes coincided well with the values estimated from the nucleotide sequences, and that the monomeric forms were catalytically active. No significant similarity was found between the sequences of the two enzymes. Sequence comparison with other related enzymes indicated that FokI methylase contained two copies of a segment of tetra-amino acids which is characteristic of adenine-specific methylase.  相似文献   

4.
M.FokI, a type-IIS modification enzyme from Flavobacterium okeanokoites, was purified, and its activity was characterized in vitro. The enzyme was found to be a DNA-adenine methyltransferase and to methylate both strands of the asymmetric FokI recognition sequence: (formula; see text) M.FokI does not methylate single-stranded DNA, nor does it methylate double-stranded DNA at sequences other than FokI sites.  相似文献   

5.
The specificity of DNA methylase M. FokI towards oligonucleotides containing sequence 5'...GGATG.../3'...CCTAC... was investigated, and N6-methyladenine in the GGATG chain was shown to be the only product of the modification.  相似文献   

6.
The FokI restriction endonuclease recognizes an asymmetric DNA sequence and cuts both strands at fixed positions upstream of the site. The sequence is contacted by a single monomer of the protein, but the monomer has only one catalytic centre and forms a dimer to cut both strands. FokI is also known to cleave DNA with two copies of its site more rapidly than DNA with one copy. To discover how FokI acts at a single site and how it acts at two sites, its reactions were examined on a series of plasmids with either one recognition site or with two sites separated by varied distances, sometimes in the presence of a DNA-binding defective mutant of FokI. These experiments showed that, to cleave DNA with one site, the monomer bound to that site associates via a weak protein–protein interaction with a second monomer that remains detached from the recognition sequence. Nevertheless, the second monomer catalyses phosphodiester bond hydrolysis at the same rate as the DNA-bound monomer. On DNA with two sites, two monomers of FokI interact strongly, as a result of being tethered to the same molecule of DNA, and sequester the intervening DNA in a loop.  相似文献   

7.
The FokI restriction endonuclease is a monomeric protein that recognizes an asymmetric sequence and cleaves both DNA strands at fixed loci downstream of the site. Its single active site is positioned initially near the recognition sequence, distant from its downstream target 13 nucleotides away. Moreover, to cut both strands, it has to recruit a second monomer to give an assembly with two active sites. Here, the individual steps in the FokI reaction pathway were examined by fluorescence resonance energy transfer (FRET). To monitor DNA binding and domain motion, a fluorescence donor was attached to the DNA, either downstream or upstream of the recognition site, and an acceptor placed on the catalytic domain of the protein. A FokI variant incapable of dimerization was also employed, to disentangle the signal due to domain motion from that due to protein association. Dimerization was monitored separately by using two samples of FokI labelled with donor and acceptor, respectively. The stopped-flow studies revealed a complete reaction pathway for FokI, both the sequence of events and the kinetics of each individual step.  相似文献   

8.
P S Vermersch  G N Bennett 《Gene》1987,54(2-3):229-238
FokI, a class-IIS restriction endonuclease, cleaves double-stranded DNA to produce a protruding 5' end consisting of four nucleotides, 10-13 residues 3' from the nonpalindromic recognition sequence, GGATG. Cassettes which utilize this separation of cleavage and recognition site have been constructed for the purpose of linker mutagenesis and DNA replacement experiments. The cassettes are flanked by FokI recognition sequences oriented such that the FokI cleavage sites are several nucleotides beyond the cassette/vector fusion sites. FokI excises the cassette and several base pairs of the neighboring vector sequence. The ends produced in the vector by FokI cleavage are generally noncomplementary and suitable for the insertion of a segment of synthesized double-stranded replacement DNA. A cassette which contains a tyrosine tRNA suppressor gene (supF) is selectable by the suppression of amber mutations in the recipient host. A vector containing a pBR322-derived origin of replication, the Escherichia coli xanthine-guanine phosphoribosyl transferase gene as a selectable marker, and no FokI sites has been constructed for use with the FokI cassettes. An experiment which utilized the FokI/supF cassette to modify the N-terminal coding region of the R388 dihydrofolate reductase gene is described.  相似文献   

9.
The M.FokI adenine-N(6) DNA methyltransferase recognizes the asymmetric DNA sequence GGATG/CATCC. It consists of two domains each containing all motifs characteristic for adenine-N(6) DNA methyltransferases. We have studied the specificity of DNA-methylation by both domains using 27 hemimethylated oligonucleotide substrates containing recognition sites which differ in one or two base pairs from GGATG or CATCC. The N-terminal domain of M.FokI interacts very specifically with GGATG-sequences, because only one of the altered sites is modified. In contrast, the C-terminal domain shows lower specificity. It prefers CATCC-sequences but only two of the 12 star sites (i.e. sites that differ in 1 bp from the recognition site) are not accepted and some star sites are modified with rates reduced only 2-3-fold. In addition, GGATGC- and CGATGC-sites are modified which differ at two positions from CATCC. DNA binding experiments show that the N-terminal domain preferentially binds to hemimethylated GGATG/C(m)ATCC sequences whereas the C-terminal domain binds to DNA with higher affinity but without specificity. Protein-protein interaction assays show that both domains of M.FokI are in contact with each other. However, several DNA-binding experiments demonstrate that DNA-binding of both domains is mutually exclusive in full-length M.FokI and both domains do not functionally influence each other. The implications of these results on the molecular evolution of type IIS restriction/modification systems are discussed.  相似文献   

10.
FokI is a bipartite restriction endonuclease that recognizes a non-palindromic DNA sequence, and then makes double-stranded cuts outside of that sequence to leave a 5' overhang. Earlier kinetic and crystallographic studies suggested that FokI might function as a dimer. Here, we show, using dynamic light-scattering, gel-filtration and analytical ultracentrifugation, that FokI dimerizes only in the presence of divalent metal ions. Furthermore, analysis of the DNA-bound complex reveals that two copies of the recognition sequence are incorporated into the dimeric complex and that formation of this complex is essential for full activation of cleavage. These results have broad implications for the mechanism by which monomeric type II endonucleases achieve high fidelity.  相似文献   

11.
Many restriction endonucleases are dimers that act symmetrically at palindromic DNA sequences, with each active site cutting one strand. In contrast, FokI acts asymmetrically at a non-palindromic sequence, cutting ‘top’ and ‘bottom’ strands 9 and 13 nucleotides downstream of the site. FokI is a monomeric protein with one active site and a single monomer covers the entire recognition sequence. To cut both strands, the monomer at the site recruits a second monomer from solution, but it is not yet known which DNA strand is cut by the monomer bound to the site and which by the recruited monomer. In this work, mutants of FokI were used to show that the monomer bound to the site made the distal cut in the bottom strand, whilst the recruited monomer made in parallel the proximal cut in the top strand. Procedures were also established to direct FokI activity, either preferentially to the bottom strand or exclusively to the top strand. The latter extends the range of enzymes for nicking specified strands at specific sequences, and may facilitate further applications of FokI in gene targeting.  相似文献   

12.
To overproduce FokI endonuclease (R.FokI) in an Escherichia coli system, the coding region of R.FokI predicted from the nucleotide sequence was generated from the FokI operon and joined to the tac promoter of an expression vector, pKK223-3. By introduction of the plasmid into E. coli UT481 cells expressing the FokI methylase gene, the R.FokI activity was overproduced about 30-fold, from which R.FokI was purified in amounts sufficient for crystallization. The removal of a stem-loop structure immediately upstream of the R.FokI coding region was essential for overproduction.  相似文献   

13.
An EM view of the FokI synaptic complex by single particle analysis   总被引:1,自引:0,他引:1  
FokI is a type IIS restriction endonuclease that recognizes the 5'-GGATG-3' sequence and cleaves non-specifically at 9 and 13 base-pairs away on the top and bottom strands, respectively, to produce a 5' overhang. FokI is a bipartite endonuclease with separate recognition and cleavage domains. Because of its bipartite nature, FokI has received considerable interest in generating chimeric nucleases for use in biotechnology, and recently as possible therapeutic agents in gene therapy by initiating homologous gene recombination and repair. Here we show, using single-particle electron microscopic studies, that the FokI active complex prefers a single conformation in which the subunits are arranged in a doughnut shape complex with protein-protein and possibly protein-DNA interactions stabilizing the cleavage complex. Our electron microscopy (EM) model provides new insights into the activation mechanism of FokI and how non-specific cleavage is avoided.  相似文献   

14.
FokI method of gene synthesis   总被引:6,自引:0,他引:6  
W Mandecki  T J Bolling 《Gene》1988,68(1):101-107
An accurate, fast and simple method is presented for synthesis of a gene, or any DNA fragment with a defined sequence. The method is based on the observation that large (approx. 100 bp long) inserts can be cloned into a plasmid using a technique of oligodeoxynucleotide (oligo)-directed double-strand (ds) break repair. The procedure involves transformation of Escherichia coli with a denatured mixture of an insert-carrying oligo and linearized plasmid DNA [Mandecki, Proc. Natl. Acad. Sci. USA 83 (1986) 7177-7181]. The nucleotide (nt) sequences are inserted between two FokI restriction nuclease sites in one of four pUC-derived plasmids. Since FokI makes a staggered ds break at a DNA site 9 and 13 nt away from its recognition site, upon cleavage of the plasmid DNA with FokI, a restriction fragment is liberated that by design contains unique 4-nt-long 5'-protruding ends. The uniqueness of ends permits efficient and directed simultaneous ligation of several restriction fragments to form a gene. The method offers flexibility due to the modular-type assembly and does not require any restriction sites within the constructed gene. The sequence error rate is low: about one error per 4000 bp of DNA cloned. Synthetic DNA for only one DNA strand needs to be provided. The method was applied to the synthesis of a gene fragment encoding the N-terminal 143 amino acid residues of the human immunodeficiency virus transmembrane protein (p41).  相似文献   

15.
The FokI endonuclease is a monomeric protein with discrete DNA-recognition and catalytic domains. The latter has only one active site so, to cut both strands, the catalytic domains from two monomers associate to form a dimer. The dimer involving a monomer at the recognition site and another from free solution is less stable than that from two proteins tethered to the same DNA. FokI thus cleaves DNA with two sites better than one-site DNA. The two sites can be immediately adjacent, but they can alternatively be many hundreds of base pairs apart, in either inverted or repeated orientations. The catalytic domain of FokI is often a component of zinc finger nucleases. Typically, the zinc finger domains of two such nucleases are designed to recognize two neighbouring DNA sequences, with the objective of cutting the DNA exclusively between the target sequences. However, this strategy fails to take account of the fact that the catalytic domains of FokI can dimerize across distant sites or even at a solitary site. Additional copies of either target sequence elsewhere in the chromosome must elicit off-target cleavages.  相似文献   

16.
The genes encoding the MspI restriction modification system, which recognizes the sequence 5' CCGG, have been cloned into pUC9. Selection was based on expression of the cloned methylase gene which renders plasmid DNA insensitive to MspI cleavage in vitro. Initially, an insert of 15 kb was obtained which, upon subcloning, yielded a 3 kb EcoRI to HindIII insert, carrying the genes for both the methylase and the restriction enzyme. This insert has been sequenced. Based upon the sequence, together with appropriate subclones, it is shown that the two genes are transcribed divergently with the methylase gene encoding a polypeptide of 418 amino acids, while the restriction enzyme is composed of 262 amino acids. Comparison of the sequence of the MspI methylase with other cytosine methylases shows a striking degree of similarity. Especially noteworthy is the high degree of similarity with the HhaI and EcoRII methylases.  相似文献   

17.
18.
The ermC mRNA leader segment, which encodes a 19 amino acid leader peptide, MGIFSIFVISTVHYQPNKK, plays a key role in regulating expression of the ErmC methylase. The contribution of specific leader peptide amino acid residues to induction of ermC was studied using a model system in which the ErmC methylase was translationally fused to Escherichia coli beta-galactosidase as indicator gene. Codons of the ermC leader peptide were altered systematically by replacement of leader DNA segments with double-stranded DNA constructed from chemically synthesized oligonucleotides. Missense mutations that resulted in reduced efficiency of induction involved codons for amino acid residues 5 to 9 (-SIFVI-). Nonsense mutations causing termination of the leader peptide at codons 10 (-S-) or 12 (-V-) remained inducible. These findings suggest that the codons for residues 5 to 9 of the leader peptide comprise the critical region in which ribosomes stall in the presence of erythromycin.  相似文献   

19.
G Winter  S Fields    G Ratti 《Nucleic acids research》1981,9(24):6907-6915
The nucleotide sequences of two subgenomic RNA segments from influenza virus A/PR/8/34 have been determined by cloning viral cDNA into the vector M13mp7. Sequence analysis was facilitated by a re-cloning strategy which takes advantage of both wild-type and amber derivatives of the M13 vector. The RNA species (444 and 480 nucleotides) contain the 5' and 3' termini of segment 1 and therefore derive by simple internal deletions of this segment. However, these species are not exact copies of the terminal regions of the progenitor segment but contain a few base changes. These differences suggest that after these RNAs have arisen, their sequences can drift, presumably reflecting a lower selective pressure than on the standard RNA segments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号