首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
PACT (Protein kinase, interferon-inducible double stranded RNA dependent activator) and its murine ortholog RAX (PKR-associated protein X) were originally identified as a protein activator for the dsRNA-dependent, interferon-inducible protein kinase (PKR). Endogenous PACT/RAX activates PKR in response to diverse stress signals such as serum starvation, and peroxide or arsenite treatment. PACT/RAX heterodimerized with PKR and activated it with its third motif in the absence of dsRNA. The activation of PKR leads to enhanced eIF2a phosphorylation followed by apoptosis or inhibition of growth. Besides the role of activating PKR, PACT is associated with a ~500 kDa complex that contains Dicer, hAgo2, and TRBP (TAR RNA binding protein) and it associates with Dicer to facilitate the production of small interfering RNA. PACT/RAX plays an important role in diverse physiological and pathological processes. Pact^-/- mice exhibit notable developmental abnormalities including microtia, with craniofacial ear, and hearing defects. Pact^-/- mice had smaller body sizes and fertility defects, both of which were caused by defective pituitary functions. It was found that dRAX disrupted fly embryos homozygous, displayed highly abnormal commissural axon structure of the central nervous system, and 70% of the flies homozygous for the mutant allele died prior to adulthood. Using high density SNP genotyping arrays, it was found that a mutation in PRKRA (the PACT/RAX gene) is the causative genetic mutation in DYT16, a novel autosomal recessive dystonia-parkinsonism syndrome in Brazilian patients.  相似文献   

3.
The HIV p17 or matrix (MA) protein has long been implicated in the process of nuclear import of the HIV genome and thus the ability of the virus to infect nondividing cells such as macrophages. While it has been demonstrated that MA is not absolutely required for this process, debate continues to surround the subcellular targeting properties of MA and its potential contribution to nuclear import of the HIV cDNA. Through the use of in vitro techniques we have determined that, despite the ability of MA to interact with importins, the full-length protein fails to enter the nucleus of cells. While MA does contain a region of basic amino acids within its N-terminus which can confer nuclear accumulation of a fusion protein, we show that this is due to nuclear retention mediated by DNA binding and does not represent facilitated import. Importantly, we show that the 26KK residues of MA, previously thought to be part of a nuclear localization sequence, are absolutely required for a number of MA's functions including its ability to bind DNA and RNA and its propensity to form high-order multimers/protein aggregates. The results presented here indicate that the N-terminal basic domain of MA does not appear likely to play a role in HIV cDNA nuclear import; rather this region appears to be a crucial structural and functional motif whose integrity is required for a number of other roles performed by MA during viral infection.  相似文献   

4.
It has been reported that some double-stranded RNA (dsRNA) binding proteins interact with small RNA biogenesis-related RNase III enzymes. However, their biological significance is poorly understood. Here we examine the relationship between the Arabidopsis microRNA- (miRNA) producing enzyme DCL1 and the dsRNA binding protein HYL1. In the hyl1-2 mutant, the processing steps of miR163 biogenesis were partially impaired; increased accumulation of pri-miR163 and reduced accumulation of short pre-miR163 and mature miR163 as well as misplaced cleavages in the stem structure of pri-miR163 were detected. These misplaced cleavages were similar to those previously observed in the dcl1-9 mutant, in which the second double-stranded RNA binding domain of the protein was disrupted. An immunoprecipitation assay using Agrobacterium-mediated transient expression in Nicotiana benthamiana showed that HYL1 was able to form a complex with wild-type DCL1 protein, but not with the dcl1-9 mutant protein. We also examined miR164b and miR166a biogenesis in hyl1-2 and dcl1-9. Increased accumulation of pri-miRNAs and reduced accumulation of pre-miRNAs and mature miRNAs were detected. Misplaced cleavage on pri-miR164b was observed only in dcl1-9 but not in hyl1-2, whereas not on pri-miR166a in either mutant. These results indicate that HYL1 has a function in assisting efficient and precise cleavage of pri-miRNA through interaction with DCL1.  相似文献   

5.
Mammalian C-type lectins are calcium-dependent carbohydrate-binding proteins. They serve as cell adhesion molecules in cell-cell interactions, or function as pattern-recognition receptors in innate immunity. Calcium is a direct ligand for carbohydrate binding in mammalian C-type lectins such as mannose-binding proteins and macrophage mannose receptor. In the tobacco hornworm Manduca sexta, a group of lectins named immulectins have been discovered. Each immulectin contains dual carbohydrate-recognition domains. Previously, we showed that immulectin-2 (IML-2) binds to a bacterial lipopolysaccharide, and agglutination of Escherichia coli cells by IML-2 is calcium dependent. In this study, we demonstrated that IML-2 bound to bacterial lipid A, smooth and rough mutants of lipopolysaccharide, lipoteichoic acid and peptidoglycan, as well as to fungal mannan and beta-1, 3-glucan (laminarin and curdlan). Binding of IML-2 to microbial components was calcium independent, and was increased by addition of spermine, a polyamine. In addition, plasma IML-2 bound to mannan-agarose independent of calcium. But trypsin digestion of IML-2 was inhibited in the presence of calcium. Our results suggest that calcium is not required for IML-2 binding but protects IML-2 from trypsin digestion.  相似文献   

6.
7.
8.
9.
10.
Plant immune signalling activated by the perception of pathogen-associated molecular patterns (PAMPs) or effector proteins is mediated by pattern-recognition receptors (PRRs) and nucleotide-binding and leucine-rich repeat domain-containing receptors (NLRs), which often share cellular components and downstream responses. Many PRRs are leucine-rich repeat receptor-like kinases (LRR-RLKs), which mostly perceive proteinaceous PAMPs. The suppressor of the G2 allele of skp1 (SGT1) is a core immune regulator required for the activation of NLR-mediated immunity. In this work, we examined the requirement of SGT1 for immune responses mediated by several LRR-RLKs in both Nicotiana benthamiana and Arabidopsis. Using complementary genetic approaches, we found that SGT1 is not limiting for early PRR-dependent responses or antibacterial immunity. We therefore conclude that SGT1 does not play a significant role in bacterial PAMP-triggered immunity.  相似文献   

11.
The helper component-proteinase (HC-Pro) protein of potyviruses is a suppressor of gene silencing and has been shown to elicit plant developmental-defect-like symptoms. In Zucchini yellow mosaic virus (ZYMV), a mutation in the highly conserved FR180NK box of HC-Pro to FI180NK causes attenuation of these symptoms. At 5 days postinoculation and before symptoms appear, virus accumulation, HC-Pro protein levels, and viral short interfering RNA (siRNA) levels are similar for the severe (FRNK) and attenuated (FINK) strains. At this stage, ZYMVFRNK caused greater accumulation of most microRNAs (miRNAs), and especially of their complementary miRNA “passenger” strands (miRNA*s), in systemically infected leaves than the attenuated ZYMVFINK did. HC-ProFRNK specifically bound artificial siRNA and miRNA/miRNA* duplexes with a much higher affinity than the mutated HC-ProFINK. Further analysis of the mutant and wild-type HC-Pro proteins revealed that suppressor activity of the ZYMV HCFINK mutant was not diminished. However, the FINK mutation caused a loss of HC-Pro suppressor function in other potyviruses. Replacement of the second positively charged amino acid in the ZYMV FRNK box to result in FRNA also caused symptom attenuation and reduced small RNA duplex-binding affinity without loss of suppressor activity. Our data suggest that the highly conserved FRNK box in the HC-Pro of potyviruses is a probable point of contact with siRNA and miRNA duplexes. The interaction of the FRNK box with populations of miRNAs directly influences their accumulation levels and regulatory functions, resulting in symptom development.  相似文献   

12.
While the consequences of nuclear DNA damage have been well studied, the exact consequences of acute and selective mitochondrial DNA (mtDNA) damage are less understood. DNA damaging chemotherapeutic drugs are known to activate p53-dependent apoptosis in response to sustained nuclear DNA damage. While it is recognized that whole-cell exposure to these drugs also damages mtDNA, the specific contribution of mtDNA damage to cellular degeneration is less clear. To examine this, we induced selective mtDNA damage in neuronal axons using microfluidic chambers that allow for the spatial and fluidic isolation of neuronal cell bodies (containing nucleus and mitochondria) from the axons (containing mitochondria). Exposure of the DNA damaging drug cisplatin selectively to only the axons induced mtDNA damage in axonal mitochondria, without nuclear damage. We found that this resulted in the selective degeneration of only the targeted axons that were exposed to DNA damage, where ROS was induced but mitochondria were not permeabilized. mtDNA damage-induced axon degeneration was not mediated by any of the three known axon degeneration pathways: apoptosis, axon pruning, and Wallerian degeneration, as Bax-deficiency, or Casp3-deficiency, or Sarm1-deficiency failed to protect the degenerating axons. Strikingly, p53, which is essential for degeneration after nuclear DNA damage, was also not required for degeneration induced with mtDNA damage. This was most evident when the p53-deficient neurons were globally exposed to cisplatin. While the cell bodies of p53-deficient neurons were protected from degeneration in this context, the axons farthest from the cell bodies still underwent degeneration. These results highlight how whole cell exposure to DNA damage activates two pathways of degeneration; a faster, p53-dependent apoptotic degeneration that is triggered in the cell bodies with nuclear DNA damage, and a slower, p53-independent degeneration that is induced with mtDNA damage.Subject terms: Cell biology, Neuroscience  相似文献   

13.
14.
We tested the importance of the aspartate-any residue-aspartate (DXD) motif for the enzymatic activity and nucleotide binding capacity of the Golgi glycosyltransferase GM2 synthase. We prepared point mutations of the motif, which is found in the sequence 352-VLWVDDDFV, and analyzed cells that stably expressed the mutated proteins. Whereas the folding of the mutated proteins was not seriously disrupted as judged by assembly into homodimers, Golgi localization, and secretion of a soluble form of the enzyme, exchange of the highly conserved aspartic acid residues at position 356 or 358 with alanine or asparagine reduced enzyme activity to background levels. In contrast, the D356E and D357N mutations retained weak activity, while the activity of V352A and W354A mutants was 167% and 24% that of wild-type enzyme, respectively. Despite the major effect of the DXD motif on enzymatic activity, nucleotide binding was not altered in the triple mutant D356N/D357N/D358N as revealed by binding to UDP-beads and labeling with the photoaffinity reagent, P(3)-(4-azidoanilido)uridine 5'-triphosphate (AAUTP). In summary, rather than being critical for nucleotide binding, this motif may function during catalysis in GM2 synthase, as has been proposed elsewhere for the SpsA glycosyltransferase based on its crystal structure.  相似文献   

15.
Liu X  Park JK  Jiang F  Liu Y  McKearin D  Liu Q 《RNA (New York, N.Y.)》2007,13(12):2324-2329
Double-stranded RNA-binding proteins (dsRBPs), such as R2D2 and Loquacious (Loqs), function in tandem with Dicer (Dcr) enzymes in RNA interference (RNAi). In Drosophila, Dcr-1/Loqs and Dcr-2/R2D2 complexes generate microRNAs (miRNAs) and small interfering RNAs (siRNAs), respectively. Although R2D2 does not regulate siRNA production, R2D2 and Dcr-2 coordinately bind siRNAs to promote assembly of the siRNA-induced silencing (siRISC) complexes. Conversely, Loqs enhances miRNA production. It is uncertain if Dcr-1 and Loqs facilitate miRNA loading onto the miRISC complexes. Here we used loqs knockout (KO) flies to characterize the physiological functions of Loqs in the miRNA pathway. Northern analysis revealed consistent accumulation of precursor (pre)-miRNAs in loqs(KO) flies. However, the lack of Loqs had differential effects on mature miRNAs: some are diminished, whereas others maintain wild-type levels. Importantly, the data suggest that miRNA production is not the rate-limiting step of the miRNA pathway. We show that Dcr-1, but not Loqs, is critical for assembly of miRISCs by using dcr-1 or loqs null egg extract. Consistent with this, recombinant Dcr-1 could efficiently interact with miRNA duplex in the absence of Loqs. Together, our results indicate that Loqs plays a prominent role in miRNA biogenesis, but is largely dispensable for miRISC assembly. Thus, Loqs and R2D2 represent two distinct functional modes for dsRBPs in the RNAi pathways.  相似文献   

16.
17.
Dynamin and dynamin-like proteins are GTP-binding proteins involved in vesicle trafficking. In soybean, a 68-kD dynamin-like protein called phragmoplastin has been shown to be associated with the cell plate in dividing cells (Gu and Verma, 1996). Five ADL1 genes encoding dynamin-like proteins related to phragmoplastin have been identified in the completed Arabidopsis genome. Here we report that ADL1Ap is associated with punctate subcellular structures and with the cell plate in dividing cells. To assess the function of ADL1Ap we utilized a reverse genetic approach to isolate three separate Arabidopsis mutant lines containing T-DNA insertions in ADL1A. Homozygous adl1A seeds were shriveled and mutant seedlings arrested soon after germination, producing only two leaf primordia and severely stunted roots. Immunoblotting revealed that ADL1Ap expression was not detectable in the mutants. Despite the loss of ADL1Ap, the mutants did not display any defects in cytokinesis, and growth of the mutant seedlings could be rescued in tissue culture by the addition of sucrose. Although these sucrose-rescued plants displayed normal vegetative growth and flowered, they set very few seeds. Thus, ADL1Ap is critical for several stages of plant development, including embryogenesis, seedling development, and reproduction. We discuss the putative role of ADL1Ap in vesicular trafficking, cytokinesis, and other aspects of plant growth.  相似文献   

18.
Adrenodoxin (Adx) is a [2Fe-2S] ferredoxin involved in electron transfer reactions in the steroid hormone biosynthesis of mammals. In this study, we deleted the sequence coding for the complete interaction domain in the Adx cDNA. The expressed recombinant protein consists of the amino acids 1-60, followed by the residues 89-128, and represents only the core domain of Adx (Adx-cd) but still incorporates the [2Fe-2S] cluster. Adx-cd accepts electrons from its natural redox partner, adrenodoxin reductase (AdR), and forms an individual complex with this NADPH-dependent flavoprotein. In contrast, formation of a complex with the natural electron acceptor, CYP11A1, as well as electron transfer to this steroid hydroxylase is prevented. By an electrostatic and van der Waals energy minimization procedure, complexes between AdR and Adx-cd have been proposed which have binding areas different from the native complex. Electron transport remains possible, despite longer electron transfer pathways.  相似文献   

19.
20.
To elucidate the physiological role(s) of DUSP9 (dual-specificity phosphatase 9), also known as MKP-4 (mitogen-activated protein kinase [MAPK] phosphatase 4), the gene was deleted in mice. Crossing male chimeras with wild-type females resulted in heterozygous (DUSP9(+/-)) females. However, when these animals were crossed with wild-type (DUSP9(+/y)) males none of the progeny carried the targeted DUSP9 allele, indicating that both female heterozygous and male null (DUSP9(-/y)) animals die in utero. The DUSP9 gene is on the X chromosome, and this pattern of embryonic lethality is consistent with the selective inactivation of the paternal X chromosome in the extraembryonic tissues of the mouse, suggesting that DUSP9/MKP4 performs an essential function during placental development. Examination of embryos between 8 and 10.5 days postcoitum confirmed that lethality was due to a failure of labyrinth development, and this correlates exactly with the normal expression pattern of DUSP9/MKP-4 in the trophoblast giant cells and labyrinth of the placenta. Finally, when the placental defect was rescued, male null (DUSP9(-/y)) embryos developed to term, appeared normal, and were fertile. Our results indicate that DUSP9/MKP-4 is essential for placental organogenesis but is otherwise dispensable for mammalian embryonic development and highlights the critical role of dual-specificity MAPK phosphatases in the regulation of developmental outcomes in vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号