首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The highly reactive free radical gas, nitric oxide, serves a variety of biomodulatory functions and has been implicated in a growing array of physiological and pathophysiological states. The striking differences between this labile substance and other, more conventional, signaling molecules highlight the tight degree of nitric oxide regulation that is required in order to maintain appropriate cellular homeostasis. The generation of nitric oxide represents a common component of the signal transduction pathways of a number of chemical signaling molecules that act via binding to G protein-coupled receptors. This review focuses on the relationship between this receptor superfamily, the generation of nitric oxide via the actions of the nitric oxide synthases and some of the inter- and intracellular roles of nitric oxide.  相似文献   

2.
Murad F 《Bioscience reports》2004,24(4-5):452-474
The role of nitric oxide in cellular signaling in the past 22 years has become one of the most rapidly growing areas in biology with more than 20,000 publications to date. Nitric oxide is a gas and free radical with an unshared electron that can regulate an ever-growing list of biological processes. In many instances nitric oxide mediates its biological effects by activating guanylyl cyclase and increasing cyclic GMP synthesis from GTP. However, the list of effects of nitric oxide that are independent of cyclic GMP is also growing at a rapid rate. For example, nitric oxide can interact with transition metals such as iron, thiol groups, other free radicals, oxygen, superoxide anion, unsaturated fatty acids and other molecules. Some of these reactions result in the oxidation of nitric oxide to nitrite and nitrate to terminate its effect, while other reactions can lead to altered protein structure, function, and/or catalytic capacity. These diverse effects of nitric oxide that are either cyclic GMP dependent or independent can alter and regulate important physiological and biochemical events in cell regulation and function. Nitric oxide can function as an intracellular messenger, an autacoid, a paracrine substance, a neurotransmitter, or as a hormone that can be carried to distant sites for effects. Thus, it is a unique simple molecule with an array of signaling functions. However, as with any messenger molecule, there can be too little or too much of the substance and pathological events result. Some of the methods to regulate either nitric oxide formation, metabolism, or function have been in clinical use for more than a century as with the use of organic nitrates and nitroglycerin in angina pectoris that was initiated in the 1870’s. Current and future research with nitric oxide and cyclic GMP will undoubtedly expand the clinicians’ therapeutic armamentarium to manage a number of important diseases by perturbing nitric oxide and cyclic GMP formation and metabolism. Such promise and expectations have obviously fueled the interests in these signaling molecules for a growing list of potential therapeutic applications.  相似文献   

3.
The role of nitric oxide in cellular signaling in the past 22 years has become one of the most rapidly growing areas in biology with more than 20,000 publications to date. Nitric oxide is a gas and free radical with an unshared electron that can regulate an ever-growing list of biological processes. In many instances nitric oxide mediates its biological effects by activating guanylyl cyclase and increasing cyclic GMP synthesis from GTP. However, the list of effects of nitric oxide that are independent of cyclic GMP is also growing at a rapid rate. For example, nitric oxide can interact with transition metals such as iron, thiol groups, other free radicals, oxygen, superoxide anion, unsaturated fatty acids and other molecules. Some of these reactions result in the oxidation of nitric oxide to nitrite and nitrate to terminate its effect, while other reactions can lead to altered protein structure, function, and/or catalytic capacity. These diverse effects of nitric oxide that are either cyclic GMP dependent or independent can alter and regulate important physiological and biochemical events in cell regulation and function. Nitric oxide can function as an intracellular messenger, an autacoid, a paracrine substance, a neurotransmitter, or as a hormone that can be carried to distant sites for effects. Thus, it is a unique simple molecule with an array of signaling functions. However, as with any messenger molecule, there can be too little or too much of the substance and pathological events result. Some of the methods to regulate either nitric oxide formation, metabolism, or function have been in clinical use for more than a century as with the use of organic nitrates and nitroglycerin in angina pectoris that was initiated in the 1870's. Current and future research with nitric oxide and cyclic GMP will undoubtedly expand the clinicians' therapeutic armamentarium to manage a number of important diseases by perturbing nitric oxide and cyclic GMP formation and metabolism. Such promise and expectations have obviously fueled the interests in these signaling molecules for a growing list of potential therapeutic applications.John S. Dunn Distinguished Chair in Medicine and Physiology, Regental Professor and Chair of Department of Integrative Biology, Pharmacology, and Physiology and Director of the Institute of Molecular Medicine  相似文献   

4.
软体动物的一氧化氮及其合酶的研究进展   总被引:6,自引:0,他引:6  
一氧化氮作为一种重要的信息分子,参与调节软体动物的嗅觉、运动、取食、机体防御及学习行为。本文从生理、生化、形态定位以及信号转导几方面综述了有关软体动物一氧化氮及其合酶的最新研究进展。  相似文献   

5.
昆虫一氧化氮及其合酶的研究进展   总被引:5,自引:0,他引:5  
王晓安  郑哲民 《昆虫知识》2003,40(2):112-118
一氧化氮作为一种重要的信息分子 ,参与调节昆虫嗅觉、视觉、机械感受、发育、机体防御及学习行为。该文从生理、生化、形态定位以及信号转导几方面综述了有关昆虫一氧化氮及其合酶的最新研究进展。  相似文献   

6.
Classic signal molecules such as auxin, cytokinin, gibberellins, abscisic acid and more recently brassinosteroids have been extensively studied in the context of their role in morphogenetic processes in plants. In the past five years, it has become apparent that there are novel signaling molecules, such as N-acylethanolamides, alkamides, glutamate and nitric oxide, that might play important roles in the regulation of morphogenetic and adaptive processes. There is information pointing out that these molecules might be involved in diverse processes, including seed germination, pathogenesis, modulation of plant architecture and response to abiotic factors. In animals, alkamides and N-acylethanolamides act as endogenous signaling molecules that activate cannabinoid receptors, which are coupled to signal transduction cascades involving glutamate and nitric oxide. Hence, there is a possibility that cannabinoid signaling represents an evolutionary conserved pathway that modulates cellular and physiological processes in eukaryotes.  相似文献   

7.
8.
硫化氢(H_2S)作为继一氧化氮和一氧化碳后的第三种气体信号分子,日渐受到人们的关注,检测技术的发展为研究提供了帮助。H_2S在人体各系统中发挥着重要的作用,如心血管系统、神经系统、呼吸系统等,其与高血压、动脉粥样硬化、神经退行性疾病、哮喘等疾病的发生发展有着密切的联系,具有作为疾病治疗药物的潜能。对于H_2S作用于靶分子机制的阐述深化了小分子物质调控大分子功能的研究,提供了对多种疾病进行干预的新手段。  相似文献   

9.
10.
In multicellular organisms, cells are crowded together in organized communities, surrounded by an interstitial fluid of extremely limited volume. Local communication between adjacent cells is known to occur through gap junctions in cells that are physically connected, or through the release of paracrine signaling molecules (e.g. ATP, glutamate, nitric oxide) that diffuse to their target receptors through the extracellular microenvironment. Recent evidence hints that calcium ions may possibly be added to the list of paracrine messengers that allow cells to communicate with one another. Local fluctuations in extracellular [Ca2+] can be generated as a consequence of intracellular Ca2+ signaling events, owing to the activation of Ca2+ influx and efflux pathways at the plasma membrane. In intact tissues, where the interstitial volumes between cells are much smaller than the cells themselves, this can result in significant alterations in external [Ca2+]. This article will explore emerging evidence that these extracellular [Ca2+] changes can be detected by the extracellular calcium-sensing receptor (CaR) on adjacent cells, forming the basis for a paracrine signaling system. Such a mechanism could potentially provide CaR-expressing cells with the means to sense the Ca2+ signaling status of their neighbors, and expand the utility of the intracellular Ca2+ signal to a domain outside the cell.  相似文献   

11.
Recent experiments have shown that in patients with psoriasis, highly elevated levels of nitric oxide (NO) are released at the surface of psoriatic plaques. Nitric oxide is a central biological regulator of many aspects of physiology, and it is a natural possibility that the high nitric oxide levels in psoriasis play a causal role in the onset of the disease. Here, we use mathematical modelling to investigate this possibility. We begin by discussing a simple model consisting of a single equation for nitric oxide concentration, which enables nitric oxide secretion rates in the basal epidermis to be calculated from the observed NO release rates at the skin surface. Using this key parameter value, we then develop an extended model that tests the hypothesis that nitric oxide regulates the formation of the extended rete pegs seen in psoriatic plaques. This occurs via the peroxynitrite-dependent activation of the collagenase MMP-8, which is produced by neutrophils present at high levels in psoriatic plaques. The plausibility of the hypothesis is demonstrated and specific testable quantitative predictions about the roles of the various cell types and signalling molecules are made.  相似文献   

12.
Many membrane proteins are implicated in the regulation of cell functions by triggering specific signaling pathways. Porins are known potential modulators of cell proliferation and differentiation. We explored the possible involvement of this protein in signal transduction pathways in mouse gut macrophages. In the present work we have shown that porins can trigger signal transduction in mouse macrophages infected with S. typhimurium. Activation of macrophages by porins results in an increase in inositol trisphosphate and intracellular Ca2+ mobilization. There is a translocation of protein kinase C to the membrane which is accompanied by nitric oxide release within the macrophages. This effect is the outcome of the expression of nitric oxide synthase, which is dependent on Protein kinase C. Further, we observed that there is an increased binding of the porins on macrophages infected with S. typhimurium which results in activation of macrophages and triggering of specific signaling pathways. These results indicate that porins induce the production of nitric oxide via a protein kinase C dependent pathway. Nitric oxide plays a fundamental role in macrophage effector function where it has both communication and defensive function.  相似文献   

13.
Nitric oxide: comparative synthesis and signaling in animal and plant cells   总被引:21,自引:0,他引:21  
Since its identification as an endothelium-derived relaxing factor in the 1980s, nitric oxide has become the source of intensive and exciting research in animals. Nitric oxide is now considered to be a widespread signaling molecule involved in the regulation of an impressive spectrum of mammalian cellular functions. Its diverse effects have been attributed to an ability to chemically react with dioxygen and its redox forms and with specific iron- and thiol-containing proteins. Moreover, the effects of nitric oxide are dependent on the dynamic regulation of its biosynthetic enzyme nitric oxide synthase. Recently, the role of nitric oxide in plants has received much attention. Plants not only respond to atmospheric nitric oxide, but also possess the capacity to produce nitric oxide enzymatically. Initial investigations into nitric oxide functions suggested that plants use nitric oxide as a signaling molecule via pathways remarkably similar to those found in mammals. These findings complement an emerging body of evidence indicating that many signal transduction pathways are shared between plants and animals.  相似文献   

14.
Nitric oxide (NO) is one of the major signalling molecules in the mammalian body playing critical role in regulation of blood pressure, cardiovascular disease including stroke, immune activation, neuronal and cell communication. Moreover, hyper production of NO by the activity of nitric oxide synthase (NOS) involved in neuropathic pain, neurodegenerative disorders and stroke. Hence, the search on small molecules from the natural sources for the inhibition of NOS is desirable in therapeutic point of view. The elevated level of NO caused by NOS enzyme become a novel target in finding new inhibitors from natural sources as antistroke agents. The present study focuses on the molecular docking of quercetin and its analogues against NOS. The active site of the enzyme was docked with the ligand and pharmacological properties were analysed. From this result, we suggest the therapeutic property of quercetin and its analogues against NOS.  相似文献   

15.
Nitric oxide is emerging as an important modulator of many physiological processes including olfaction, yet the function of this gas in the processing of olfactory information remains poorly understood. In the antennal lobe of the moth, Manduca sexta, nitric oxide is produced in response to odor stimulation, and many interneurons express soluble guanylyl cyclase, a well-characterized nitric oxide target. We used intracellular recording and staining coupled with pharmacological manipulation of nitric oxide and soluble guanylyl cyclase to test the hypothesis that nitric oxide modulates odor responsiveness in olfactory interneurons through soluble guanylyl cyclase-dependent pathways. Nitric oxide synthase inhibition resulted in pronounced effects on the resting level of firing and the responses to odor stimulation in most interneurons. Effects ranged from bursting to strong attenuation of activity and were often accompanied by membrane depolarization coupled with a change in input resistance. Blocking nitric oxide activation of soluble guanylyl cyclase signaling mimicked the effects of nitric oxide synthase inhibitors in a subset of olfactory neurons, while other cells were differentially affected by this treatment. Together, these results suggest that nitric oxide is required for proper olfactory function, and likely acts through soluble guanylyl cyclase-dependent and -independent mechanisms in different subsets of neurons.  相似文献   

16.
Nitric oxide signaling, through eNOS (or possibly nNOS), and gap junction communication are essential for normal vascular function. While each component controls specific aspects of vascular function, there is substantial evidence for cross-talk between nitric oxide signaling and the gap junction proteins (connexins), and more recently, protein-protein association between eNOS and connexins. This review will examine the evidence for interaction between these pathways in normal and diseased arteries, highlight the questions that remain about the mechanisms of their interaction, and explore the possible interaction between nitric oxide signaling and the newly discovered pannexin channels. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.  相似文献   

17.
Arbuscular mycorrhizal fungi can increase the host resistance to pathogens via promoted phenolic synthesis, however, the signaling pathway responsible for it still remains unclear. In this study, in order to reveal the signaling molecules involved in this process, we inoculated Trifolium repense L. with an arbuscular mycorrhizal fungus (AMF), Glomus mosseae, and monitored the contents of phenolics and signaling molecules (hydrogen peroxide (H2O2), salicylic acid (SA), and nitric oxide (NO)) in roots, measured the activities of l-phenylalanine ammonia-lyase (PAL) and nitric oxide synthase (NOS), and the expression of pal and chs genes. Results demonstrated that AMF colonization promoted the phenolic synthesis, in parallel with the increase in related enzyme activity and gene expression. Meanwhile, the accumulation of all three signaling molecules was also up-regulated by AMF. This study suggested that AMF increased the phenolic synthesis in roots probably via signaling pathways of H2O2, SA and NO in a signaling cascade.  相似文献   

18.
In this study, we provide evidence that the double-stranded RNA-dependent protein kinase (PKR) is not required for virus-induced expression of inducible nitric oxide synthase (iNOS) or the activation of specific signaling pathways in macrophages. The infection of RAW264.7 cells with encephalomyocarditis virus (EMCV) induces iNOS expression and nitric oxide production, which are unaffected by a dominant-negative mutant of PKR. EMCV infection also activates the mitogen-activated protein kinase, cyclic AMP response element binding protein, and nuclear factor kappaB (NF-kappaB) signaling cascades at 15 to 30 min postinfection in PKR+/+ and PKR-/- macrophages. Activation of these signaling cascades does not temporally correlate with PKR activity or the accumulation of EMCV RNA, suggesting that an interaction between a structural component of the virion and the cell surface may activate macrophages. Consistent with this hypothesis, empty EMCV capsids induced comparable levels of iNOS expression, nitrite production, and activation of these signaling cascades to those induced by intact virions. These findings support the hypothesis that virion-host cell interactions are primary mediators of the PKR-independent activation of signaling pathways that participate in the macrophage antiviral response of inflammatory gene expression.  相似文献   

19.
During the initial autoimmune response in type 1 diabetes, islets are exposed to a damaging mix of pro-inflammatory molecules that stimulate the production of nitric oxide by β-cells. Nitric oxide causes extensive but reversible cellular damage. In response to nitric oxide, the cell activates pathways for functional recovery and adaptation as well as pathways that direct β-cell death. The molecular events that dictate cellular fate following nitric oxide-induced damage are currently unknown. In this study, we provide evidence that AMPK plays a primary role controlling the response of β-cells to nitric oxide-induced damage. AMPK is transiently activated by nitric oxide in insulinoma cells and rat islets following IL-1 treatment or by the exogenous addition of nitric oxide. Active AMPK promotes the functional recovery of β-cell oxidative metabolism and abrogates the induction of pathways that mediate cell death such as caspase-3 activation following exposure to nitric oxide. Overall, these data show that nitric oxide activates AMPK and that active AMPK suppresses apoptotic signaling allowing the β-cell to recover from nitric oxide-mediated cellular stress.  相似文献   

20.
One of the major conceptual advances in the understanding of the pathogenesis of heart failure has been the insight that myocardial dysfunction and heart failure may progress as the result of the sustained over-expression of nitric oxide (NO) metabolites locally and in blood modulated by inducible nitric oxide synthase (iNOS). This by virtue of their deleterious effects is sufficient to contribute to disease progression by provoking left ventricular (LV) remodeling, hypertrophy and progressive LV dysfunction. Recently, tumor necrosis factor-alpha (TNF-α) has also been identified in this setting of heart failure. Analogous to the situation with NO, the over-expression of TNF-α is sufficient to contribute to disease progression in heart failure phenotype. Although important interactions between TNF-α and the NO have been recognized in the cardiovascular system for over a decade, the nature and importance of the interactions between these biologically active molecules in cardiac hypertrophy has become apparent only in the recent times. Therefore, we focused on the prevailing updated evidence which suggests that there is a functionally significant cross-regulation between NO and TNF-α signaling in blood thus playing a part in cardiac hypertrophy and failure. The discussions presented here will have a bearing on the therapeutic potential via inhibitors of these pathways in reducing cardiomyocyte hypertrophy and the LV dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号