首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In the present study, we established dose-response relationships between central administration of 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (Tempol, a superoxide dismutase mimetic) and the level of renal sympathetic nerve discharge (SND) and tested the hypothesis that intracerebroventricular (icv) Tempol pretreatment would attenuate centrally mediated changes in SND produced by icv ANG II administration. Urethane-chloralose-anesthetized, baroreceptor-denervated, normotensive rats were used. We found that icv Tempol administration produced dose-dependent sympathoinhibitory, hypotensive, and bradycardic responses. Mean arterial pressure and SND values were significantly increased after icv ANG II (150 ng/kg) administration, and these responses were abrogated after icv pretreatment with Tempol (75 micromol/kg) or losartan. Brain superoxide levels tended to be higher in ANG II-treated rats compared with rats treated with Tempol and ANG II. Tempol pretreatment did not prevent increases in SND level that were produced by acute heat stress, which indicates specificity in the effect of Tempol in reducing sympathoexcitation. These results demonstrate that icv Tempol administration influences central sympathetic neural circuits in a dose-dependent manner and attenuates SND responses to central ANG II infusion.  相似文献   

3.
We tested the hypothesis that intracerebroventricular (lateral ventricle) administration of interleukin-1beta (IL-1beta) antibody increases the level of sympathetic nerve discharge (SND) in alpha-chloralose-anesthetized rats. Mean arterial pressure (MAP), heart rate (HR), and SND (splenic and renal) were recorded before (Preinfusion), during (25 min), and for 45 min after infusion of IL-1beta antibody (15 microg, 50 microl icv) in baroreceptor-intact (intact) and sinoaortic-denervated (SAD) rats. The following observations were made. First, intracerebroventricular infusion of IL-1beta antibody (but not saline and IgG) significantly increased MAP and the pressor response was higher in SAD compared with intact rats. Second, renal and splenic SND were significantly increased during and after intracerebroventricular IL-1beta antibody infusion and sympathoexcitatory responses were higher in SAD compared with intact rats. Third, intracerebroventricular administration of a single dose of IL-1beta antibody (15 microg, 5 microl for 2 min) significantly increased splenic and renal SND in intact rats. These results suggest that under the conditions of the present experiments central neural IL-1beta plays a role in the tonic regulation of SND and arterial blood pressure.  相似文献   

4.
We investigated the contributions of forebrain, brain stem, and spinal neural circuits to interleukin (IL)-1beta-induced sympathetic nerve discharge (SND) responses in alpha-chloralose-anesthetized rats. Lumbar and splenic SND responses were determined in spinal cord-transected (first cervical vertebra, C1), midbrain-transected (superior colliculus), and sham-transected rats before and for 60 min after intravenous IL-1beta (285 ng/kg). The observations made were the following: 1) lumbar and splenic SND were significantly increased after IL-1beta in sham C1-transected rats but were unchanged after IL-1beta in C1-transected rats; 2) intrathecal administration of DL-homocysteic acid (10 ng) increased SND in C1-transected rats; 3) lumbar and splenic SND were significantly increased after IL-1beta in sham- but not midbrain-transected rats; and 4) midbrain transection did not alter the pattern of lumbar and splenic SND, demonstrating the integrity of brain stem sympathetic neural circuits after decerebration. These results demonstrate that an intact forebrain is required for mediating lumbar and splenic sympathoexcitatory responses to intravenous IL-1beta, thereby providing new information about the organization of neural circuits responsible for mediating sympathetic-immune interactions.  相似文献   

5.
Hypothermia produced by acute cooling prominently alters sympathetic nerve outflow. Skin sympathoexcitatory responses to skin cooling are attenuated in aged compared with young subjects, suggesting that advancing age influences sympathetic nerve responsiveness to hypothermia. However, regulation of skin sympathetic nerve discharge (SND) is only one component of the complex sympathetic nerve response profile to hypothermia. Whether aging alters the responsiveness of sympathetic nerves innervating other targets during acute cooling is not known. In the present study, using multifiber recordings of splenic, renal, and adrenal sympathetic nerve activity, we tested the hypothesis that hypothermia-induced changes in visceral SND would be attenuated in middle-aged and aged compared with young Fischer 344 (F344) rats. Colonic temperature (Tc) was progressively reduced from 38 degrees C to 31 degrees C in young (3 to 6 mo), middle-aged (12 mo), and aged (24 mo) baroreceptor-innervated and sinoaortic-denervated (SAD), urethane-chloralose anesthetized, F344 rats. The following observations were made. 1) Progressive hypothermia significantly (P < 0.05) reduced splenic, renal, and adrenal SND in young baroreceptor-innervated F344 rats. 2) Reductions in splenic, renal, and adrenal SND to progressive hypothermia were less consistently observed and, when observed, were generally attenuated in baroreceptor-innervated middle-aged and aged compared with young F344 rats. 3) Differences in splenic, renal, and adrenal SND responses to reduced Tc were observed in SAD young, middle-aged, and aged F344 rats, suggesting that age-associated attenuations in SND responses to acute cooling are not the result of age-dependent modifications in arterial baroreflex regulation of SND. These findings demonstrate that advancing chronological age alters the regulation of visceral SND responses to progressive hypothermia, modifications that may contribute to the inability of aged individuals to adequately respond to acute bouts of hypothermia.  相似文献   

6.
Although interleukin-1beta (IL-1beta) administration produces nonuniform changes in the level of sympathetic nerve discharge (SND), the effect of IL-1beta on the frequency-domain relationships between discharges in different sympathetic nerves is not known. Autospectral and coherence analyses were used to determine the effect of IL-1beta and mild hypothermia (60 min after IL-1beta, colonic temperature from 38 degrees C to 36 degrees C) on the relationships between renal-interscapular brown adipose tissue (IBAT) and splenic-lumbar sympathetic nerve discharges in chloralose-anesthetized rats. The following observations were made. 1) IL-1beta did not alter renal-IBAT coherence values in the 0- to 2-Hz frequency band or at the cardiac frequency (CF). 2) Peak coherence values relating splenic-lumbar discharges at the CF were significantly increased after IL-1beta and during hypothermia. 3) Hypothermia after IL-1beta significantly reduced the coupling (0-2 Hz and CF) between renal-IBAT but not splenic-lumbar SND bursts. 4) Combining IL-1beta and mild hypothermia had a greater effect on renal-IBAT SND coherence values than did mild hypothermia alone. These data demonstrate functional plasticity in sympathetic neural circuits and suggest complex relationships between immune products and SND regulation.  相似文献   

7.
The paraventricular nucleus (PVN) of the hypothalamus is known to be an important site of integration in the central nervous system for sympathetic outflow. ANG II and nitric oxide (NO) play an important role in regulation of sympathetic nerve activity. The purpose of the present study was to examine how the interaction between NO and ANG II within the PVN affects sympathetic outflow in rats. Renal sympathetic nerve discharge (RSND), arterial blood pressure (AP), and heart rate (HR) were measured in response to administration of ANG II and N(G)-monomethyl-l-arginine (L-NMMA) into the PVN. Microinjection of ANG II (0.05, 0.5, and 1.0 nmol) into the PVN increased RSND, AP, and HR in a dose-dependent manner, resulting in increases of 53 +/- 9%, 19 +/- 3 mmHg, and 32 +/- 12 beats/min from baseline, respectively, at the highest dose. These responses were significantly enhanced by prior microinjection of L-NMMA and were blocked by losartan, an ANG II type 1 receptor antagonist. Similarly, administration of antisense to neuronal NO synthase within the PVN also potentiated the ANG II responses. Conversely, overexpression of neuronal NOS within the PVN with adenoviral gene transfer significantly attenuated ANG II responses. Push-pull administration of ANG II (1 nmol) into the PVN induced an increase in NO release. Our data indicate that ANG II type 1 receptors within the PVN mediate an excitatory effect on RSND, AP, and HR. NO in the PVN, which can be induced by ANG II stimulation, in turn inhibits the ANG II-mediated increase in sympathetic nerve activity. This negative-feedback mechanism within the PVN may play an important role in maintaining the overall balance and tone of sympathetic outflow.  相似文献   

8.
The expression of proinflammatory cytokines increases in the hypothalamus of rats with heart failure (HF). The pathophysiological significance of this observation is unknown. We hypothesized that hypothalamic proinflammatory cytokines upregulate the activity of central neural systems that contribute to increased sympathetic nerve activity in HF, specifically, the brain renin-angiotensin system (RAS) and the hypothalamic-pituitary-adrenal (HPA) axis. Rats with HF induced by coronary ligation and sham-operated controls (SHAM) were treated for 4 wk with a continuous intracerebroventricular infusion of the cytokine synthesis inhibitor pentoxifylline (PTX, 10 microg/h) or artificial cerebrospinal fluid (VEH). In VEH-treated HF rats, compared with VEH-treated SHAM rats, the hypothalamic expression of proinflammatory cytokines was increased, along with key components of the brain RAS (renin, angiotensin-converting enzyme, angiotensin type 1 receptor) and corticotropin-releasing hormone, the central indicator of HPA axis activation, in the paraventricular nucleus (PVN) of the hypothalamus. The expression of other inflammatory/excitatory mediators (superoxide, prostaglandin E(2)) was also increased, along with evidence of chronic neuronal excitation in PVN. VEH-treated HF rats had higher plasma levels of norepinephrine, ANG II, interleukin (IL)-1beta, and adrenocorticotropic hormone, increased left ventricular end-diastolic pressure, and increased wet lung-to-body weight ratio. With the exception of plasma IL-1beta, an indicator of peripheral proinflammatory cytokine activity, all measures of neurohumoral excitation were significantly lower in HF rats treated with intracerebroventricular PTX. These findings suggest that the increase in brain proinflammatory cytokines observed in rats with ischemia-induced HF is functionally significant, contributing to neurohumoral excitation by activating brain RAS and the HPA axis.  相似文献   

9.
Previous studies showed that the cardiac sympathetic afferent reflex (CSAR) is enhanced in dogs and rats with chronic heart failure (CHF) and that central ANG II type 1 receptors (AT(1)R) are involved in this augmented reflex. The aim of this study was to determine whether intracerebroventricular administration and microinjection of antisense oligodeoxynucleotides targeted to AT(1)R mRNA would attenuate the enhanced CSAR and decrease resting renal sympathetic nerve activity (RSNA) in rats with coronary ligation-induced CHF. The CSAR was elicited by application of bradykinin to the epicardial surface of the left ventricle. Reflex responses to epicardial administration of bradykinin were enhanced in rats with CHF. The response to bradykinin was determined every 50 min after intracerebroventricular administration (lateral ventricle) or microinjection (into paraventricular nucleus) of antisense or scrambled oligonucleotides to AT(1)R mRNA. AT(1)R mRNA and protein levels in the paraventricular nucleus were significantly reduced 5 h after administration of antisense. Antisense significantly decreased resting RSNA and normalized the enhanced CSAR responses to bradykinin in rats with CHF. Scrambled oligonucleotides did not alter resting RSNA or the enhanced responses to bradykinin in rats with CHF. No significant effects were found in sham-operated rats after administration of either antisense or scrambled oligonucleotides. These results strongly suggest that central AT(1)R mRNA antisense reduces expression of AT(1)R protein and normalizes the augmentation of this excitatory sympathetic reflex and that genetic manipulation of protein expression can be used to normalize the sympathetic enhancement in CHF.  相似文献   

10.
11.
ANG II stimulates the production of reactive oxygen species and activates proinflammatory cytokines leading to endothelial dysfunction. We hypothesized that the anti-inflammatory cytokine IL-10 counteracts the impairment in endothelium-dependent ACh relaxation caused by ANG II. Aortic rings of C57BL/6 mice were incubated in DMEM in the presence of vehicle (deionized H(2)O), ANG II (100 nmol/l), recombinant mouse IL-10 (300 ng/ml), or both ANG II and IL-10 for 22 h at 37 degrees C. After incubation, rings were mounted in a wire myograph to assess endothelium-dependent vasorelaxation to cumulative concentrations of ACh. Overnight exposure of aortic rings to ANG II resulted in blunted ACh-induced vasorelaxation compared with that shown in untreated rings (maximal response = 44 +/- 3% vs. 64 +/- 3%, respectively; P<0.05). IL-10 treatment significantly restored this impairment in relaxation (63 +/- 2%). In addition, the NADPH oxidase inhibitor apocynin restored the impairment in relaxation (maximal response = 76 +/- 3%). Western blotting showed increased gp91(phox) expression (a subunit of NADPH oxidase) in response to ANG II. Vessels treated with a combination of ANG II and IL-10 showed decreased expression of gp91(phox). Immunohistochemical analysis showed increased gp91(phox) expression in ANG II-treated vessels compared with those treated with combined ANG II and IL-10. We found that the anti-inflammatory cytokine IL-10 prevents impairment in endothelium-dependent vasorelaxation in response to long-term incubation with ANG II via decreasing NADPH oxidase expression.  相似文献   

12.
In the present study, we investigated the contributions of forebrain, brain stem, and spinal neural circuits to heating-induced sympathetic nerve discharge (SND) responses in chloralose-anesthetized rats. Frequency characteristics of renal and splenic SND bursts and the level of activity in these nerves were determined in midbrain-transected (superior colliculus), spinal cord-transected [first cervical vertebra (C1)], and sham-transected (midbrain and spinal cord) rats during progressive increases in colonic temperature (T(c)) from 38 to 41.6-41.7 degrees C. The following observations were made. 1) Significant increases in renal and splenic SND were observed during hyperthermia in midbrain-transected, sham midbrain-transected, C1-transected, and sham C1-transected rats. 2) Heating changed the discharge pattern of renal and splenic SND bursts and was associated with prominent coupling between renal-splenic discharge bursts in midbrain-transected, sham midbrain-transected, and sham C1-transected rats. 3) The pattern of renal and splenic SND bursts remained unchanged from posttransection recovery levels during heating in C1-transected rats. We conclude that an intact forebrain is not required for the full expression of SND responses to increased T(c) and that spinal neural systems, in the absence of supraspinal circuits, are unable to markedly alter the frequency characteristics of SND in response to acute heat stress.  相似文献   

13.
Bacillus anthracis infection is a pathophysiological condition that is complicated by progressive decreases in mean arterial pressure (MAP). Lethal toxin (LeTx) is central to the pathogenesis of B. anthracis infection, and the sympathetic nervous system plays a critical role in physiological regulation of acute stressors. However, the effect of LeTx on sympathetic nerve discharge (SND), a critical link between central sympathetic neural circuits and MAP regulation, remains unknown. We determined visceral (renal, splenic, and adrenal) SND responses to continuous infusion of LeTx [lethal factor (100 μg/kg) + protective antigen (200 μg/kg) infused at 0.5 ml/h for ≤6 h] and vehicle (infused at 0.5 ml/h) in anesthetized, baroreceptor-intact and baroreceptor (sinoaortic)-denervated (SAD) Sprague-Dawley rats. LeTx infusions produced an initial state of cardiovascular and sympathetic nervous system activation in intact and SAD rats. Subsequent to peak LeTx-induced increases in arterial blood pressure, intact rats demonstrated a marked hypotension that was accompanied by significant reductions in SND (renal and splenic) and heart rate (HR) from peak levels. After peak LeTx-induced pressor and sympathoexcitatory responses in SAD rats, MAP, SND (renal, splenic, and adrenal), and HR were progressively and significantly reduced, supporting the hypothesis that LeTx alters the central regulation of sympathetic nerve outflow. These findings demonstrate that the regulation of visceral SND is altered in a complex manner during continuous anthrax LeTx infusions and suggest that sympathetic nervous system dysregulation may contribute to the marked hypotension accompanying B. anthracis infection.  相似文献   

14.
To determine the role played by lymphocytes and cytokines in the growth of sympathetic neurons in vivo, the innervation and cytokine levels were examined in the spleens of SCID mice that lack T and B cells. Splenic noradrenaline, nerve growth factor (NGF), and IL-1beta levels were elevated in SCID mice. Immunohistochemical examination revealed that the density of tyrosine hydroxylase-positive (TH(+)) fibers of splenic central arteries in SCID mice was increased compared with wild-type C.B-17 mice, while SCID mice had significantly fewer TH(+) fibers in their periarteriolar lymphatic sheaths (PALS). Two weeks after SCID mice were injected with C.B-17 splenic T cells, their TH(+) fiber staining increased in the PALS. IL-3 levels increased significantly in SCID mice following T cell reconstitution, and the administration of anti-IL-3 Ab blocked the above T cell-induced increase in innervation in the PALS. Anti-IL-3 treatment also inhibited the regeneration of splenic sympathetic neurons in C.B-17 mice after they were chemically sympathetomized with 6-hydroxydopamine. Depletion of NK cells by anti-asialo GM1 promoted the splenic innervation in SCID mice, while there were no significant changes in the innervation between CD8(+) T cell-deficient beta(2)-microglobulin knockout mice and their wild type. Our results suggest that T cells (probably CD4(+) Th cells but not CD8(+) CTLs) play a role in regulating the sympathetic innervation of the spleen; this effect appeared to be mediated, at least in part, by IL-3. On the contrary, NK cells may exert an inhibitory effect on the sympathetic innervation.  相似文献   

15.
Central infusion of an angiotensin type 1 (AT(1)) receptor blocker prevents sympathetic hyperactivity and hypertension in Dahl salt-sensitive (S) rats on high salt. In the present study, we examined whether central infusion of a direct renin inhibitor exerts similar effects. Intracerebroventricular infusion of aliskiren at the rate of 0.05 mg/day markedly inhibited the increase in ANG II levels in the cerebrospinal fluid and in blood pressure (BP) caused by intracerebroventricular infusion of rat renin. In Dahl S rats on high salt, intracerebroventricular infusion of aliskiren at 0.05 and 0.25 mg/day for 2 wk similarly decreased resting BP in Dahl S rats on high salt. In other groups of Dahl S rats, high salt intake for 2 wk increased resting BP by ~25 mmHg, enhanced pressor and sympathoexcitatory responses to air-stress, and desensitized arterial baroreflex function. All of these effects were largely prevented by intracerebroventricular infusion of aliskiren at 0.05 mg/day. Aliskiren had no effects in rats on regular salt. Neither high salt nor aliskiren affected hypothalamic ANG II content. These results indicate that intracerebroventricular infusions of aliskiren and an AT(1) receptor blocker are similarly effective in preventing salt-induced sympathetic hyperactivity and hypertension in Dahl S rats, suggesting that renin in the brain plays an essential role in the salt-induced hypertension. The absence of an obvious increase in hypothalamic ANG II by high salt, or decrease in ANG II by aliskiren, suggests that tissue levels do not reflect renin-dependent ANG II production in sympathoexcitatory angiotensinergic neurons.  相似文献   

16.
The present study was designed to evaluate, in Wistar rats, the effect of high- or low-salt diet on the hemodynamic parameters and on the renal and lumbar sympathetic nerve activity. The renal gene expression of the renin angiotensin system components was also evaluated, aiming to find some correlation between salt intake, sodium homeostasis and blood pressure increase. Male Wistar rats received low (0.06% Na, TD 92141-Harlan Teklad), a normal (0.5% Na, TD 92140), or a high-salt diet (3.12% Na, TD 92142) from weaning to adulthood. Hemodynamic parameters such as cardiac output and total peripheral resistance, and the renal and lumbar sympathetic nerve activity were determined (n=45). Plasma renin activity, plasma and renal content of angiotensin (ANG) I and II, and the renal mRNA expression of angiotensinogen, renin, AT1 and AT2 receptors were also measured (n=24). Compared to normal- and low-salt diet-, high-salt-treated rats were hypertensive and developed an increase (P<0.05) in total peripheral resistance and lumbar sympathetic nerve activity. A decrease in renal renin and angiotensinogen-mRNAs and in plasma ANG II and plasma renin activity was also found in salt overloaded animals. The renal sympathetic nerve activity was higher (P<0.05) in low- compared to high-salt-treated rats, and was associated with an increase (P<0.05) in renal ANG I and II and with a decrease (P<0.05) in AT2 renal mRNA. Plasma ANG I and II and plasma renin activity were higher in low- than in normal-salt rats. Our results show that increased blood pressure is associated with increases in lumbar sympathetic nerve activity and total peripheral resistance in high-salt-treated rats. However, in low-salt-treated rats an increase in the renal sympathetic nerve was correlated with an increase in the renal content of ANG I and II and with a decrease in AT2 renal mRNA. These changes are probably in favor of the antinatriuretic response and the sodium homeostasis in the low-salt group.  相似文献   

17.
Intracerebroventricular (ICV) injections of interleukin-1 beta (IL-1 beta) produced a dose-dependent increase in plasma corticosterone and adrenocorticotropic hormone (ACTH) within 2 hr of injection and then declined over the next 24 hr. Using a potent steroidogenic dose of IL-1 beta (5 ng), ICV injection resulted in suppression of splenic macrophage IL-1 secretion following stimulation by LPS in vitro. Macrophage TGF-beta secretion was not affected, indicating a differential action of ICV IL-1 beta on macrophage cytokine production. Following adrenalectomy (ADX), the suppressive effect of ICV IL-1 beta was reversed and resulted in stimulation of macrophage IL-1 secretion, indicating that the suppression was mediated by adrenocorticol activation. However, surgical interruption of the splenic nerve to eliminate autonomic innervation of the spleen also prevented the macrophage suppressive signal in rats given ICV IL-1 beta. Furthermore, the combination of ADX and splenic nerve section resulted in a potent stimulatory effect of ICV IL-1 beta on splenic macrophage IL-1 secretion which was greater than either ADX or splenic nerve section alone. These results support the concept of a negative feedback on macrophage IL-1 secretion by the central action of IL-1 beta and indicate that both the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system mediate this effect.  相似文献   

18.
Renal and splanchnic sympathetic nerve discharge (SND) responses to increased (38-41 degrees C) internal temperature were determined in anesthetized young (3-6 mo old), mature (12 mo old), and senescent (24 mo old) Fischer 344 (F344) rats. We hypothesized that SND responses would be altered in senescent and mature rats as demonstrated by attenuated sympathoexcitatory responses to heating and by the absence of hyperthermia-induced SND pattern changes. The following observations were made. 1) Renal and splanchnic SND responses were significantly increased during heating in young and mature but not in senescent rats. 2) At 41 degrees C, renal and splanchnic SND responses were higher in young compared with senescent rats, and renal SND was higher in mature than in senescent rats. 3) Heating changed the SND bursting pattern in young, but not in mature or senescent, rats. 4) SND responses to heating did not differ between baroreceptor-innervated (BRI) and sinoaortic-denervated (SAD) senescent rats but were higher in SAD compared with BRI young rats. These results demonstrate an attenuated responsiveness of sympathetic neural circuits to heating in senescent F344 rats.  相似文献   

19.
A chromosome 1 blood pressure quantitative trait locus (QTL) was introgressed from the stroke-prone spontaneously hypertensive rats (SHRSP) to Wistar-Kyoto (WKY) rats. This congenic strain (WKYpch1.0) showed an exaggerated pressor response to both restraint and cold stress. In this study, we evaluated cardiovascular and sympathetic response to an air-jet stress and also examined the role of the brain renin-angiotensin system (RAS) in the stress response of WKYpch1.0. We measured mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA) responses to air-jet stress in WKYpch1.0, WKY, and SHRSP. We also examined effects of intracerebroventricular administration of candesartan, an ANG II type 1 receptor blocker, on MAP and HR responses to air-jet stress. Baseline MAP in the WKYpch1.0 and WKY rats were comparable, while it was lower than that in SHRSP rats. Baseline HR did not differ among the strains. In WKYpch1.0, air-jet stress caused greater increase in MAP and RSNA than in WKY. The increase in RSNA was as large as that in SHRSP, whereas the increase in MAP was smaller than in SHRSP. Intracerebroventricular injection of a nondepressor dose of candesartan inhibited the stress-induced pressor response to a greater extent in WKYpch1.0 than in WKY. Intravenous injection of phenylephrine caused a presser effect comparable between WKYpch1.0 and WKY. These results suggest that the chromosome 1 blood pressure QTL congenic rat has a sympathetic hyperreactivity to an air-jet stress, which causes exaggerated pressor responses. The exaggerated response is at least partly mediated by the brain RAS.  相似文献   

20.
The lamina terminalis is situated in the anterior wall of the third ventricle and plays a major role in fluid and electrolyte homeostasis and cardiovascular regulation. The present study examined whether the effects of intracerebroventricular infusion of hypertonic saline and ANG II on renal sympathetic nerve activity (RSNA) were mediated by the lamina terminalis. In control, conscious sheep (n = 5), intracerebroventricular infusions of 0.6 M NaCl (1 ml/h for 20 min) and ANG II (10 nmol/h for 30 min) increased mean arterial pressure (MAP) by 6 +/- 1 (P < 0.001) and 14 +/- 3 mmHg (P < 0.001) and inhibited RSNA by 80 +/- 6 (P < 0.001) and 89 +/- 7% (P < 0.001), respectively. Both treatments reduced plasma renin concentration (PRC). Intracerebroventricular infusion of artificial cerebrospinal fluid (1 ml/h for 30 min) had no effect. In conscious sheep with lesions of the lamina terminalis (n = 6), all of the responses to intracerebroventricular hypertonic saline and ANG II were abolished. In conclusion, the effects of intracerebroventricular hypertonic saline and ANG II on RSNA, PRC, and MAP depend on the integrity of the lamina terminalis, indicating that this site plays an essential role in coordinating the homeostatic responses to changes in brain Na(+) concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号