首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously reported the presence of a highly active, carboxylase-specific ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in a hyperthermophilic archaeon, Pyrococcus kodakaraensis KOD1. In this study, structural analysis of Pk -Rubisco has been performed. Phylogenetic analysis of Rubiscos indicated that archaeal Rubiscos, including Pk -Rubisco, were distinct from previously reported type I and type II enzymes in terms of primary structure. In order to investigate the existence of small subunits in native Pk -Rubisco, immunoprecipitation and native-PAGE experiments were performed. No specific protein other than the expected large subunit of Pk -Rubisco was detected when the cell-free extracts of P. kodakaraensis KOD1 were immunoprecipitated with polyclonal antibodies against the recombinant enzyme. Furthermore, native and recombinant Pk -Rubiscos exhibited identical mobilities on native-PAGE. These results indicated that native Pk -Rubisco consisted solely of large subunits. Electron micrographs of purified recombinant Pk -Rubisco displayed pentagonal ring-like assemblies of the molecules. Crystals of Pk -Rubisco obtained from ammonium sulfate solutions diffracted X-rays beyond 2.8 A resolution. The self-rotation function of the diffraction data showed the existence of 5-fold and 2-fold axes, which are located perpendicularly to each other. These results, along with the molecular mass of Pk -Rubisco estimated from gel filtration, strongly suggest that Pk -Rubisco is a decamer composed only of large subunits, with pentagonal ring-like structure. This is the first report of a decameric assembly of Rubisco, which is thought to belong to neither type I nor type II Rubiscos.  相似文献   

2.
We have previously determined the crystal structure of a novel pentagonal ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) from the hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1. Here we have carried out biochemical studies to identify the necessities and/or advantages of this intriguing pentagonal structure. The structure indicated the presence of three neighboring residues (Glu-63, Arg-66, and Asp-69), participating in ionic interactions within unique dimer-dimer interfaces. We constructed three single mutant proteins (E63S, R66S, and D69S) and one triple mutant protein (E63S/R66S/D69S) by replacing the charged residues with serine. The wild type (WT) and all mutant proteins were purified and subjected to gel permeation chromatography at various temperatures. WT and D69S proteins were decameric at all temperatures examined between 30 and 90 degrees C. The majority of E63S and R66S were decamers at 30 degrees C but were found to gradually disassemble with the elevation in temperature. E63S/R66S/D69S was found in a dimeric form even at 30 degrees C. An interesting correlation was found between the subunit assembly and thermostability of the proteins. Circular dichroism and differential scanning calorimetry analyses indicated that the denaturation temperatures of dimeric enzymes (E63S, R66S, and E63S/R66S/D69S) were approximately 95 degrees C, whereas those of the enzymes retaining a decameric structure (WT and D69S) were approximately 110 degrees C. Disassembly into tetramer or dimer units did not alter the slopes of the Arrhenius plots, indicating that the decameric structure had no effect on catalytic performance per se. The results indicate that the decameric assembly of Tk-Rubisco contributes to enhance the thermostability of the enzyme. Taking into account the growth temperature of strain KOD1 (65-100 degrees C), the decameric structure of Tk-Rubisco can be considered essential for the stable presence of the enzyme in the host cells. This study provides an interesting example in which the thermostability of a protein can be enhanced by formation of a unique quaternary structure not found in mesophilic enzymes.  相似文献   

3.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the key enzyme involved in photosynthetic carbon fixation, converting atmospheric CO2 to organic compounds. Form I Rubisco is a cylindrical complex composed of eight large (RbcL) subunits that are capped by four small subunits (RbcS) at the top and four at the bottom. Form I Rubiscos are phylogenetically divided into green- and red-type. Some red-type enzymes have catalytically superior properties. Thus, understanding their folding and assembly is of considerable biotechnological interest. Folding of the green-type RbcL subunits in cyanobacteria is mediated by the GroEL/ES chaperonin system, and assembly to holoenzyme requires specialized chaperones such as RbcX and RAF1. Here, we show that the red-type RbcL subunits in the proteobacterium Rhodobacter sphaeroides also fold with GroEL/ES. However, assembly proceeds in a chaperone-independent manner. We find that the C-terminal β-hairpin extension of red-type RbcS, which is absent in green-type RbcS, is critical for efficient assembly. The β-hairpins of four RbcS subunits form an eight-stranded β-barrel that protrudes into the central solvent channel of the RbcL core complex. The two β-barrels stabilize the complex through multiple interactions with the RbcL subunits. A chimeric green-type RbcS carrying the C-terminal β-hairpin renders the assembly of a cyanobacterial Rubisco independent of RbcX. Our results may facilitate the engineering of crop plants with improved growth properties expressing red-type Rubisco.  相似文献   

4.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is prone to inactivation from non-productive binding of sugar-phosphates. Reactivation of Rubisco requires conformational remodeling by a specific chaperone, Rubisco activase. Rubisco activase from tobacco and other plants in the family Solanaceae is an inefficient activator of Rubisco from non-Solanaceae plants and from the green alga Chlamydomonas reinhardtii. To determine if the Rubisco small subunit plays a role in the interaction with Rubisco activase, a hybrid Rubisco (SSNT) composed of tobacco small subunits and Chlamydomonas large subunits was constructed. The SSNT hybrid, like other hybrid Rubiscos containing plant small subunits, supported photoautotrophic growth in Chlamydomonas, but growth in air was much slower than for cells containing wild-type Rubisco. The kinetic properties of the SSNT hybrid Rubisco were similar to the wild-type enzyme, indicating that the poor growth in air was probably caused by disruption of pyrenoid formation and the consequent impairment of the CO2concentrating mechanism. Recombinant Rubisco activase from Arabidopsis activated the SSNT hybrid Rubisco and hybrid Rubiscos containing spinach and Arabidopsis small subunits at rates similar to the rates with wild-type Rubisco. However, none of the hybrid Rubiscos was activated by tobacco Rubisco activase. That replacement of Chlamydomonas small subunits with plant small subunits does not affect the species-specific interaction between Rubisco and Rubisco activase suggests that the association is not dominated by the small subunits that surround the Rubisco central solvent channel. Therefore, the geometry of a side-on binding mode is more consistent with the data than a top-on or ring-stacking binding mode.  相似文献   

5.
Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1. 39) obtained from a thermophilic red alga Galdieria partita has the highest specificity factor of 238 among the Rubiscos hitherto reported. Crystal structure of activated Rubisco from G. partita complexed with the reaction intermediate analogue, 2-carboxyarabinitol 1,5-bisphosphate (2-CABP) has been determined at 2.4-A resolution. Compared with other Rubiscos, different amino residues bring the structural differences in active site, which are marked around the binding sites of P-2 phosphate of 2-CABP. Especially, side chains of His-327 and Arg-295 show the significant differences from those of spinach Rubisco. Moreover, the side chains of Asn-123 and His-294 which are reported to bind the substrate, ribulose 1,5-bisphosphate, form hydrogen bonds characteristic of Galdieria Rubisco. Small subunits of Galdieria Rubisco have more than 30 extra amino acid residues on the C terminus, which make up a hairpin-loop structure to form many interactions with the neighboring small subunits. When the structures of Galdieria and spinach Rubiscos are superimposed, the hairpin region of the neighboring small subunit in Galdieria enzyme and apical portion of insertion residues 52-63 characteristic of small subunits in higher plant enzymes are almost overlapped to each other.  相似文献   

6.
Marín-Navarro J  Moreno J 《Biochemistry》2003,42(50):14930-14938
The proteolytic susceptibility of the native CO(2)-fixing photosynthetic enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39, Rubisco) has been shown to increase in vitro after oxidative treatments that affect cysteine thiols. A limited incubation of oxidized (pretreated with the disulfide cystamine) Rubisco from Chlamydomonas reinhardtii with subtilisin or proteinase K generated fragments of molecular mass about 53 kDa (band I in SDS-PAGE) and 47 kDa (band II) derived from the large subunit (55 kDa) of the enzyme. In contrast, proteolysis of the reduced Rubisco (pretreated with the free thiol cysteamine) produced only the 53 kDa band. The same fragmentation pattern was reproduced with Rubiscos from other algae and higher plants, as well as with other chemical modifications of protein cysteines. N-terminal sequencing of the fragments showed that band I arised from clipping the unstructured N-terminal stretch of the large subunit up to Lys18. Band II was generated by a cleavage close to Val69. The increased susceptibility of the oxidized form resulted from proteases gaining access to a loop (from Ser61 to Thr68) located between stretches of secondary structure that form the N-terminal domain. Native electrophoresis and kinetic analysis of fragment accumulation during subtilisin digestion demonstrated that subunit dissociation was induced by the proteolytic processing at the Ser61-Thr68 loop, which is characteristic of the oxidized Rubisco. Holoenzyme dissasembly was readily followed by the full degradation of the released subunits. In contrast, the limited processing to band I observed with the reduced enzyme did not compromise the quaternary structure of the Rubisco hexadecamer, thus preventing further proteolysis.  相似文献   

7.
The photosynthetic CO2-fixing enzyme Rubisco [ribulose-P(2) (D-ribulose-1,5-bisphosphate) carboxylase/oxygenase] has long been a target for engineering kinetic improvements. Towards this goal we used an RDE (Rubisco-dependent Escherichia coli) selection system to evolve Synechococcus PCC6301 Form I Rubisco under different selection pressures. In the fastest growing colonies, the Rubisco L (large) subunit substitutions I174V, Q212L, M262T, F345L or F345I were repeatedly selected and shown to increase functional Rubisco expression 4- to 7-fold in the RDE and 5- to 17-fold when expressed in XL1-Blue E. coli. Introducing the F345I L-subunit substitution into Synechococcus PCC7002 Rubisco improved its functional expression 11-fold in XL1-Blue cells but could not elicit functional Arabidopsis Rubisco expression in the bacterium. The L subunit substitutions L161M and M169L were complementary in improving Rubisco yield 11-fold, whereas individually they improved yield approximately 5-fold. In XL1-Blue cells, additional GroE chaperonin enhanced expression of the I174V, Q212L and M262T mutant Rubiscos but engendered little change in the yield of the more assembly-competent F345I or F345L mutants. In contrast, the Rubisco chaperone RbcX stimulated functional assembly of wild-type and mutant Rubiscos. The kinetic properties of the mutated Rubiscos varied with noticeable reductions in carboxylation and oxygenation efficiency accompanying the Q212L mutation and a 2-fold increase in K(ribulose-P2) (K(M) for the substrate ribulose-P2) for the F345L mutant, which was contrary to the approximately 30% reductions in K(ribulose-P2) for the other mutants. These results confirm the RDE systems versatility for identifying mutations that improve functional Rubisco expression in E. coli and provide an impetus for developing the system to screen for kinetic improvements.  相似文献   

8.
9.
The carboxylation kinetic (stable carbon) isotope effect was measured for purified d-ribulose-1,5-bisphosphate carboxylases/oxygenases (Rubiscos) with aqueous CO(2) as substrate by monitoring Rayleigh fractionation using membrane inlet mass spectrometry. This resulted in discriminations (Delta) of 27.4 +/- 0.9 per thousand for wild-type tobacco Rubisco, 22.2 +/- 2.1 per thousand for Rhodospirillum rubrum Rubisco, and 11.2 +/- 1.6 per thousand for a large subunit mutant of tobacco Rubisco in which Leu(335) is mutated to valine (L335V). These Delta values are consistent with the photosynthetic discrimination determined for wild-type tobacco and transplastomic tobacco lines that exclusively produce R. rubrum or L335V Rubisco. The Delta values are indicative of the potential evolutionary variability of Delta values for a range of Rubiscos from different species: Form I Rubisco from higher plants; prokaryotic Rubiscos, including Form II; and the L335V mutant. We explore the implications of these Delta values for the Rubisco catalytic mechanism and suggest that Rubiscos that are associated with a lower Delta value have a less product-like carboxylation transition state and/or allow a decarboxylation step that evolution has excluded in higher plants.  相似文献   

10.
以河西走廊荒漠地区不同生态型芦苇为研究材料,提取并纯化得Rubisco蛋白,经SDS-PAGE凝胶电泳将Rubisco大、小亚基分离,用Rubisco全酶蛋白及其大、小亚基分别注射昆明系雄性小白鼠制备抗体,经Western-blotting鉴定结果表明:(1)水芦Rubisco全酶抗体可与水芦、沙芦及菠菜Rubisco大亚基发生反应,而与小亚基均未见显色反应,且水芦显色最深,沙芦略浅,菠菜最浅;(2)水芦、沙芦Rubisco大亚基抗体可与水芦、沙芦、菠菜大亚基发生抗原交叉反应,且均不与小亚基发生反应,并且其与菠菜Rubisco大亚基的反应程度明显低于水芦和沙芦;(3)用与Rubisco大亚基抗体同样的制备方法,均未检测到水芦、沙芦Rubisco小亚基抗体的产生;(4)菠菜Rubisco全酶抗体可与菠菜、水芦、沙芦、水稻Rubisco大亚基均发生抗原交叉反应,但仅与其自身小亚基反应,且与菠菜Rubisco大亚基显色反应最深,水稻略浅,沙芦、水芦稍有反应.由此说明,水芦、沙芦Rubisco全酶蛋白及其大亚基免疫学特性差异较小,而与双子叶植物菠菜相比差异较大;水芦、沙芦Rubisco蛋白免疫化学决定簇的差异主要决定于小亚基上,且其小亚基不具有抗原活性或抗原活性较弱.  相似文献   

11.
The Calvin-Benson-Bassham cycle is responsible for carbon dioxide fixation in all plants, algae, and cyanobacteria. The enzyme that catalyzes the carbon dioxide-fixing reaction is ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Rubisco from a hyperthermophilic archaeon Thermococcus kodakarensis (Tk-Rubisco) belongs to the type III group, and shows high activity at high temperatures. We have previously found that replacement of the entire α-helix 6 of Tk-Rubisco with the corresponding region of the spinach enzyme (SP6 mutant) results in an improvement of catalytic performance at mesophilic temperatures, both in vivo and in vitro, whereas the former and latter half-replacements of the α-helix 6 (SP4 and SP5 mutants) do not yield such improvement. We report here the crystal structures of the wild-type Tk-Rubisco and the mutants SP4 and SP6, and discuss the relationships between their structures and enzymatic activities. A comparison among these structures shows the movement and the increase of temperature factors of α-helix 6 induced by four essential factors. We thus supposed that an increase in the flexibility of the α-helix 6 and loop 6 regions was important to increase the catalytic activity of Tk-Rubisco at ambient temperatures. Based on this structural information, we constructed a new mutant, SP5-V330T, which was designed to have significantly greater flexibility in the above region, and it proved to exhibit the highest activity among all mutants examined to date. The thermostability of the SP5-V330T mutant was lower than that of wild-type Tk-Rubisco, providing further support on the relationship between flexibility and activity at ambient temperatures.  相似文献   

12.
Archaeoglobus fulgidus RbcL2, a form III ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), exhibits unique properties not found in other well studied form I and II Rubiscos, such as optimal activity from 83 to 93 degrees C and an extremely high kcat value (23 s-1). More interestingly, this protein is unusual in that exposure or assay in the presence of oxygen and high levels of CO2 resulted in substantial loss (85-90%) of activity compared with assays performed under strictly anaerobic conditions. Kinetic studies indicated that A. fulgidus RbcL2 possesses an unusually high affinity for oxygen (Ki=5 microM); O2 is a competitive inhibitor with respect to CO2, yet the high affinity for O2 presumably accounts for the inability of high levels of CO2 to prevent inhibition. Comparative bioinformatic analyses of available archaeal Rubisco sequences were conducted to provide clues as to why the RbcL2 protein might possess such a high affinity for oxygen. These analyses suggested the potential importance of several unique residues, as did additional analyses within the context of available form I-III Rubisco structures. One residue unique to archaeal proteins (Met-295) was of particular interest because of its proximity to known active-site residues. Recombinant M295D A. fulgidus Rubisco was less sensitive to oxygen compared with the wild-type enzyme. This residue, along with other potential changes in conserved residues of form III Rubiscos, may provide an understanding as to how Rubisco may have evolved to function in the presence of air.  相似文献   

13.
Rubisco, the primary photosynthetic carboxylase, evolved 3-4 billion years ago in an anaerobic, high CO(2) atmosphere. The combined effect of low CO(2) and high O(2) levels in the modern atmosphere, and the inability of Rubisco to distinguish completely between CO(2) and O(2), leads to the occurrence of an oxygenation reaction that reduces the efficiency of photosynthesis. Among land plants, C(4) photosynthesis largely solves this problem by facilitating a high CO(2)/O(2) ratio at the site of Rubisco that resembles the atmosphere in which the ancestral enzyme evolved. The prediction that such conditions favor Rubiscos with higher kcat(CO2) and lower CO(2)/O(2) specificity (S(C/O)) is well supported, but the structural basis for the differences between C(3) and C(4) Rubiscos is not clear. Flaveria (Asteraceae) includes C(3), C(3)-C(4) intermediate, and C(4) species with kinetically distinct Rubiscos, providing a powerful system in which to study the biochemical transition of Rubisco during the evolution from C(3) to C(4) photosynthesis. We analyzed the molecular evolution of chloroplast rbcL and nuclear rbcS genes encoding the large subunit (LSu) and small subunit (SSu) of Rubisco from 15 Flaveria species. We demonstrate positive selection on both subunits, although selection is much stronger on the LSu. In Flaveria, two positively selected LSu amino acid substitutions, M309I and D149A, distinguish C(4) Rubiscos from the ancestral C(3) species and statistically account for much of the kinetic difference between the two groups. However, although Flaveria lacks a characteristic "C(4)" SSu, our data suggest that specific residue substitutions in the SSu are correlated with the kinetic properties of Rubisco in this genus.  相似文献   

14.
Genes encoding ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) were cloned from dinoflagellate symbionts (Symbiodinium spp) of the giant clam Tridacna gigas and characterized. Strikingly, Symbiodinium Rubisco is completely different from other eukaryotic (form I) Rubiscos: it is a form II enzyme that is approximately 65% identical to Rubisco from Rhodospirillum rubrum (Rubisco forms I and II are approximately 25 to 30% identical); it is nuclear encoded by a multigene family; and the predominantly expressed Rubisco is encoded as a precursor polyprotein. One clone appears to contain a predominantly expressed Rubisco locus (rbcA), as determined by RNA gel blot analysis of Symbiodinium RNA and sequencing of purified Rubisco protein. Another contains an enigmatic locus (rbcG) that exhibits an unprecedented pattern of amino acid replacement but does not appear to be a pseudogene. The expression of rbcG has not been analyzed; it was detected only in the minor of two taxa of Symbiodinium that occur together in T. gigas. This study confirms and describes a previously unrecognized branch of Rubisco's evolution: a eukaryotic form II enzyme that participates in oxygenic photosynthesis and is encoded by a diverse, nuclear multigene family.  相似文献   

15.
Plastomic replacement of the tobacco (Nicotiana tabacum) Rubisco large subunit gene (rbcL) with that from sunflower (Helianthus annuus; rbcL(S)) produced tobacco(Rst) transformants that produced a hybrid Rubisco consisting of sunflower large and tobacco small subunits (L(s)S(t)). The tobacco(Rst) plants required CO(2) (0.5% v/v) supplementation to grow autotrophically from seed despite the substrate saturated carboxylation rate, K(m), for CO(2) and CO(2)/O(2) selectivity of the L(s)S(t) enzyme mirroring the kinetically equivalent tobacco and sunflower Rubiscos. Consequently, at the onset of exponential growth when the source strength and leaf L(s)S(t) content were sufficient, tobacco(Rst) plants grew to maturity without CO(2) supplementation. When grown under a high pCO(2), the tobacco(Rst) seedlings grew slower than tobacco and exhibited unique growth phenotypes: Juvenile plants formed clusters of 10 to 20 structurally simple oblanceolate leaves, developed multiple apical meristems, and the mature leaves displayed marginal curling and dimpling. Depending on developmental stage, the L(s)S(t) content in tobacco(Rst) leaves was 4- to 7-fold less than tobacco, and gas exchange coupled with chlorophyll fluorescence showed that at 2 mbar pCO(2) and growth illumination CO(2) assimilation in mature tobacco(Rst) leaves remained limited by Rubisco activity and its rate (approximately 11 micromol m(-2) s(-1)) was half that of tobacco controls. (35)S-methionine labeling showed the stability of assembled L(s)S(t) was similar to tobacco Rubisco and measurements of light transient CO(2) assimilation rates showed L(s)S(t) was adequately regulated by tobacco Rubisco activase. We conclude limitations to tobacco(Rst) growth primarily stem from reduced rbcL(S) mRNA levels and the translation and/or assembly of sunflower large with the tobacco small subunits that restricted L(s)S(t) synthesis.  相似文献   

16.
The inability to assemble Rubisco from any photosynthetic eukaryote within Escherichia coli has hampered structure-function studies of higher plant Rubisco. Precise genetic manipulation of the tobacco chloroplast genome (plastome) by homologous recombination has facilitated the successful production of transplastomic lines that have either mutated the Rubisco large subunit (L) gene, rbcL, or replaced it with foreign variants. Here the capacity of a new tobacco transplastomic line, (cm)trL, to augment future Rubisco engineering studies is demonstrated. Initially the rbcL was replaced with the selectable marker gene, aadA, and an artificial codon-modified (cm)rbcM gene that codes for the structurally novel Rubisco dimer (L(2), approximately 100 kDa) from Rhodosprillum rubrum. To obtain (cm)trL, the aadA was excised by transiently introducing a T-DNA encoding CRE recombinase biolistically. Selection using aadA enabled transplantation of mutated and wild-type tobacco Rubisco genes into the (cm)trL plastome with an efficiency that was 3- to 10-fold higher than comparable transformations into wild-type tobacco. Transformants producing the re-introduced form I tobacco Rubisco variants (hexadecamers comprising eight L and eight small subunits, approximately 520 kDa) were identified by non-denaturing PAGE with fully segregated homoplasmic lines (where no L(2) Rubisco was produced) obtained within 6-9 weeks after transformation which enabled their Rubisco kinetics to be quickly examined. Here the usefulness of (cm)trL in more readily examining the production, folding, and assembly capabilities of both mutated tobacco and foreign form I Rubisco subunits in tobacco plastids is discussed, and the feasibility of quickly assessing the kinetic properties of those that functionally assemble is demonstrated.  相似文献   

17.
Association-dissociation equilibria of Octopus hemocyanin   总被引:1,自引:0,他引:1  
K E van Holde  K I Miller 《Biochemistry》1985,24(17):4577-4582
The equilibria between the native (decameric) Octopus hemocyanin and its subunits were studied by analytical sedimentation. Equilibrium is obtained slowly, but the reaction is thermodynamically reversible. The mass action law for a monomer-decamer reaction is obeyed. The reassociated hemocyanin is virtually identical in its sedimentation behavior and oxygen binding with the native protein. The association-dissociation equilibria are mediated by cations; Mg2+, Ca2+, Na+, and H+ are all effective in stabilizing the decameric form at appropriate concentrations. About three to four cations per monomer must be bound for association to occur. Under some conditions, dimers of the subunits can be observed, but formation of this dimer does not depend on cation concentration, and it does not appear to be an obligate intermediate in the association to decamer.  相似文献   

18.
Peroxiredoxins (Prxs) make up a ubiquitous class (proposed EC 1.11.1.15) of cysteine-dependent peroxidases with roles in oxidant protection and signal transduction. An intriguing biophysical property of typical 2-Cys Prxs is the redox-dependent modulation of their oligomeric state between decamers and dimers at physiological concentrations. The functional consequences of this linkage are unknown, but on the basis of structural considerations, we hypothesized that decamer-building (dimer-dimer) interactions serve to stabilize a loop that forms the peroxidatic active site. Here, we address this important issue by studying mutations of Thr77 at the decamer-building interface of AhpC from Salmonella typhimurium. Ultracentrifugation studies revealed that two of the substitutions (T77I and T77D) successfully disrupted the decamer, while the third (T77V) actually enhanced decamer stability. Crystal structures of the decameric forms of all three mutant proteins provide a rationale for their properties. A new assay allowed the first ever measurement of the true k(cat) and K(m) values of wild-type AhpC with H(2)O(2), placing the catalytic efficiency at 4 x 10(7) M(-)(1) s(-)(1). T77V had slightly higher activity than wild-type enzyme, and both T77I and T77D exhibited ca. 100-fold lower catalytic efficiency, indicating that the decameric structure is quite important for, but not essential to, activity. The interplay between decamer formation and active site loop dynamics is emphasized by a decreased susceptibility of T77I and T77D to peroxide-mediated inactivation, and by an increase in the crystallographic B-factors in the active site loop, rather than at the site of the mutation, in the T77D variant.  相似文献   

19.
Rubisco activase is an AAA(+) protein, a superfamily with members that use a "Sensor 2" domain for substrate recognition. To determine whether the analogous domain of activase is involved in recognition of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39), two chimeric activases were constructed, interchanging a Sensor 2-containing region between activases from spinach and tobacco. Spinach chimeric activase was a poor activator of both spinach and tobacco Rubisco. In contrast, tobacco chimeric activase activated spinach Rubisco far better than tobacco Rubisco, similar to spinach activase. A point mutation, K311D, in the Sensor 2 domain of the tobacco chimeric activase abolished its ability to better activate spinach Rubisco. The opposite mutation, D311K, in wild type tobacco activase produced an enzyme that activated both spinach and tobacco Rubisco, whereas a second mutation, D311K/L314V, shifted the activation preference toward spinach Rubisco. The involvement of these two residues in substrate selectivity was confirmed by introducing the analogous single and double mutations in cotton activase. The ability of the two tobacco activase mutants to activate wild type and mutant Chlamydomonas Rubiscos was also examined. Tobacco D311K activase readily activated wild type and P89R but not D94K Rubisco, whereas the tobacco L314V activase only activated D94K Rubisco. The tobacco activase double mutant D311K/L314V activated wild type Chlamydomonas Rubisco better than either the P89R or D94K Rubisco mutants, mimicking activation by spinach activase. The results identified a substrate recognition region in activase in which two residues may directly interact with two residues in Rubisco.  相似文献   

20.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the initial step of carbon metabolism in photosynthesis. The holoenzyme comprises eight large subunits, arranged as a tetramer of dimers around a central solvent channel that defines a fourfold axis of symmetry, and eight small subunits, arranged as two tetramers at the poles of the axis. The phylogenetically divergent small-subunit loops between β-strands A and B form the entrance to the solvent channel. In the green alga Chlamydomonas reinhardtii, Ile-58 from each of the four small-subunit βA–βB loops defines the minimal diameter of the channel opening. To understand the role of the central solvent channel in Rubisco function, directed mutagenesis and transformation of Chlamydomonas were employed to replace Ile-58 with Ala, Lys, Glu, Trp, or three Trp residues (I58W3) to close the entrance to the channel. The I58E, I58K, and I58W substitutions caused only small decreases in photosynthetic growth at 25 and 35 °C, whereas I58W3 had a substantial effect at both temperatures. The mutant enzymes had decreased carboxylation rates, but the I58W3 enzyme had decreases in both carboxylation and CO2/O2 specificity. The I58E, I58W, and I58W3 enzymes were inactivated at lower temperatures than wild-type Rubisco, and were degraded at slower rates under oxidative stress. However, these mutant enzymes were activated by Rubisco activase at normal rates, indicating that the structural transition required for carboxylation is not affected by altering the solvent channel opening. Structural dynamics alone may not be responsible for these distant effects on the Rubisco active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号