首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Introduction of Cre-recombinase in target cells is currently achieved by transfection of plasmid DNA or by viral-mediated transduction. However, efficiency of non-viral DNA transfection is often low in many cell types, and the use of viral vectors for transduction implies a more complex and laborious manipulation associated with safety issues. We have developed a non-viral non-DNA technique for rapid and highly efficient excision of LoxP-flanked DNA sequences based on electroporation of in vitro transcribed mRNA encoding Cre-recombinase. A K562-DSRed[EGFP] cell line was developed in order to measure Cre-mediated recombination by flow cytometric analysis. These cells have a stable integrated DSRed reporter gene flanked by two LoxP sites, and an EGFP reporter gene, which could only be transcribed when the coding sequence for DSRed was removed. The presented data show recombination efficiencies, as measured by appearance of EGFP-fluorescence, of up to 85% in Cre-recombinase mRNA-electroporated K562-DSRed[EGFP] cells. In conclusion, mRNA electroporation of Cre-recombinase is a powerful, safe, and clinically applicable alternative to current technologies used for excision of stably integrated LoxP-flanked DNA sequences.  相似文献   

2.
The bioluminescence system (luciferase reporter assay system) is widely used to study gene expression, signal transduction and other cellular activities. Although transfection of reporter plasmid DNA to mammalian cell lines is an indispensable experimental step, the transfection efficiency of DNA varies among cell lines, and several cell lines are not suitable for this type of assay because of the low transfection efficiency. In this study, we confirm the transfection efficiency of reporter DNA to several cancer and normal cell lines after transient transfection by single‐cell imaging. Luminescence images could be obtained from living single cells after transient transfection, and the calculated transfection efficiency of this method was similar to that of the conventional reporter assay using a luminometer. We attempted to measure the activity of the Bip promoter under endoplasmic reticulum stress conditions using both high and low transfection efficiency cells for plasmid DNA at the single‐cell level, and observed activation of this promoter even in cells with the lowest transfection efficiency. These results show that bioluminescence imaging of single cells is a powerful tool for the analysis of gene expression based on a reporter assay using limited samples such as clinical specimens or cells from primary culture, and could provide additional information compared with the conventional assay. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Cell penetrating peptides (CPPs) are useful tools to deliver low-molecular-weight cargoes into cells; however, their mode of uptake is still controversial. The most efficient CPPs belong to the group of arginine-rich peptides, but a systematic assessment of their potential toxicity is lacking. In this study we combined data on the membrane translocation abilities of oligo-arginines in living cells as a function of their chain length, concentration, stability and toxicity. Using confocal microscopy analysis of living cells we evaluated the transduction frequency of the L-isoforms of oligo-arginines and lysines and then monitored their associated toxicity by concomitant addition of propidium iodide. Whereas lysines showed virtually no transduction, the transduction ability of arginines increased with the number of consecutive residues and the peptide concentration, with L-R9 and L-R10 performing overall best. We further compared the L- and D-R9 isomers and found that the D-isoform always showed a higher transduction as compared to the L-counterpart in all cell types. Notably, the transduction difference between D- and L-forms was highly variable between cell types, emphasizing the need for protease-resistant peptides as vectors for drug delivery. Real-time kinetic analysis of the D- and L-isomers applied simultaneously to the cells revealed a much faster transduction for the D-variant. The latter underlies the fact that the isomers do not mix, and penetration of one peptide does not perturb the membrane in a way that gives access to the other peptide. Finally, we performed short- and long-term cell viability and cell cycle progression analyses with the protease-resistant D-R9. Altogether, our results identified concentration windows with low toxicity and high transduction efficiency, resulting in fully bioavailable intracellular peptides.  相似文献   

4.
Femtosecond laser optoporation is a powerful technique to introduce membrane-impermeable molecules, such as DNA plasmids, into targeted cells in culture, yet only a narrow range of laser regimes have been explored. In addition, the dynamics of the laser-produced membrane pores and the effect of pore behavior on cell viability and transfection efficiency remain poorly elucidated. We studied optoporation in cultured cells using tightly focused femtosecond laser pulses in two irradiation regimes: millions of low-energy pulses and two higher-energy pulses. We quantified the pore radius and resealing time as a function of incident laser energy and determined cell viability and transfection efficiency for both irradiation regimes. These data showed that pore size was the governing factor in cell viability, independently of the laser irradiation regime. For viable cells, larger pores resealed more quickly than smaller pores, ruling out a passive resealing mechanism. Based on the pore size and resealing time, we predict that few DNA plasmids enter the cell via diffusion, suggesting an alternative mechanism for cell transfection. Indeed, we observed fluorescently labeled DNA plasmid adhering to the irradiated patch of the cell membrane, suggesting that plasmids may enter the cell by adhering to the membrane and then being translocated.  相似文献   

5.
Femtosecond laser optoporation is a powerful technique to introduce membrane-impermeable molecules, such as DNA plasmids, into targeted cells in culture, yet only a narrow range of laser regimes have been explored. In addition, the dynamics of the laser-produced membrane pores and the effect of pore behavior on cell viability and transfection efficiency remain poorly elucidated. We studied optoporation in cultured cells using tightly focused femtosecond laser pulses in two irradiation regimes: millions of low-energy pulses and two higher-energy pulses. We quantified the pore radius and resealing time as a function of incident laser energy and determined cell viability and transfection efficiency for both irradiation regimes. These data showed that pore size was the governing factor in cell viability, independently of the laser irradiation regime. For viable cells, larger pores resealed more quickly than smaller pores, ruling out a passive resealing mechanism. Based on the pore size and resealing time, we predict that few DNA plasmids enter the cell via diffusion, suggesting an alternative mechanism for cell transfection. Indeed, we observed fluorescently labeled DNA plasmid adhering to the irradiated patch of the cell membrane, suggesting that plasmids may enter the cell by adhering to the membrane and then being translocated.  相似文献   

6.
肿瘤靶向治疗的研究是当今生物医学界的研究热点.本研究采用整合素αvβ3单克隆抗体作为肿瘤靶向分子,以单壁碳纳米管(SWNT)作为运输载体,同时利用单壁碳纳米管在近红外区的光吸收特性,开展靶向肿瘤光热治疗.实验结果表明,这种整合素αvβ3单抗标记的碳纳米管探针对高表达αvβ3的U87MG细胞具有高靶向选择性和靶向光杀伤性...  相似文献   

7.
Nucleofection is a powerful non-viral transfection technique that can deliver plasmid DNA with high efficiency to cells that are traditionally difficult to transfect. In this study, we demonstrate that nucleofection of astrocytes grown in primary cell culture resulted in 76 ± 9% transfected cells and low cytotoxicity. However, the nucleofected astrocytes showed a reduced re-attachment to the growth media when replated and subsequent impairment of proliferation. This led to substantially decreased cell densities during the initial 72 h following transfection. Furthermore, these cells were less efficient at producing wound closure in a scratch model of injury. Nucleofection also resulted in the generation of a small proportion of polynucleated cells. The findings demonstrate that nucleofection provides a valuable technique for delivering DNA to astrocytes in culture. However, considerable care is needed in designing and interpreting such studies because of long-lasting changes induced in key properties of these cells by the nucleofection process.  相似文献   

8.
Optimization of electroporation for transfection of mammalian cell lines   总被引:6,自引:0,他引:6  
Electroporation can be a highly efficient method for introducing DNA molecules into cultured cells for transient expression of genes or for permanent genetic modification. However, effective transformation by electroporation requires careful optimization of electric field strength and pulse characteristics. We have used the transient expression of the firefly luciferase gene as a rapid and sensitive indicator of gene expression to describe the effects on transfection efficiency of altering electroporation field strength and shape. Using the luciferase assay, we investigated the correlation of cell viability with optimal transfection efficiency and determined the optimal parameters for a number of phenotypically distinct mammalian cell lines derived from the nervous and immune systems. The efficiency of electroporation under optimal conditions was compared with that obtained using DEAE-dextran or calcium phosphate-mediated transformation. Transfection by electroporation using square wave pulses, as opposed to exponentially decaying pulses, was found to be significantly increased by repetitive pulses. These methods improve the ability to obtain high efficiency gene transfer into many mammalian cell types.  相似文献   

9.
How DNA is repaired after retrovirus integration is not well understood. DNA-dependent protein kinase (DNA-PK) is known to play a central role in the repair of double-stranded DNA breaks. Recently, a role for DNA-PK in retroviral DNA integration has been proposed (R. Daniel, R. A. Katz, and A. M. Skalka, Science 284:644-647, 1999). Reduced transduction efficiency and increased cell death by apoptosis were observed upon retrovirus infection of cultured scid cells. We have used a human immunodeficiency virus (HIV) type 1 (HIV-1)-derived lentivirus vector system to further investigate the role of DNA-PK during integration. We measured lentivirus transduction of scid mouse embryonic fibroblasts (MEF) and xrs-5 or xrs-6 cells. These cells are deficient in the catalytic subunit of DNA-PK and in Ku, the DNA-binding subunit of DNA-PK, respectively. At low vector titers, efficient and stable lentivirus transduction was obtained, excluding an essential role for DNA-PK in lentivirus integration. Likewise, the efficiency of transduction of HIV-derived vectors in scid mouse brain was as efficient as that in control mice, without evidence of apoptosis. We observed increased cell death in scid MEF and xrs-5 or xrs-6 cells, but only after transduction with high vector titers (multiplicity of infection [MOI], >1 transducing unit [TU]/cell) and subsequent passage of the transduced cells. At an MOI of <1 TU/cell, however, transduction efficiency was even higher in DNA-PK-deficient cells than in control cells. Taken together, the data suggest a protective role of DNA-PK against cellular toxicity induced by high levels of retrovirus integrase or integration. Another candidate cellular enzyme that has been claimed to play an important role during retrovirus integration is poly(ADP-ribose) polymerase (PARP). However, no inhibition of lentivirus vector-mediated transduction or HIV-1 replication by 3-methoxybenzamide, a known PARP inhibitor, was observed. In conclusion, DNA-PK and PARP are not essential for lentivirus integration.  相似文献   

10.
旨在通过原核表达纯化超正电荷绿色荧光蛋白+36GFP,研究其与核酸的结合作用及作为核酸载体的细胞转导功能。将pET+36GFP-HA2质粒转化到大肠杆菌BL21(DE3)菌株中,然后表达纯化+36GFP蛋白。将得到的目的蛋白在特定浓度下分别转导293细胞、HepG2细胞、A549细胞和B16细胞,流式细胞仪检测+36GFP的转导效率;+36GFP蛋白(100 nmol/L)转导A549细胞,激光共聚焦显微镜观察结果;将+36GFP蛋白与质粒DNA按不同比例孵育,凝胶阻滞实验检测+36GFP与DNA的结合能力;激光共聚焦显微镜和流式细胞仪检测+36GFP蛋白携带质粒DNA转导细胞后报告基因的表达。结果显示,+36GFP蛋白具有较高的细胞转导效率,且随浓度升高转导效率增加,呈浓度依赖性。凝胶阻滞实验显示,+36GFP能够与质粒DNA结合,阻滞DNA在凝胶中迁移,且呈现一定的浓度依赖性。+36GFP包裹质粒转导细胞后,可高效携带质粒DNA转导进入细胞,使质粒报告基因得到表达。本研究成功表达纯化了+36GFP蛋白,证实该蛋白具有较高的细胞转导效率,可将外源核酸携带入细胞使外源基因得到表达。  相似文献   

11.
The preadipocyte cell lines 3T3-L1 and 3T3-F442A are widely used to study the cellular mechanisms of preadipocyte differentiation and mature adipocyte functions. However, transfection with naked DNA is inefficient in these cell lines. Adenoviral gene transfer is a powerful technique to induce high levels of transgene expression. After failing to obtain 3T3-F442A stable transfectants, we studied different techniques designed to enhance the efficiency of adenoviral transduction in fat cells. First, we compared the effects of two agents known to significantly enhance adenoviral transgene transduction, namely the cationic lipid lipofectamine and the cationic polymer polylysine. We show here that lipofectamine-assisted adenoviral transduction was more efficient in 3T3-F442A than in 3T3-L1 preadipocytes at all tested multiplicity of infection. Lipofectamine, and more efficiently polylysine, yielded high and sustained levels of adenoviral transgene expression in 3T3-F442A preadipocytes. Adenoviral transgene expression was maintained throughout the differentiation process. Furthermore, the two agents also efficiently enhanced adenoviral transduction in mature 3T3-F442A adipocytes. Interestingly, neither protocol affected the differentiation process, morphological features or protein expression of mature adipocytes. These approaches could be of interest to study fat cell differentiation and the functions of mature adipocytes.  相似文献   

12.
Gene transfer into human CD34+ haematopoietic progenitor cells (HPC) and multi-potent mesenchymal stromal cells (MSC) is an essential tool for numerous in vitro and in vivo applications including therapeutic strategies, such as tissue engineering and gene therapy. Virus based methods may be efficient, but bear risks like tumorigenesis and activation of immune responses. A safer alternative is non-viral gene transfer, which is considered to be less efficient and accomplished with high cell toxicity. The truncated low affinity nerve growth factor receptor (ALNGFR) is a marker gene approved for human in vivo application. Human CD34+ HPC and human MSC were transfected with in vitro-transcribed mRNA for DeltaLNGFR using the method of nucleofection. Transfection efficiency and cell viability were compared to plasmid-based nucleofection. Protein expression was assessed using flow cytometry over a time period of 10 days. Nucleofection of CD34+ HPC and MSC with mRNA resulted in significantly higher transfection efficiencies compared to plasmid transfection. Cell differentiation assays were performed after selecting DeltaLNGFR positive cells using a fluorescent activating cell sorter. Neither cell differentiation of MSC into chondrocytes, adipocytes and osteoblasts, nor differentiation of HPC into burst forming unit erythroid (BFU-E) colony forming unit-granulocyte, erythrocyte, macrophage and megakaryocyte (CFU-GEMM), and CFU-granulocyte-macrophage (GM) was reduced. mRNA based nucleofection is a powerful, highly efficient and non-toxic approach for transient labelling of human progenitor cells or, via transfection of selective proteins, for transient manipulation of stem cell function. It may be useful to transiently manipulate stem cell characteristics and thus combine principles of gene therapy and tissue engineering.  相似文献   

13.
None of the vector systems currently available for gene therapy applications have been shown to be capable of both efficient gene transfer into nondividing cells and long-term expression through stable integration into host cell DNA. While integrating vectors based on adeno-associated virus are capable of mediating gene transfer into nondividing cells, this process is 200-fold less efficient than transduction of dividing cells. We demonstrate that the transduction efficiency of adeno-associated virus vectors can be increased by treatment with DNA-damaging agents. Nondividing cells are especially responsive, with increases in transduction efficiency of up to 750-fold. This finding has the potential to facilitate gene therapy applications requiring gene transfer to nondividing cells.  相似文献   

14.
Primary hematopoietic cells are relatively refractory to DNA transfection methodologies. This is particularly so when they are quiescent or terminally differentiated and no longer able to divide. However, whole proteins can be introduced into such cells by protein transduction. We have modified the protein transduction domain (PTD) from the HIV-TAT protein used by other investigators. Using green fluorescent protein (GFP) as a reporter, we show that this new sequence allows more efficient transduction of recombinant fusion protein into a variety of hematopoietic cells tested compared with the native HIV TAT domain. This is true for peripheral blood CD34+ cells, dendritic cells, granulocytes, monocytes and lymphocytes all of which are quiescent or terminally differentiated. Furthermore, we were able to transduce myeloblasts from patients with acute myeloid leukemia (AML). In all cell types tested transduction efficiency was almost 100%. Transduction is maximal 15-30 s after addition of PTD or TAT-GFP fusion proteins as tested on quiescent T lymphocytes. This method will allow us to study of the effects of a variety of gene products in cell types that were previously resistant to gene transfection studies.  相似文献   

15.
Transfection of primary mammalian neural cells, such as human neural stem/precursor cells (hNSPCs), with commonly used cationic lipid transfection reagents has often resulted in poor cell viability and low transfection efficiency. Other mechanical methods of introducing a gene of interest, such as a "gene gun" or microinjection, are also limited by poor cell viability and low numbers of transfected cells. The strategy of using viral constructs to introduce an exogenous gene into primary cells has been constrained by both the amount of time and labor required to create viral vectors and potential safety concerns. We describe here a step-by-step protocol for transfecting hNSPCs using Amaxa's Nucleofector device and technology with electrical current parameters and buffer solutions specifically optimized for transfecting neural stem cells. Using this protocol, we have achieved initial transfection efficiencies of ~35% and ~70% after stable transfection. The protocol entails combining a high number of hNSPCs with the DNA to be transfected in the appropriate buffer followed by electroporation with the Nucleofector device.  相似文献   

16.
Viral vector systems are efficient for transfection of foreign genes into many tissues. Especially, retrovirus based vectors integrate the transgene into the genome of the target cells, which can sustain long term expression. However, it has been demonstrated that the transduction efficiency using retrovirus is relatively lower than those of other viruses. Ultrasound was recently reported to increase gene expression using plasmid DNA, with or without, a delivery vehicle. However, there are no reports, which show an ultrasound effect to retrovirus-mediated gene transfer efficiency. Retrovirus-mediated gene transfer systems were used for transfection of 293T cells, bovine aortic endothelial cells (BAECs), rat aortic smooth muscle cells (RASMCs), and rat skeletal muscle myoblasts (L6 cells) with beta-galactosidase (beta-Gal) genes. Transduction efficiency and cell viability assay were performed on 293T cells that were exposed to varying durations (5 to 30 seconds) and power levels (1.0 watts/cm(2) to 4.0 watts/cm(2)) of ultrasound after being transduced by a retrovirus. Effects of ultrasound to the retrovirus itself was evaluated by transduction efficiency of 293T cells. After exposure to varying power levels of ultrasound to a retrovirus for 5 seconds, 293T cells were transduced by a retrovirus, and transduction efficiency was evaluated. Below 1.0 watts/cm(2) and 5 seconds exposure, ultrasound showed increased transduction efficiency and no cytotoxicity to 293T cells transduced by a retrovirus. Also, ultrasound showed no toxicity to the virus itself at the same condition. Exposure of 5 seconds at the power of 1.0 watts/cm(2) of an ultrasound resulted in significant increases in retrovirus-mediated gene expression in all four cell types tested in this experiment. Transduction efficiencies by ultrasound were enhanced 6.6-fold, 4.8-fold, 2.3-fold, and 3.2-fold in 293T cells, BAECs, RASMCs, and L6 cells, respectively. Furthermore, beta-Gal activities were also increased by the retrovirus with ultrasound exposure in these cells. Adjunctive ultrasound exposure was associated with enhanced retrovirus-mediated transgene expression in vitro. Ultrasound associated local gene therapy has potential for not only plasmid-DNA-, but also retrovirus-mediated gene transfer.  相似文献   

17.
Magnetic nanoparticle-based gene transfection has been shown to be an effective, non-viral technique for delivery of both plasmid DNA and siRNA into cells in culture. It has several advantages over other non-viral delivery techniques, such as short transfection times and high cell viability. These advantages have been demonstrated in a number of primary cells and cell lines. Here we report that oscillating magnet array-based nanomagnetic transfection significantly improves transfection efficiency in both human prenatal cardiac progenitor cells and adult cardiomyocytes when compared to static magnetofection, cationic lipid reagents and electroporation, while maintaining high cell viability. In addition, transfection of adult cardiomyocytes was improved further by seeding the cells onto Collagen I-coated plates, with transfection efficiencies of up to 49% compared to 24% with lipid reagents and 19% with electroporation. These results demonstrate that oscillating nanomagnetic transfection far outperforms other non-viral transfection techniques in these important cells.  相似文献   

18.
肖丽容  陈大年  闫乃红 《遗传》2014,36(11):1173-1178
活体电转化技术是在高电压的脉冲作用下,瞬态增加细胞膜的渗透性从而将外源基因高效导入细胞的方法。与病毒载体等其他方法相比,活体电转化技术具有安全、高效、快速、稳定及应用范围广等优点,近年来在很多组织和器官中得到广泛使用,包括在眼科研究领域。文章介绍了活体电转化技术在新生小鼠视网膜中的应用,通过新生小鼠视网膜下注射的方法,经几次高电压的脉冲,将高浓度的绿色荧光蛋白表达质粒导入新生小鼠视网膜细胞内。通过冰冻切片观察绿色荧光蛋白在视网膜中的表达。结果表明绿色荧光蛋白在视网膜外核层高表达,证实了活体电转化技术可以将外源基因高效、快捷的导入视网膜,从而为研究视网膜发育及功能提供一种有效的手段。  相似文献   

19.
3T3-L1 cells offer an excellent model system for studies of differentiation and biochemistry of fat cells. However, these cells are limited in their utility by the low efficiency with which DNA can be introduced by transfection. Gene delivery by viral vectors, particularly adenovirus, has proven a powerful means for introduction of genes into certain cell types. Furthermore, adenovirus transduction has been used to study mechanisms involved in the differentiation of 3T3-L1 cells into mature fat cells. We show in this study that 3T3-L1 cells are inefficiently transduced by adenovirus. The potential advantages offered by adenovirus transduction led us to examine methods designed to enhance transduction of 3T3-L1 cells by adenovirus. Of these methods, polylysine-mediated enhancement demonstrates considerable promise because it permits up to 100% of cells to be transduced and because it does not inhibit differentiation of 3T3-L1 cells. -- Orlicky D. J., and J. Schaack. Adenovirus transduction of 3T3-L1 cells. J. Lipid Res. 2001. 42: 460--466.  相似文献   

20.
Summary An expeditious and highly efficient technique of microinjection has been developed with the aim of introducing exogenous DNA into egg cells and zygotes of wheat. Using a mechanical-dissection method and a novel immobilisation approach enabled us to microinject around 15 egg cells of wheat per hour. Exposing the protoplasts to a high-frequency alternating-current field for immobilisation, a significantly higher transient expression rate of the injected genes (46% and 52% for egg cells and zygotes, respectively) could be achieved than reported thus far for plant protoplasts. Whether this high transformation efficiency is due to the highfrequency electrical field applied for immobilising the protoplasts is not known. The transformation rate appeared to be a factor depending upon the time of egg cell isolation. According to the ultrastructural observations this seems to reflect a variation in competence of the egg cells during in situ development. In order to conduct studies directed towards establishing the optimal timewindow for DNA delivery into the fertilised egg cell, the time course of DNA dynamics during zygotic development has been quantified via quantitative microspectrofluorometry.Abbreviations AC alternating current - DAE days after emasculation - FDA fluorescein diacetate - HAP hours after pollination  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号