首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The acute ventilatory response to inhalation of cigarette smoke was studied in anesthetized Sprague-Dawley rats. Cigarette smoke (6 ml, 50%) generated by a machine was inhaled spontaneously via a tracheal cannula. Within the first two breaths of smoke inhalation, a slowing of respiration resulting from a prolonged expiratory duration (173 +/- 6% of the base line; n = 32) was elicited in 88% of the rats studied. This initial inhibitory effect on breathing was not affected either by an increase (410%) in the nicotine content of the cigarette smoke or by pretreatment with hexamethonium (33 mg/kg iv). However, bilateral vagotomy completely eliminated the initial ventilatory inhibition. Cooling both vagi to 5.1 degrees C blocked the reflex apneic response to lung inflation, but it did not abolish the inhibitory effect of smoke. After the initial response, a rapid shallow breathing pattern developed and reached its peak 5-12 breaths after inhalation of high-nicotine cigarette smoke; this delayed response could not be prevented by vagotomy and was undetectable after inhalation of low-nicotine smoke. We conclude that the initial inhibitory effect of smoke on breathing is mediated by vagal bronchopulmonary C-fiber afferents, which are stimulated by smoke constituents other than nicotine, whereas the delayed tachypneic response to smoke is caused by the absorbed nicotine.  相似文献   

2.
The objective of the present study was to examine the impact of early stages of lung injury on ventilatory control by hypoxia and hypercapnia. Lung injury was induced with intratracheal instillation of bleomycin (BM; 1 unit) in adult, male Sprague-Dawley rats. Control animals underwent sham surgery with saline instillation. Five days after the injections, lung injury was present in BM-treated animals as evidenced by increased neutrophils and protein levels in bronchoalveolar lavage fluid, as well as by changes in lung histology and computed tomography images. There was no evidence of pulmonary fibrosis, as indicated by lung collagen content. Basal core body temperature, arterial Po(2), and arterial Pco(2) were comparable between both groups of animals. Ventilatory responses to hypoxia (12% O(2)) and hypercapnia (7% CO(2)) were measured by whole body plethysmography in unanesthetized animals. Baseline respiratory rate and the hypoxic ventilatory response were significantly higher in BM-injected compared with control animals (P = 0.003), whereas hypercapnic ventilatory response was not statistically different. In anesthetized, spontaneously breathing animals, response to brief hyperoxia (Dejours' test, an index of peripheral chemoreceptor sensitivity) and neural hypoxic ventilatory response were augmented in BM-exposed relative to control animals, as measured by diaphragmatic electromyelograms. The enhanced hypoxic sensitivity persisted following bilateral vagotomy, but was abolished by bilateral carotid sinus nerve transection. These data demonstrate that afferent sensory input from the carotid body contributes to a selective enhancement of hypoxic ventilatory drive in early lung injury in the absence of pulmonary fibrosis and arterial hypoxemia.  相似文献   

3.
Importance of vagal afferents in determining ventilation in newborn rats   总被引:3,自引:0,他引:3  
We studied the effect of acute bilateral vagotomy on ventilation and ventilatory pattern in rats. In 1- to 6-day-old unanesthetized rats, vagotomy resulted in a substantial decrease (38%) in ventilation during air breathing. After vagotomy there was a threefold increase in tidal volume (VT), inspiratory time (TI) doubled, and expiratory time (TE) was six times longer. When studied under isoflurane anesthesia, newborn rats showed decreases in ventilation similar to that observed without anesthesia, whereas anesthetized adult rats had no consistent changes in ventilation. Adult and newborn rats had nearly identical proportionate increases in VT and TI after vagotomy, but TE lengthened to a greater extent in the newborns. Additionally, we demonstrated a significant decrease in ventilation when 100% O2 rather than air was supplied to nonvagotomized unanesthetized newborn rats. Ventilation decreased by 19% after vagotomy under hyperoxic conditions. We conclude that vagal afferent input, probably of pulmonary mechanoreceptor origin, provides positive feedback to respiration in newborn rats and that newborn rats greater than 24 h old also have a degree of peripheral chemoreceptor drive during air breathing.  相似文献   

4.
We examined the influence of vagal pulmonary receptors exerted on the breathing pattern and inspiratory activities of phrenic nerve and intercostal electromyograms (EMG) during hypoxia in rabbit pups. Animals in their second week of life were anaesthetized with ketamine (50 mg/kg) and acepromazine (3 mg/kg) and tracheostomized. While they breathed spontaneously, we recorded tidal volume (VT), integrated phrenic activity (PHR), integrated external intercostal EMG (INT), and blood pressure (BP). To prevent secondary ventilatory depression, animals were exposed to 12% O2 (balanced with N2) for no longer than 5 min before and after vagotomy. All measurements were taken from 1 min following the onset of hypoxic exposure until the end of the run. During hypoxia, VT, PHR, and INT increased in intact rabbit pups. There was an almost immediate decrease in BP that was maintained during the total period of hypoxia exposure. Hypoxia resulted in inconsistent changes in inspiratory (TI) and expiratory (TE) time in intact animals. Following vagotomy, PHR, INT, VT, BP, and TE responses were the same as in intact animals. However, TI significantly decreased in all animals. In response to hypoxia with and without vagal feedback, INT increased less than PHR in most cases. Qualitatively similar effects of hypoxia were observed in an adult rabbit. The results reveal that the increase in VT and the shortening of TI in response to hypoxia do not depend on vagal feedback in rabbits during the early postnatal period. In fact TI shortening was significant only without vagal feedback.  相似文献   

5.
Bradykinin (BK) activates sympathetic afferents in the heart, intestine, and kidney, and it alters hemodynamics. However, we know little about the influence of pulmonary sympathetic afferents on circulation. Activation of pulmonary afferents by directly injecting stimulants into the lung parenchyma permits examination of reflexes that originate in the lung without confounding effects from the systemic circulation. In the present study, we tested the hypothesis that pulmonary sympathetic afferents exert a significant influence on hemodynamics. We examined reflex effects of injecting BK (1 microg/kg in 0.1 ml) into the lung parenchyma on circulation in anesthetized, open-chest, artificially ventilated rabbits. BK significantly decreased mean arterial blood pressure (BP) (27 +/- 3 mmHg) and heart rate (19 +/- 4 beats/min). Both effects remained after bilateral vagotomy. To rule out possible direct systemic vasodilation by BK, we examined renal sympathetic nerve activity (RSNA) in response to BK injection and examined BP responses to injection of ACh (0.1 ml of 10-4 M). BK suppressed the RSNA before and after vagotomy. ACh did not change BP when injected into the lung parenchyma, but it decreased BP (31 +/- 3 mmHg) when injected into the right atrium. Our data indicate that activating pulmonary sympathetic afferents reflexly suppresses hemodynamics.  相似文献   

6.
The purpose of this study was to investigate the stimulatory effect of hypoxia on the secretion of serotonin by neuroepithelial bodies (NEB) as well as to determine the relation between its level and changes in pulmonary arterial pressure (PAP) and also to determinate the effect of serotonin antagonists (pizotifen and methysergide) on the responses of pulmonary and systemic arterial pressures. The experiments were carried out in peripheral chemoreceptor-denervated dogs anesthetized with Na penthabarbital (30 mg/kg i.v.). On the breathing of normoxic and hypoxic (7% O2-93% N2) gas mixtures and on the injection of KCN (80 microg/kg i.v.), PAP, systemic arterial blood pressure (BP), tidal volume (VT), respiratory frequency (f/min), ventilation minute volume (VE) were determined. Also PAP and BP were recorded before and after the injection of pizotifen (0.5 mg/kg i.v.) and methysergide (1 mg/kg i.v.) during normoxic or hypoxic gas mixture breathing. At the end of each experimantal phase, serotonin level, PaO2, PaCO2 and pHa values in blood samples obtained from left ventricle and femoral artery were determined. On the breathing of the hypoxic gas mixture of the chemodenervated dogs, VT, VE and BP significantly decreased (P < 0.001, P < 0.001, P < 0.01). The mean value of PAP and serotonin levels (ventricular and femoral) were found significantly increased when compared with the corresponding normoxic values (P < 0.001, P < 0.05). On the other hand, injection of KCN produced no significant changes in PAP, serotonin levels, BP and respiratory parameters. After the injection of pizotifen, PAP was significantly increased in hypoxia (P < 0.01). After the injection of methysergide, the response of PAP was completely abolished during the breathing of hypoxic gas mixture. The finding of the abolition of response of PAP to hypoxia after the injection of methysergide indicates that serotonin release from NEB may be responsible for the elevation of PAP in hypoxic hypoxia.  相似文献   

7.
王一鸿  倪慧 《生理学报》1992,44(3):295-302
本工作将组胺(HA)注入麻醉家兔侧脑室,观察其对肺动脉血压的影响。结果观察到(1)侧脑室注射HA(50μg)后,肺动脉压和心输出量出现升高、降低和先降后升三种变化,但以升高反应较为多见。发生上述反应时,颈动脉压升高,心率减慢。(2)切断两侧颈部迷走神经或用心脏人工起搏固定心率后,肺动脉压和心输出量均不再下降而出现恒定的升高反应。静脉注射酚妥拉明可部分阻断HA引起的肺动脉和颈动脉升压反应,但不能阻断心输出量的升高。静脉注射心得安能完全阻断HA引起的心输出量升高,但对肺动脉和颈动脉的升压反应无影响。静脉注射六甲双铵或联合应用酚妥拉明和心得安可完全消除HA引起的肺动脉压、颈动脉压和心输出量的升高反应。(3)HA的心血管效应可被H_1受体阻断剂扑尔敏阻断,但不能被H_2受体阻断剂甲氰咪胍阻断。 实验结果表明:家兔侧脑室注射HA后,在中枢H_1受体的介导下,可通过交感神经使心输出量增加,肺血管和外周血管收缩,因而肺动脉压和颈动脉压上升;也可通过迷走神经使心率减慢。而HA引起的肺动脉压下降则是继发性的,是由于心率减慢,心输出量减少所致。  相似文献   

8.
Baseline external respiration and gas exchange values, as well as ventilatory thresholds and sensitivity to the O2 and CO2 stimuli in hypoxic and hypercapnic tests, were measured 1 h before and after a session of intermittent normobaric hypoxia (INH) (six repetitions with a 5-min inhalation of a gas mixture (10% O2) alternating with a 3-min inhalation of atmospheric air). After an INH session, the background CO2 level in the lungs increased by 10%. In the hypercapnic test, the actuation threshold of the ventilatory response did not change, whereas ventilatory sensitivity increased. The maximal pulmonary ventilation and the corresponding critical CO2 level in the lungs also increased at the end of the test. In the hypoxic test, the ventilatory response occurred at a decreased level of blood oxygenation after an INH session, the pulmonary ventilation level being decreased and the CO2 content in the lungs being increased at the end of the test. The data obtained evidence the maintenance of changed gas homeostasis for 1 h after an INH session. In this process, control of respiration was effected, with the hypoxic drive being weakened and the peripheral chemoreceptor sensitivity being decreased. The hypercapnic drive also increased, which may be determined by readjustment in the central mechanisms of respiratory regulation.  相似文献   

9.
Breath-by-breath measurements of pulmonary resistance (RL) were used to study the bronchomotor effects produced by the inhalation of a CO2-enriched gas mixture in anaesthetized, spontaneously breathing cats. A significant increase in RL occurred from the second inhalation of the hypercapnic gas mixture. This bronchoconstrictor effect lasted about 18 seconds, then a marked decrease in RL was observed. The secondary bronchodilatation persisted during the entire hypercapnic test (4 min). After surgical suppression of the sensory vagal component at the level of the nodose ganglion (bilateral sensory vagotomy), the early bronchoconstrictor effect of CO2 disappeared, but the secondary bronchodilatation was unchanged. In other experiments, after procaine block of the nervous conduction in non-myelinated vagal fibers, the bronchomotor effects of CO2 were the same as those observed after sensory vagotomy. In contrast, an electrotonic block of both vagus nerves, which abolished nervous conduction in myelinated fibers, did not suppress the bronchoconstrictor response to hypercapnia. Thus, the early increase in RL, which follows inhalation of a hypercapnic gas mixture, seems to be reflexly mediated by vagal afferents, especially by non-myelinated fibers.  相似文献   

10.
The present study was undertaken to determine what roles the various cerebellar deep nuclei (CDN) play in modulation of respiration, especially during chemical challenges. Experiments were carried out in 12 anesthetized, tracheotomized, paralyzed, and ventilated rats. The integrated phrenic nerve activity (integralPN) was recorded as an index of respiratory motor output. A stimulating electrode was sequentially placed into the fastigial nucleus (FN), the interposed nucleus, and the lateral nucleus. Only stimulation of the FN significantly altered respiration, primarily via increasing respiratory frequency associated with a pressor response. The evoked respiratory responses persisted after blocking the pressor response via pretreatment with phenoxybenzamine or use of transient stimulation (<2 s) but were abolished by microinjection of kainic acid into the FN. To test the involvement of FN neurons in respiratory chemoreflexes, ventilation with hypercapnic gases mixture and intravenous injection of sodium cyanide were applied before and after CDN lesions induced by kainic acid. CDN lesions did not significantly alter eupneic breathing, but FN lesions attenuated the respiratory response to hypercapnia and sodium cyanide. We conclude that, with respect to the CDN in the rat, FN neurons uniquely modulate respiration independent of cardiovascular effects and facilitate respiratory responses mediated by activation of CO(2) and O(2) receptors.  相似文献   

11.
Inhibitory responses of slowly adapting pulmonary stretch receptor (SAR) activity to CO(2) inhalation (maximal tracheal CO(2) concentration ranging from 9.5 to 12.5%) for approximately 60 s were examined before and after administration of acetazolamide (a carbonic anhydrase inhibitor) or 4-aminopyridine (4-AP, a K(+) channel blocker). The experiments were performed in 35 anesthetized, artificially ventilated rats after unilateral vagotomy. Sixty-eight of eighty-four SARs were inhibited by CO(2) inhalation. The SAR inhibition was attenuated by pretreatment with either acetazolamide (20 mg/kg, n = 10) or 4-AP (0.7 and 2.0 mg/kg, n = 10). In other series of experiments, stainings to show the existence of carbonic anhydrase (CA) enzymatic reaction were not found in the smooth muscle of either extrapulmonary or intrapulmonary bronchi. Protein gene product 9.5 (PGP 9.5)-immunoreactive SAR terminals to form leaflike extensions were found in the bronchioles at different diameters and were smooth-muscle-related receptors. But in the same sections, CA isozyme II-like (erythrocyte CA) immunoreactive SAR terminals were not identified. These results suggest that CO(2)-induced inhibition of SARs may be involved in the CA-dependent CO(2) hydration in addition to the activation of 4-AP sensitive K(+) currents.  相似文献   

12.
The effects of 1,3-dipropyl-8(p-sulfophenyl)xanthine (DPSPX) and enprofylline on the respiratory responses to bilateral occlusions of the common carotid arteries (CCO) were studied in rats anesthetized with sodium pentobarbitone and breathing spontaneously. CCO during periods of 5, 10 and 15 s caused increases in tidal volume (VT) and respiratory frequency (f) dependent on duration of the occlusions, these effects were markedly reduced after section of the carotid sinus nerves. Transient increases in systemic arterial blood pressure (BP) associated with the ventilatory effects of CCO were also observed. Intracarotid infusions of DPSPX (100 nmol/min, for 3 min) but not of enprofylline (100 nmol/min, for 3 min) decreased the respiratory stimulation induced by CCO without modifying significantly the increases in BP. It is concluded that adenosine may be involved in the ventilatory responses to CCO that are mediated by carotid body chemoreceptors.  相似文献   

13.
The effect of ovalbumin (Ova) sensitization on pulmonary C-fiber sensitivity was investigated. Brown-Norway rats were sensitized by intraperitoneal injection of Ova followed by aerosolized Ova three times per week for 3 wk. Control rats received the vehicle. At the end of the third week, single-unit fiber activities (FA) of pulmonary C fibers were recorded in anesthetized, artificially ventilated rats. Our results showed the following: 1) Ova sensitization induced airway inflammation (infiltration of eosinophils and neutrophils) and airway hyperresponsiveness in rats; 2) baseline FA in sensitized rats was significantly higher than that in control ones; 3) similarly, the pulmonary C-fiber response to right atrial injection of capsaicin was markedly higher in sensitized rats, which were significantly amplified after the acute Ova inhalation challenge; and 4) similar patterns, but smaller magnitudes of the differences in C-fiber responses to adenosine and lung inflation, were also found between sensitized and control rats. In conclusion, Ova sensitization elevated the baseline FA and excitability of pulmonary C fibers, and the hypersensitivity was further potentiated after the acute Ova inhalation challenge in sensitized rats. Chronic allergic inflammatory reactions in the airway probably contributed to the sensitizing effect on these lung afferents.  相似文献   

14.
The central nervous system (CNS) plays an important role in the reflex control of bronchomotor tone, but the relevant neurotransmitters and neuromodulators have not been identified. In this study we have investigated the effect of histamine. Anesthetized male guinea pigs were prepared with a chronically implanted intracerebroventricular (icv) cannula and instrumented for the measurement of pulmonary resistance (RL), dynamic lung compliance (Cdyn), tidal volume (VT), respiratory rate (f), blood pressure (BP), and heart rate (HR). Administration of histamine (2-30 micrograms) icv caused a significant (P less than 0.05) reduction of Cdyn with no change in RL, VT, and f. At a dose of 100 micrograms icv, histamine caused an increase in RL (202 +/- 78%), a reduction of Cdyn (77 +/- 9%), an increase in f (181 +/- 64%), and a reduction of VT (53 +/- 18%). There were no changes in BP and HR after 100 micrograms of icv histamine. In contrast, intravenous administration of histamine (0.1-2 micrograms/kg) caused a dose-dependent decrease in Cdyn and increase in RL that was associated with tachypnea at each bronchoconstrictor dose. Intravenous histamine (2 micrograms/kg) produced a fall in BP and an increase in HR. The bronchoconstrictor responses to icv histamine were completely blocked by vagotomy and significantly reduced by atropine (0.1 mg/kg iv), whereas vagotomy and atropine did not block the bronchospasm due to intravenous histamine. Additional studies indicated that the pulmonary responses due to icv histamine (100 micrograms) were blocked by pretreatment with the H1-antagonist chlorpheniramine (1 and 10 micrograms, icv). These data indicate that histamine may serve a CNS neurotransmitter function in reflex bronchoconstriction in guinea pigs.  相似文献   

15.
Time-varying pulmonary arterial compliance   总被引:1,自引:0,他引:1  
We tested the hypothesis that pulmonary arterial compliance (Ca) varies during the ventilatory cycle. Pressure and flow in the main pulmonary artery were measured in open-chest dogs under chloralose anesthesia (n = 12) with a positive-pressure volume-cycled ventilator. Input impedance was calculated from the pressure and flow waves of heart cycles obtained immediately after the start of inspiration (SI) and immediately after the start of expiration (SE). A lumped parameter model was used to calculate Ca from the input impedance spectrum of the main pulmonary artery. Three levels of positive end-expiratory pressure (PEEP) were used before and after meclofenamate (n = 6) or vagotomy (n = 6). Ca was significantly greater at SE than at SI at each level of PEEP. PEEP increased Ca at SE but not at SI. None of these changes was altered by meclofenamate or vagotomy, suggesting that these differences of Ca were due to passive mechanical effects rather than an active neurohumoral mechanisms. We conclude that Ca is time varying during the ventilatory cycle because it is altered by the dynamic increase of lung volume between SI and SE, but not with the quasi-static increase of lung volume induced by raising the level of PEEP. These changes of Ca were unaffected by vagal feedback or inhibition of cyclooxygenase. We suggest that the increased Ca just after the start of expiration may result from dynamic shifts of blood volume from the extra-alveolar to the alveolar vessels.  相似文献   

16.
In anesthetized rats, increases in phrenic nerve amplitude and frequency during brief periods of hypoxia are followed by a reduction in phrenic nerve burst frequency [posthypoxia frequency decline (PHFD)]. We investigated the effects of chronic exposure to hypoxia on PHFD and on peripheral and central O2-sensing mechanisms. In Inactin-anesthetized (100 mg/kg) Sprague-Dawley rats, phrenic nerve discharge and arterial pressure responses to 10 s N2 inhalation were recorded after exposure to hypoxia (10 +/- 0.5% O2) for 6-14 days. Compared with rats maintained at normoxia, PHFD was abolished in chronic hypoxic rats. Because of inhibition of PHFD, the increased phrenic burst frequency and amplitude after N2 inhalation persisted for 1.8-2.8 times longer in chronic hypoxic (70 s) compared with normoxic (25-40 s) rats (P < 0.05). After acute bilateral carotid body denervation, N2 inhalation produced a short depression of phrenic nerve discharge in both chronic hypoxic and normoxic rats. However, the degree and duration of depression of phrenic nerve discharge was smaller in chronic hypoxic compared with normoxic rats (P < 0.05). We conclude that after exposure to chronic hypoxia, a reduction in PHFD contributes to an increased duration of the acute hypoxic ventilatory response in anesthetized rats. Furthermore, after exposure to chronic hypoxia, the central network responsible for respiration is more resistant to the depressant effects of acute hypoxia in anesthetized rats.  相似文献   

17.
Previous studies of 2 h of exposure to NO2 at high urban atmospheric levels (i.e., 0.50-1.0 ppm), utilizing light-to-moderate exercise for up to 1 h have failed to demonstrate significant pulmonary dysfunction in healthy humans. To test the hypothesis that heavy sustained exercise would elicit pulmonary dysfunction on exposure to 0.60 ppm NO2 and/or enhance the effects of exposure to 0.30 ppm O3, 40 aerobically trained young adults (20 males and 20 females) completed 1 h of continuous exercise at work rates eliciting a mean minute ventilation of 70 and 50 l/min for the males and females, respectively. Exposures to filtered air, 0.60 ppm NO2, 0.30 ppm O3, and 0.60 ppm NO2 plus 0.30 ppm O3 were randomly delivered via an obligatory mouthpiece inhalation system. Treatment effects were assessed by standard pulmonary function tests and exercise ventilatory and subjective symptoms response. Two-way analysis of variance with repeated measures and post hoc analyses revealed a statistically significant (P less than 0.05) effect of O3 on forced expiratory parameters, specific airway resistance, exercise ventilatory response, and reported subjective symptoms of respiratory discomfort. In contrast, no significant effect of NO2 was observed nor was there any significant interaction of NO2 and O3 in combination. There were no significant differences between male and female responses to gas mixture treatments. It was concluded that inhalation of 0.60 ppm NO2 for 1 h while engaged in heavy sustained exercise does not elicit effects evidenced by measurement techniques used in this study nor evoke additive effects beyond those induced by 0.30 ppm O3 in healthy young adults.  相似文献   

18.
Sensitization of vagal lung C fibers has been postulated to contribute to the development of asthma, but support for this notion is still lacking. We investigated the characteristics and function of pulmonary C fibers (PCFs) in ovalbumin (OVA)-sensitized Brown Norway rats, an established animal model of asthma. Rats were sensitized with intraperitoneal injection of OVA or were treated with saline (control). In study 1, with the use of open-chest and artificially ventilated rats, inhalation of 5% OVA aerosol evoked an augmented increase in total lung resistance in the OVA-sensitized rats, compared with the control rats. Bilateral vagotomy or subcutaneous pretreatment with a high-dose of capsaicin for blocking of C-fiber function equally attenuated this augmented total lung resistance response, suggesting the involvement of PCFs. In study 2, with the use of anesthetized, spontaneously breathing rats, right atrial injection of capsaicin (1 microg/kg; a PCF stimulant) evoked an augmented apneic response in the OVA-sensitized rats, compared with the control rats. In study 3, with the use of open-chest, paralyzed, and artificially ventilated rats, the afferent PCF responses to right atrial injection of capsaicin (0.5 and 1.0 microg/kg), phenylbiguanide (8 microg/kg; a PCF stimulant), or adenosine (0.2 mg/kg; a PCF stimulant) were enhanced in the OVA-sensitized rats, compared with the control rats. However, the baseline activities of PCFs and their afferent responses to mechanical stimulation by lung hyperinflation in the OVA-sensitized and control rats were comparable. Our results suggested that OVA-sensitized Brown Norway rats possess sensitized vagal PCFs, which may participate in the development of the airway hyperreactivity observed in these animals.  相似文献   

19.
Perinatal exposure to chronic hypoxia induces sustained pulmonary hypertension and structural and functional changes in both pulmonary and systemic vascular beds. The aim of this study was to analyze consequences of high-altitude chronic hypoxia during gestation and early after birth in pulmonary and femoral vascular responses in newborn sheep. Lowland (LLNB; 580 m) and highland (HLNB; 3,600 m) newborn lambs were cathetherized under general anesthesia and submitted to acute sustained or stepwise hypoxic episodes. Contractile and dilator responses of isolated pulmonary and femoral small arteries were analyzed in a wire myograph. Under basal conditions, HLNB had a higher pulmonary arterial pressure (PAP; 20.2 +/- 2.4 vs. 13.6 +/- 0.5 mmHg, P < 0.05) and cardiac output (342 +/- 23 vs. 279 +/- 13 ml x min(-1) x kg(-1), P < 0.05) compared with LLNB. In small pulmonary arteries, HLNB showed greater contractile capacity and higher sensitivity to nitric oxide. In small femoral arteries, HLNB had lower maximal contraction than LLNB with higher maximal response and sensitivity to noradrenaline and phenylephrine. In acute superimposed hypoxia, HLNB reached higher PAP and femoral vascular resistance than LLNB. Graded hypoxia showed that average PAP was always higher in HLNB compared with LLNB at any Po2. Newborn lambs from pregnancies at high altitude have stronger pulmonary vascular responses to acute hypoxia associated with higher arterial contractile status. In addition, systemic vascular response to acute hypoxia is increased in high-altitude newborns, associated with higher arterial adrenergic responses. These responses determined in intrauterine life and early after birth could be adaptive to chronic hypoxia in the Andean altiplano.  相似文献   

20.
The aim of this study was to test the hypothesis that capsaicin treatment in lambs selectively inhibits bronchopulmonary C-fiber function but does not alter other vagal pulmonary receptor functions or peripheral and central chemoreceptor functions. Eleven lambs were randomized to receive a subcutaneous injection of either 25 mg/kg capsaicin (6 lambs) or solvent (5 lambs) under general anesthesia. Capsaicin-treated lambs did not demonstrate the classical ventilatory response consistently observed in response to capsaicin bolus intravenous injection in control lambs. Moreover, the ventilatory responses to stimulation of the rapidly adapting pulmonary stretch receptors (intratracheal water instillation) and slowly adapting pulmonary stretch receptors (Hering-Breuer inflation reflex) were similar in both groups of lambs. Finally, the ventilatory responses to various stimuli and depressants of carotid body activity and to central chemoreceptor stimulation (CO(2) rebreathing) were identical in control and capsaicin-treated lambs. We conclude that 25 mg/kg capsaicin treatment in lambs selectively inhibits bronchopulmonary C-fiber function without significantly affecting the other vagal pulmonary receptor functions or that of peripheral and central chemoreceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号