首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 258 毫秒
1.
Two closely related lectins from bulbs of the Dutch iris (Iris hollandica var. Professor Blaauw) have been isolated and cloned. Both lectins, called Iris agglutinin b and Iris agglutinin r, possess N-glycosidase activity and share a high sequence similarity with previously described type 2 ribosome-inactivating proteins (RIP). However, these lectins show only 57% to 59% sequence identity to a previously characterized type 1 RIP from iris, called IRIP. The identification of the iris lectins as type 2 RIP provides unequivocal evidence for the simultaneous occurrence of type 1 and type 2 RIP in iris bulbs and allowed a detailed comparison of type 1 and type 2 RIP from a single plant, which provides further insight into the molecular evolution of RIP. Binding studies and docking experiments revealed that the lectins exhibit binding activity not only toward Gal/N-acetylgalactosamine, but also toward mannose, demonstrating for the first time that RIP-binding sites can accommodate mannose.  相似文献   

2.
Human lymphocyte cultures were incubated with the nontoxic abrus agglutinin and with ricin B chain, and the incorporation of 3H thymidine was measured. Abrus agglutinin stimulated strongly the thymidine incorporation whereas ricin B chain had a much lesser effect. When galactose or lactose was added to the cultures together with the lectins, the abrus agglutinin and ricin B chain induced thymidine incorporation was strongly reduced. There was a linear relationship between the concentration of lectin and the concentration of lactose required for inhibition of lymphocyte stimulation. N-acetyl-galactosamine had a much lesser inhibiting effect and alpha-methyl-mannoside did not cause any inhibition. The abrus agglutinin induced thymidine incorporation was not demonstrable before 36 to 40 hr and reached its maximum after 2 to 5 days. If lactose was added within the first 4 hr of incubation with abrus agglutinin no stimulation was observed.  相似文献   

3.
The role of the high mannose carbohydrate chains in the mechanism of action of ricin toxin was investigated. Ricin is taken up by two routes in macrophages, by binding to cell surface mannose receptors, or by binding of the ricin galactose receptor to cell surface glycoproteins. Removal of carbohydrate from ricin by periodate oxidation led to a large loss in toxicity via both routes of uptake by an effect on the B chain not due to a loss of galactose binding affinity. These data suggest that the carbohydrate chains of ricin B chain may be required for full toxicity. The pathway of uptake of ricin by the macrophage mannose receptor was found to differ in several respects from uptake via the galactose-specific pathway. Analysis of intoxication of macrophages by ricin in the presence of ammonium chloride suggested that mannose receptor bound ligand passes through acidic vesicles prior to translocation, unlike galactose bound ligand. Intoxication by ricin via galactose-specific uptake was potentiated by swainsonine but not by castanospermine, suggesting that ricin may be attacked by an endogenous mannosidase within the cell, and that ricin passes through either a lysosomal or a Golgi compartment prior to translocation.  相似文献   

4.
Microglial cells, like macrophages, are very sensitive to ricin, a galactose-specific toxic lectin belonging to the family of ribosome-inactivating proteins. This toxin can be taken up by most cells through the binding of its B chain to galactose-containing molecules on the cell membrane. In macrophagic cell types it can be internalised also by mannose receptors which are present on the surface of these cells. Endocytosis of the toxin by either pathway was evaluated by ricin toxicity to primary cultures of rat microglial cells and to a microglial N11 cell line in the presence or absence of lactose and mannan, which compete for the endocytosis via the ricin lectin chain or cellular mannose receptors, respectively. Results were compared with those obtained in cultures of mouse macrophages, human monocytes, and a monocytic JM cell line. All cultures were protected from ricin toxicity more by lactose than by mannan, indicating that ricin endocytosis via its lectin B chain is prevalent over that mediated by cellular mannose receptors. However, a partial protection by mannan was observed in all cases but not-stimulated N11 cells, either in the form of direct protection or of significant additional protection over that afforded by lactose. Mannose receptor expression by N11 cells was negative before, and positive after, treatment with endotoxin, as assessed by the specific binding of 125I-mannose-bovine serum albumin. Moreover, a partial protection from ricin toxicity by mannan was induced in the N11 microglial line after stimulation, consistently with an inducible expression of the mannose receptor by activated cells switched towards a microglial phenotype.  相似文献   

5.
Cell surface and intracellular functions for ricin galactose binding.   总被引:4,自引:0,他引:4  
The role of the two galactose binding sites of ricin B chain in ricin toxicity was evaluated by studying a series of ricin point mutants. Wild-type (WT) ricin and three ricin B chain point mutants having mutations in either 1) the first galactose binding domain (site 1 mutant, Met in place of Lys-40 and Gly in place of Asn-46), 2) the second galactose binding domain (site 2 mutant, Gly in place of Asn-255), or 3) both galactose binding domains (double site mutant containing all three amino acid replacements formerly stated) were expressed in Xenopus oocytes and then reassociated with recombinant ricin A chain. The different ricin B chains were mannosylated to the same extent. Cytotoxicity of these toxins was evaluated when cell entry was mediated either by galactose-containing receptors or through an alternate receptor, the mannose receptor of macrophages. WT ricin and each of the single domain mutants was able to kill Vero cells following uptake by galactose containing receptors. Lactose blocked the toxicity of each of these ricins. Site 1 and 2 mutants were 20-40 times less potent than WT ricin, and the double site mutant had no detectable cytotoxicity. WT ricin, the site 1 mutant, and the site 2 mutant also inhibited protein synthesis of mannose receptor-containing cells. Ricin can enter these cells through either a cell-surface galactose-containing receptor or through the mannose receptor. By including lactose in the cell medium, galactose-containing receptor-mediated uptake is blocked and cytotoxicity occurs solely via the mannose receptor. WT ricin, site 1, and site 2 mutants were cytotoxic to macrophages in the presence of lactose with the relative potency, WT greater than site 2 mutant greater than site 1 mutant. The double site mutant lacked cytotoxicity either in the absence or presence of lactose. Thus, even for mannose receptor-mediated toxicity of ricin, at least one galactose binding site remains necessary for cytotoxicity and two galactose binding sites further increases potency. These results are consistent with the model that the ricin B chain galactose binding activity plays a role not only in cell surface binding but also intracellularly for ricin cytotoxicity.  相似文献   

6.
The saxitoxin-binding component of the excitable membrane sodium channel exhibits glycoprotein characteristics as evidenced by its specific interaction with various agarose-immobilized lectins. The detergent-solubilized saxitoxin-binding component interacts quantitatively with immobilized wheat germ agglutinin and concanavalin A and fractionally with immobilized Lens culinaris hemagglutinin and Ricinus communis agglutinin. These lectins preferentially bind N-acetylglucosamine and sialic acid (wheat germ agglutinin), mannose (concanavalin A and Lens cunilaris and galactose (Ricinus communis). Removal of terminal sialic acid residues by neuraminidase markedly decreases binding to immobilized wheat germ agglutinin but uncovers sites capable of interacting with lectins specific for galactose and N-acetylgalactosamine. β-N-acetylglucosaminidase, an exoglycosidase has no effect on the binding of the channel protein to wheat germ agglutinin. Similarly, phospholipase C has no effect on binding of the solubilized toxin binding component to this lectin. Neither wheat germ agglutinin nor concanavalin A free in solution alters the number of toxin binding sites or their affinity for toxin. The sodium channel saxitoxin-binding component appears to be a glycoprotein containing terminal sialic acid residues and internal mannose, galactose, N-acetylglucosamine, and N-acetylgalactosamine residues. The toxin binding site is spatially separated from the binding sites for the lectins studied. The effect of these sugar moieties must be considered when evaluating the biophysical parameters of the sodium channel.  相似文献   

7.
Mannose-specific lectins are widely distributed in higher plants and are believed to play a role in recognition of high-mannose type glycans of foreign micro-organisms or plant predators. Structural studies have demonstrated that the mannose-binding specificity of lectins is mediated by distinct structural scaffolds. The mannose/glucose-specific legume (e.g., Con A, pea lectin) exhibit the canonical twelve-stranded beta-sandwich structure. In contrast to legume lectins that interact with both mannose and glucose, the monocot mannose-binding lectins (e.g., the Galanthus nivalis agglutinin or GNA from bulbs) react exclusively with mannose and mannose-containing N-glycans. These lectins possess a beta-prism structure. More recently, an increasing number of mannose-specific lectins structurally related to jacalin (e.g., the lectins from the Jerusalem artichoke, banana or rice), which also exhibit a beta-prism organization, were characterized. Jacalin itself was re-defined as a polyspecific lectin which, in addition to galactose, also interacts with mannose and mannose-containing glycans. Finally the B-chain of the type II RIP of iris, which has the same beta-prism structure as all other members of the ricin-B family, interacts specifically with mannose and galactose. This structural diversity associated with the specific recognition of high-mannose type glycans highlights the importance of mannose-specific lectins as recognition molecules in higher plants.  相似文献   

8.
Identification of the ricin lipase site and implication in cytotoxicity   总被引:4,自引:0,他引:4  
Ricin is a heterodimeric plant toxin and the prototype of type II ribosome-inactivating proteins. Its B-chain is a lectin that enables cell binding. After endocytosis, the A-chain translocates through the membrane of intracellular compartments to reach the cytosol where its N-glycosidase activity inactivates ribosomes, thereby arresting protein synthesis. We here show that ricin possesses a functional lipase active site at the interface between the two subunits. It involves residues from both chains. Mutation to alanine of catalytic serine 221 on the A-chain abolished ricin lipase activity. Moreover, this mutation slowed down the A-chain translocation rate and inhibited toxicity by 35%. Lipase activity is therefore required for efficient ricin A-chain translocation and cytotoxicity. This conclusion was further supported by structural examination of type II ribosome-inactivating proteins that showed that this lipase site is present in toxic (ricin and abrin) but is altered in nontoxic (ebulin 1 and mistletoe lectin I) members of this family.  相似文献   

9.
Lectins that interact with mannose (concanavalin A), galactose (ricin, abrin), or N-acetylglucosamine (wheat germ agglutinin) block 125I-labeled EGF binding to the surface of cultured human fibroblasts at 37° or 5°. Lectins specific for fucose or N-acetylgalactosamine, soybean agglutinin or gorse lectin, respectively, do not interfere with growth factor binding. The inhibition of 125I-labeled EGF binding by concanavalin A at 37° or 5° could be reversed rapidly by the addition of α-methyl mannoside. The results suggest that the fibroblast membrane receptor for EGF is, or is closely associated with, a glycoprotein or glycolipid that contains mannose, galactose and N-acetylglucosamine residues.  相似文献   

10.
A rapid method for purifying ricin toxin from castor beans is presented which uses a single affinity column step to obtain pure toxin from a crude extract of castor beans. A galactosyl-Sepharose affinity matrix was used to bind ricin toxin and its associated agglutinin, which both bind specifically to galactose, from a crude extract. The selective elution of ricin toxin and agglutinin was then achieved by eluting the affinity column with a galactose gradient, which sequentially elutes the two proteins due to a difference in binding avidity to the matrix.  相似文献   

11.
Studies were carried out on the mechanism responsible for the enhancement of the respiratory and secretory responses to N-formylmethionylleucylphenylalanine (fMet-Leu-Phe) exhibited by human neutrophils suspended in Na+-free, high-K+ buffered solution. The results demonstrate that: (a) the variation of Na+ concentration in the suspending solution induces in human neutrophils a marked modification of the recognition apparatus for the chemotactic peptide fMet-Leu-Phe, the lack of or low concentration of this ion increasing the number of the receptors and their specific affinity for the ligand; (b) the greater respiratory burst and secretion induced by fMet-Leu-Phe in human neutrophils suspended in Na+-free, high-K+ medium are due to the increased formation of receptor-ligand complexes at the cell membrane; (c) the greater respiratory response is partially due also to a higher efficiency of these receptor-ligand complexes. The molecular mechanism by which Na+ exerts a regulative role on the properties of the recognition apparatus for the chemotactic peptide and its possible significance are discussed.  相似文献   

12.
The ability of viscum at different concentrations to modulate the respiratory burst in neutrophils, induced by the chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine was studied. This does not exclude the possibility that viscum can interact with the receptor of this peptide. The analysis of the primary structure of viscum revealed elements structurally analogous to the chemotactic peptide. It is assumed that viscum can exhibit the properties an antagonist of the receptor of N-formyl-methionyl-leucyl-phenylalanine, and the mechanism of action of viscum depends on its concentration.  相似文献   

13.
Lectin-binding studies were performed at the ultrastructural level to characterize glycoconjugate patterns on membrane systems in pancreatic acinar cells of the rat. Five lectins reacting with different sugar moieties were applied to ultrathin frozen sections: concanavalin A (ConA): glucose, mannose; wheat-germ agglutinin (WGA): N-acetylglucosamine, sialic acid; Ricinus communis agglutinin I (RCA I): galactose; Ulex europaeus agglutinin I (UEA I): L-fucose; soybean agglutinin (SBA): N-acetylgalactosamine). Binding sites of lectins were visualized either by direct conjugation to colloidal gold or by the use of a three-step procedure involving additional immune reactions. The rough endoplasmic reticulum and the nuclear envelope of acinar cells was selectively labelled for ConA. The membranes of the Golgi apparatus bound all lectins applied with an increasing intensity proceeding from the cis- to the trans-Golgi area for SBA, UEA I and WGA. In contrast RCA I selectively labelled the trans-Golgi cisternae. The membranes of condensing vacuoles and zymogen granules were labelled for all lectins used although the density of the label differed between the lectins. In contrast the content of zymogen granules failed to bind SBA and WGA. Lysosomal bodies (membranes and content) revealed binding sites for all lectins used. The plasma membranes were heavily labelled by all lectins except for SBA which showed only a weak binding to the lateral and the apical plasma membrane. These results are in accordance to current biochemical knowledge of the successive steps in the glycosylation of membrane proteins. It could be demonstrated, that the cryo-section technique is suitable for the fine structural localisation of surface glycoconjugates of plasma membranes and internal membranes in pancreatic acinar cells using plant lectins.  相似文献   

14.
The nature of the receptors for four lectins specific for -galactosyl residues was examined in human lymphocytes. The cells were fixed with formaldehyde to avoid subsequent cell lysis, treated with pronase, sialidase and organic solvents, and the binding of the lectins to the treated cells measured. The results show that the bulk of the receptors for peanut agglutinin (PNA) and ricin (RCA 60) are glycoproteins, whereas those for Ricinus communis agglutinin (RCA 120) and soybean agglutinin (SBA) are distributed nearly equally between membrane glycoproteins and glycolipids.  相似文献   

15.
Pneumocystis carinii obtained from infected rat lung homogenates was incubated with fluorescein isothiocyanate-conjugated lectins, counterstained with the nuclear stain, propidium iodide (PI), and analyzed by dual parameter histograms for lectin-associated green and PI-associated red fluorescence using a fluorescence-activated cell sorter. The presence of glucose/mannose moieties was evidenced by the binding of all organisms to concanavalin A and Wisteria floribunda. From the lectin group specific for N-acetyl-D-glucosamine, P. carinii reacted strongly with wheat germ agglutinin and less intensely with Solanum tuberosum. Reaction with lectins specific for N-acetyl-D-galactosamine/galactose was variable, probably reflecting the secondary binding affinities of the lectins used. Soybean agglutinin, Bauhinia purpurea agglutinin, and Maclura pomifera agglutinin reacted moderately, whereas Dolichos biflorus agglutinin, and Griffonia simplicifolia I reacted less avidly. The organisms reacted partially with Ulex europaeus agglutinin, a lectin specific for fucose, and did not react well with Arachis hypogaea, Viscum album agglutinin, and Griffonia simplicifolia I beta 4, lectins specific for galactose. A very weak fluorescent signal was detected with Limax flavus agglutinin, suggesting little or no sialic acid was present. All lectin-binding reactions were confirmed for specificity by inhibition with the relevant carbohydrates. Flow cytometric analysis of lung-derived Pneumocystis organisms stained with fluorescent surface and nuclear dyes provides a rapid method for characterization of large parasite populations.  相似文献   

16.
The glycoproteins ricin and abrin intoxicate cells by inhibiting protein synthesis. Pretreatment of HeLa cells with cholera toxin partially protects them from ricin and abrin activity. The involvement in this phenomenon of the various effects of cholera toxin, namely, redistribution of membrane receptors elicited from protomer B and increasing cyclic AMP concentrations induced by protomer A, were studied. Substances able to enhance cyclic AMP concentrations do not affect ricin and abrin activity, while protomer B alone protects cells. In addition, the effects of several lectins on ricin or abrin toxicity were examined. Almost complete prevention of ricin or abrin activity was obtained using concanavalin A (Con A) and wheat germ agglutinin (WGA). Conversely, neither succinyl Con A nor Ulex europeus agglutinin (UEA) affected the cellular response. Both protomer B of cholera toxin and Con A did not alter the binding of ricin or abrin; they seem to protect cells by altering membrane structure.  相似文献   

17.
Members of the mannose receptor family, the mannose receptor, the phospholipase A(2) receptor, DEC-205, and Endo180, contain multiple C-type lectin-like domains (CTLDs) within a single polypeptide. In addition, at their N termini, all four family members contain a cysteine-rich domain similar to the R-type carbohydrate recognition domains of ricin. However, despite the common presence of multiple lectin-like domains, these four endocytic receptors have divergent ligand binding activities, and it is clear that the majority of these domains do not bind sugars. Here the functions of the lectin-like domains of the most recently discovered family member, Endo180, have been investigated. Endo180 is shown to bind in a Ca(2+)-dependent manner to mannose, fucose, and N-acetylglucosamine but not to galactose. This activity is mediated by one of the eight CTLDs, CTLD2. Competition assays indicate that the monosaccharide binding specificity of Endo180 CTLD2 is similar to that of mannose receptor CTLD4. However, additional experiments indicate that, unlike the cysteine-rich domain of the mannose receptor, the cysteine-rich domain of Endo180 does not bind sulfated sugars. Thus, although Endo180 and the mannose receptor are now both known to be mannose binding lectins, each receptor is likely to have a distinct set of glycoprotein ligands in vivo.  相似文献   

18.
Abstract

Purification of liver membrane insulin receptors on concanavalin A-and ricin I-lectin columns gave a 15-fold enrichment in the insulin binding capacity per milligramm of protein. Final receptor and protein recoveries were 53 and 3.8 % respectively. Lectin-purification increased the receptor affinity for insulin, as indicated by a left-ward shift in the binding competition curve and a steeper slope in the Scatchard plot. Lectin-purification increased the receptor sensitivity towards the glycosidic probes. The maximal effects of β-galactosidase, ricin I (galactose-binding lectin) and α-mannosidase were markedly amplified : 80, 90 and 60 % inhibition, versus 45, 40 and 15 % with particulate membranes. The limulus polyphemus (LPA) and wheat germ (WGA) agglutinins (sialic acid- and N-acetyl-glucosaminyl-binding lectins) became effective in modifying the insulin binding : 45 and 80 % inhibition, respectively. The effects were dose-dependent, reversed by the monosaccharide competitors (lectin effects) and unrelated to the state of receptor occupancy. These findings indicate that, within the hormone recognition area, peptide chains containing galactose, mannose and N-acetyl-glucosamine are strictly required for insulin-receptor interaction and suggest that change in the receptor affinity is related to the role of carbohydrate in insulin binding.  相似文献   

19.
The effect of plant lectins on amino acid uptake and DNA synthesis in cultured human skin fibroblasts stimulated by various peptide mitogens was studied. Wheat germ agglutinin (WGA), at a concentration of 5 micrograms/ml, which by itself had little effect on 3H-aminoisobutyric acid (AIB) uptake, markedly inhibited stimulation of 3H-AIB uptake by somatomedin-C, insulin, epidermal growth factor (EGF) and platelet-derived growth factor. This inhibition could not be overcome by increasing the concentration of peptide added. Neither WGA nor concanavalin A (Con A) significantly affected basal 3H-thymidine incorporation. However both lectins, at concentrations of 5-20 micrograms/ml, decreased EGF- and insulin-stimulated DNA synthesis while succinyl Con A, a divalent lectin derivative, did not. The inhibitory effects of lectins on mitogenic stimulation were reversed by alpha-methyl mannose (Con A) or N-acetylglucosamine (WGA), and were not due to a reduction in the binding of growth factors to their receptors. It is concluded that certain lectins noncompetitively inhibit the response of human fibroblasts to multiple peptide mitogens at the post-receptor level, possibly by interfering with lateral mobility and aggregation of mitogen-receptor complexes.  相似文献   

20.
The results presented in this paper demonstrate that the chemotactic peptide N-formylmethionylleucylphenylalanine (-Met-Leu-Phe) is rapidly inactivated by the products of the respiration of human neutrophils stimulated by the peptide itself. The process of inactivation is impeded by the addition of inhibitors of myeloperoxidase (KCN, NaN3), of catalase, of methionine but not by the addition of superoxide dismutase, indicating that the mechanism of inactivation is the oxidation of methionine residue by myeloperoxidase-H2O2-halide system. The oxidation of the peptide causes the rapid cessation of the respiratory burst, since the sulfoxide derivative loses its ability to bind the specific receptors of neutrophil surface and, hence, its biological activity. The comparison between the time course of the binding of f-Met-Leu-[3H]Phe to the specific receptors and the rate of the respiratory response of neutrophils in the presence and in the absence of the process of peptide oxidation was used to investigate the mechanism of the activation of the respiratory burst by the peptide-receptor complexes. In conditions where the inactivation of the stimulatory agent takes place the stimulated respiration slows down and resumes the resting state shortly after the cessation of the binding, although a substantial amount of the peptide remains bound to the specific receptors. In conditions where the degradation of the peptide does not occur the binding of the peptide and the respiratory burst continue for a longer period of time, but the rate of the respiration, calculated in terms of the instantaneous velocity (Vist), is not correlated to the amount of the ligand bound to the membrane receptors measured at various times, indicating that a summation of the effects ofthe ligand-receptor complexes does not occur as they form. These findings demonstrate, as far as the respiratory response is concerned, that the bioogical activity of the peptide-receptor complexes is short-lived and that continuous de-novo receptor occupancy is necessary for the maintenance of the activated respiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号