首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cystic fibrosis (CF) results from the absence or dysfunction of a single protein, the CF transmembrane conductance regulator (CFTR). CFTR plays a critical role in the regulation of ion transport in a number of exocrine epithelia. Improvement or restoration of CFTR function, where it is deficient, should improve the CF phenotype. There are >1000 reported disease-causing mutations of the CFTR gene. Recent investigations have afforded a better understanding of the mechanism of dysfunction of many of these mutant CFTRs, and have allowed them to be classified according to their mechanism of dysfunction. These data, as well as an enhanced understanding of the role of CFTR in regulating epithelial ion transport, have led to the development of therapeutic strategies based on pharmacologic enhancement or repair of mutant CFTR dysfunction. The strategy, termed 'protein repair therapy', is aimed at improving the regulation of epithelial ion transport by mutant CFTRs in a mutation-specific fashion. The grouping of CFTR gene mutations, according to mechanism of dysfunction, yields some guidance as to which pharmacologic repair agents may be useful for specific CFTR mutations. Recent data has suggested that combinations of pharmacologic repair agents may be necessary to obtain clinically meaningful CFTR repair. Nevertheless, such strategies to improve mutant CFTR function hold great promise for the development of novel therapies aimed at correcting the underlying pathophysiology of CF.  相似文献   

2.
Defective cAMP-stimulated chloride conductance of the plasma membrane of epithelial cell is the hallmark of cystic fibrosis (CF) and results from mutations in the cystic fibrosis transmembrane conductance regulator, CFTR. In the majority of CF patients, mutations in the CFTR lead to its misfolding and premature degradation at the endoplasmic reticulum (ER). Other mutations impair the cAMP-dependent activation or the ion conductance of CFTR chloride channel. In the present work we identify a novel mechanism leading to reduced expression of CFTR at the cell surface, caused by C-terminal truncations. The phenotype of C-terminally truncated CFTR, representing naturally occurring premature termination and frameshift mutations, were examined in transient and stable heterologous expression systems. Whereas the biosynthesis, processing, and macroscopic chloride channel function of truncated CFTRs are essentially normal, the degradation rate of the mature, complex-glycosylated form is 5- to 6-fold faster than the wild type CFTR. These experiments suggest that the C terminus has a central role in maintaining the metabolic stability of the complex-glycosylated CFTR following its exit from the ER and provide a plausible explanation for the severe phenotype of CF patients harboring C-terminal truncations.  相似文献   

3.
Cystic fibrosis (CF) is a lethal autosomal recessive genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR). Mutations in the CFTR gene may result in a defective protein processing that leads to changes in function and regulation of this chloride channel. Despite of the expression of CFTR in the kidney, patients with CF do not present major renal dysfunction, but it is known that both the urinary excretion of proteins and renal capacity to concentrate and dilute urine are altered in these patients. CFTR mRNA is expressed in all nephron segments of rat and human, and this abundance is more prominent in renal cortex and outer medulla renal areas. CFTR protein was detected in apical surface of both proximal and distal tubules of rat kidney but not in the outer medullary collecting ducts. Studies have demonstrated that CFTR does not only transport Cl but also ATP. ATP transport by CFTR could be involved in the control of other ion transporters such as Na+ (ENaC) and K+ (renal outer medullary potassium) channels, especially in TAL and CCD. In the kidney, CFTR also might be involved in the endocytosis of low-molecular-weight proteins by proximal tubules. This review is focused on the CFTR function and structure, its role in the renal physiology, and its modulation by hormones involved in the control of extracellular fluid volume.  相似文献   

4.
Dysfunction of CFTR in cystic fibrosis (CF) airway epithelium perturbs the normal regulation of ion transport, leading to a reduced volume of airway surface liquid (ASL), mucus dehydration, decreased mucus transport, and mucus plugging of the airways. CFTR is normally expressed in ciliated epithelial cells of the surface and submucosal gland ductal epithelium and submucosal gland acinar cells. Critical questions for the development of gene transfer strategies for CF airway disease are what airway regions require CFTR function and how many epithelial cells require CFTR expression to restore normal ASL volume regulation and mucus transport to CF airway epithelium? An in vitro model of human CF ciliated surface airway epithelium (CF HAE) was used to test whether a human parainfluenza virus (PIV) vector engineered to express CFTR (PIVCFTR) could deliver sufficient CFTR to CF HAE to restore mucus transport, thus correcting the CF phenotype. PIVCFTR delivered CFTR to >60% of airway surface epithelial cells and expressed CFTR protein in CF HAE approximately 100-fold over endogenous levels in non-CF HAE. This efficiency of CFTR delivery fully corrected the basic bioelectric defects of Cl and Na+ epithelial ion transport and restored ASL volume regulation and mucus transport to levels approaching those of non-CF HAE. To determine the numbers of CF HAE surface epithelial cells required to express CFTR for restoration of mucus transport to normal levels, different amounts of PIVCFTR were used to express CFTR in 3%–65% of the surface epithelial cells of CF HAE and correlated to increasing ASL volumes and mucus transport rates. These data demonstrate for the first time, to our knowledge, that restoration of normal mucus transport rates in CF HAE was achieved after CFTR delivery to 25% of surface epithelial cells. In vivo experimentation in appropriate models will be required to determine what level of mucus transport will afford clinical benefit to CF patients, but we predict that a future goal for corrective gene transfer to the CF human airways in vivo would attempt to target at least 25% of surface epithelial cells to achieve mucus transport rates comparable to those in non-CF airways.  相似文献   

5.
Dysfunction of CFTR in cystic fibrosis (CF) airway epithelium perturbs the normal regulation of ion transport, leading to a reduced volume of airway surface liquid (ASL), mucus dehydration, decreased mucus transport, and mucus plugging of the airways. CFTR is normally expressed in ciliated epithelial cells of the surface and submucosal gland ductal epithelium and submucosal gland acinar cells. Critical questions for the development of gene transfer strategies for CF airway disease are what airway regions require CFTR function and how many epithelial cells require CFTR expression to restore normal ASL volume regulation and mucus transport to CF airway epithelium? An in vitro model of human CF ciliated surface airway epithelium (CF HAE) was used to test whether a human parainfluenza virus (PIV) vector engineered to express CFTR (PIVCFTR) could deliver sufficient CFTR to CF HAE to restore mucus transport, thus correcting the CF phenotype. PIVCFTR delivered CFTR to >60% of airway surface epithelial cells and expressed CFTR protein in CF HAE approximately 100-fold over endogenous levels in non-CF HAE. This efficiency of CFTR delivery fully corrected the basic bioelectric defects of Cl and Na+ epithelial ion transport and restored ASL volume regulation and mucus transport to levels approaching those of non-CF HAE. To determine the numbers of CF HAE surface epithelial cells required to express CFTR for restoration of mucus transport to normal levels, different amounts of PIVCFTR were used to express CFTR in 3%–65% of the surface epithelial cells of CF HAE and correlated to increasing ASL volumes and mucus transport rates. These data demonstrate for the first time, to our knowledge, that restoration of normal mucus transport rates in CF HAE was achieved after CFTR delivery to 25% of surface epithelial cells. In vivo experimentation in appropriate models will be required to determine what level of mucus transport will afford clinical benefit to CF patients, but we predict that a future goal for corrective gene transfer to the CF human airways in vivo would attempt to target at least 25% of surface epithelial cells to achieve mucus transport rates comparable to those in non-CF airways.  相似文献   

6.
Impaired biosynthetic processing of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR), a cAMP-regulated chloride channel, constitutes the most common cause of CF. Recently, we have identified a distinct category of mutation, caused by premature stop codons and frameshift mutations, which manifests in diminished expression of COOH-terminally truncated CFTR at the cell surface. Although the biosynthetic processing and plasma membrane targeting of truncated CFTRs are preserved, the turnover of the complex-glycosylated mutant is sixfold faster than its wild-type (wt) counterpart. Destabilization of the truncated CFTR coincides with its enhanced susceptibility to proteasome-dependent degradation from post-Golgi compartments globally, and the plasma membrane specifically, determined by pulse-chase analysis in conjunction with cell surface biotinylation. Proteolytic cleavage of the full-length complex-glycosylated wt and degradation intermediates derived from both T70 and wt CFTR requires endolysosomal proteases. The enhanced protease sensitivity in vitro and the decreased thermostability of the complex-glycosylated T70 CFTR in vivo suggest that structural destabilization may account for the increased proteasome susceptibility and the short residence time at the cell surface. These in turn are responsible, at least in part, for the phenotypic manifestation of CF. We propose that the proteasome-ubiquitin pathway may be involved in the peripheral quality control of other, partially unfolded membrane proteins as well.  相似文献   

7.
To investigate the degradation mechanism of misfolded membrane proteins from the cell surface, we used mutant cystic fibrosis transmembrane conductance regulators (CFTRs) exhibiting conformational defects in post-Golgi compartments. Here, we show that the folding state of CFTR determines the post-endocytic trafficking of the channel. Although native CFTR recycled from early endosomes back to the cell surface, misfolding prevented recycling and facilitated lysosomal targeting by promoting the ubiquitination of the channel. Rescuing the folding defect or down-regulating the E1 ubiquitin (Ub)-activating enzyme stabilized the mutant CFTR without interfering with its internalization. These observations with the preferential association of mutant CFTRs with Hrs, STAM-2, TSG101, hVps25, and hVps32, components of the Ub-dependent endosomal sorting machinery, establish a functional link between Ub modification and lysosomal degradation of misfolded CFTR from the cell surface. Our data provide evidence for a novel cellular mechanism of CF pathogenesis and suggest a paradigm for the quality control of plasma membrane proteins involving the coordinated function of ubiquitination and the Ub-dependent endosomal sorting machinery.  相似文献   

8.
I McIntosh  G R Cutting 《FASEB journal》1992,6(10):2775-2782
Cystic fibrosis (CF) is an inherited disorder causing pancreatic, pulmonary, and sinus disease in children and young adults. Abnormal viscosity of mucous secretions is a hallmark of the disease, and is believed to be the result of altered electrolyte transport across epithelial cell membranes. The monogenic etiology of this disease has been apparent for more than 40 years, but the defective gene has only recently been identified. This was made possible because of a revolution in genetic technology, called positional cloning, which can pinpoint disease genes without previous knowledge of the abnormal protein product. The protein encoded by the gene defective in CF has been termed the CF transmembrane conductance regulator (CFTR) because of its postulated role in electrolyte transport. Studies investigating the normal function of CFTR and how mutations affect that function, thereby causing CF, have required the combined skills of clinicians, geneticists, molecular biologists, and physiologists. From this collaborative effort a greater understanding of the pathogenesis of this disorder is now emerging. It may soon be possible to introduce novel therapies derived from this new knowledge that will be aimed directly at the basic defect. An ever-increasing number of genes of unknown function will be identified by continuing advances in molecular genetic technology and the advent of the genome sequencing project. The experience in cystic fibrosis research may prove to be a paradigm for investigation of the function of genes isolated by positional cloning methods.  相似文献   

9.
Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated chloride channel expressed in a wide variety of epithelial cells, mutations of which are responsible for the hallmark defective chloride secretion observed in cystic fibrosis (CF). Although CFTR has been implicated in bicarbonate secretion, its ability to directly mediate bicarbonate secretion of any physiological significance has not been shown. We demonstrate here that endometrial epithelial cells possess a CFTR-mediated bicarbonate transport mechanism. Co-culture of sperm with endometrial cells treated with antisense oligonucleotide against CFTR, or with bicarbonate secretion-defective CF epithelial cells, resulted in lower sperm capacitation and egg-fertilizing ability. These results are consistent with a critical role of CFTR in controlling uterine bicarbonate secretion and the fertilizing capacity of sperm, providing a link between defective CFTR and lower female fertility in CF.  相似文献   

10.
Although lung disease is the major cause of mortality in cystic fibrosis (CF), gastrointestinal (GI) manifestations are the first hallmarks in 15–20% of affected newborns presenting with meconium ileus, and remain major causes of morbidity throughout life. We have previously shown that cGMP-dependent phosphodiesterase type 5 (PDE5) inhibitors rescue defective CF Transmembrane conductance Regulator (CFTR)-dependent chloride transport across the mouse CF nasal mucosa. Using F508del-CF mice, we examined the transrectal potential difference 1 hour after intraperitoneal injection of the PDE5 inhibitor vardenafil or saline to assess the amiloride-sensitive sodium transport and the chloride gradient and forskolin-dependent chloride transport across the GI tract. In the same conditions, we performed immunohistostaining studies in distal colon to investigate CFTR expression and localization. F508del-CF mice displayed increased sodium transport and reduced chloride transport compared to their wild-type littermates. Vardenafil, applied at a human therapeutic dose (0.14 mg/kg) used to treat erectile dysfunction, increased chloride transport in F508del-CF mice. No effect on sodium transport was detected. In crypt colonocytes of wild-type mice, the immunofluorescence CFTR signal was mostly detected in the apical cell compartment. In F508del-CF mice, a 25% reduced signal was observed, located mostly in the subapical region. Vardenafil increased the peak of intensity of the fluorescence CFTR signal in F508del-CF mice and displaced it towards the apical cell compartment. Our findings point out the intestinal mucosa as a valuable tissue to study CFTR transport function and localization and to evaluate efficacy of therapeutic strategies in CF. From our data we conclude that vardenafil mediates potentiation of the CFTR chloride channel and corrects mislocalization of the mutant protein. The study provides compelling support for targeting the cGMP signaling pathway in CF pharmacotherapy.  相似文献   

11.
Cysticfibrosis (CF) is caused by mutations in the CF transmembraneconductance regulator (CFTR) protein, an epithelial chloride channelexpressed in the airways, pancreas, testis, and other tissues. Acentral question is how defective CFTR function in CF leads to chroniclung infection and deterioration of lung function. Several mechanismshave been proposed to explain lung disease in CF, including abnormalairway surface liquid (ASL) properties, defective airway submucosalgland function, altered inflammatory response, defective organellaracidification, loss of CFTR regulation of plasma membrane iontransporters, and others. This review focuses on the physiology of theASL and submucosal glands with regard to their proposed role in CF lungdisease. Experimental evidence for defective ASL properties and glandfunction in CF is reviewed, and deficiencies in understanding ASL/glandphysiology are identified as areas for further investigation. New modelsystems and measurement technologies are being developed to makeprogress in establishing lung disease mechanisms in CF, which shouldfacilitate mechanism-based design of therapies for CF.

  相似文献   

12.
The ATP-binding cassette (ABC) family of membrane transport proteins is the largest class of transporters in humans (48 members). The majority of ABC transporters function at the cell surface. Therefore, defective folding and trafficking of the protein to the cell surface can lead to serious health problems. The classic example is cystic fibrosis (CF). In most CF patients, there is a deletion of Phe508 in the CFTR protein (ΔF508 CFTR) that results in defective folding and intracellular retention of the protein (processing mutant). A potential treatment for most patients with CF would be to use a ligand(s) of CFTR that acts a pharmacological chaperone to correct the folding defect. The feasibility of such an approach was first demonstrated with the multidrug transporter P-glycoprotein (P-gp), an ABC transporter, and a sister protein of CFTR. It was found that P-gps with mutations at sites equivalent to those found in CFTR processing mutants were rescued when they were expressed in the presence of drug substrates or modulators of P-gp. These compounds acted as pharmacological chaperones and functioned by promoting interactions among the various domains in the protein during the folding process. Several groups have attempted to identify compounds that could rescue the folding defect in ΔF508 CFTR. The best compound identified through high-throughout screening is a quinazoline derivative (CFcor-325). Expression of ΔF508 CFTR as well as other CFTR processing mutants in the presence of 1 μM CFcor-325 promoted folding and trafficking of the mutant proteins to the cell surface in an active conformation. Therefore, CFcor-325 and other quinazoline derivates could be important therapeutic compounds for the treatment of CF.  相似文献   

13.
The most common mutation of the cystic fibrosis (CF) gene, the deletion of Phe508, encodes a protein (DeltaF508-CFTR) that fails to fold properly, thus mutated DeltaF508-cystic fibrosis transmembrane conductance regulator (CFTR) is recognized and degraded via the ubiquitin-proteasome endoplasmic reticulum-associated degradation pathway. Chemical and pharmacological chaperones and ligand-induced transport open options for designing specific drugs to control protein (mis)folding or transport. A class of compounds that has been proposed as having potential utility in DeltaF508-CFTR is that which targets the molecular chaperone and proteasome systems. In this study, we have selected deoxyspergualin (DSG) as a reference molecule for this class of compounds and for ease of cross-linking to human serum albumin (HSA) as a protein transporter. Chemical cross-linking of DSG to HSA via a disulfide-based cross-linker and its administration to cells carrying DeltaF508-CFTR resulted in a greater enhancement of DeltaF508-CFTR function than when free DSG was used. Function of the selenium-dependent oxidoreductase system was required to allow intracellular activation of HSA-DSG conjugates. The principle that carrier proteins can deliver pharmacological chaperones to cells leading to correction of defective CFTR functions is therefore proven and warrants further investigations.  相似文献   

14.
Production of hypochlorous acid (HOCl) in neutrophils, a critical oxidant involved in bacterial killing, requires chloride anions. Because the primary defect of cystic fibrosis (CF) is the loss of chloride transport function of the CF transmembrane conductance regulator (CFTR), we hypothesized that CF neutrophils may be deficient in chlorination of bacterial components due to a limited chloride supply to the phagolysosomal compartment. Multiple approaches, including RT-PCR, immunofluorescence staining, and immunoblotting, were used to demonstrate that CFTR is expressed in resting neutrophils at the mRNA and protein levels. Probing fractions of resting neutrophils isolated by Percoll gradient fractionation and free flow electrophoresis for CFTR revealed its presence exclusively in secretory vesicles. The CFTR chloride channel was also detected in phagolysosomes, a special organelle formed after phagocytosis. Interestingly, HL-60 cells, a human promyelocytic leukemia cell line, upregulated CFTR expresssion when induced to differentiate into neutrophils with DMSO, strongly suggesting its potential role in mature neutrophil function. Analyses by gas chromatography and mass spectrometry (GC-MS) revealed that neutrophils from CF patients had a defect in their ability to chlorinate bacterial proteins from Pseudomonas aeruginosa metabolically prelabeled with [(13)C]-l-tyrosine, unveiling defective intraphagolysosomal HOCl production. In contrast, both normal and CF neutrophils exhibited normal extracellular production of HOCl when stimulated with phorbol ester, indicating that CF neutrophils had the normal ability to produce this oxidant in the extracellular medium. This report provides evidence which suggests that CFTR channel expression in neutrophils and its dysfunction affect neutrophil chlorination of phagocytosed bacteria.  相似文献   

15.
Innate immune response in CF airway epithelia: hyperinflammatory?   总被引:4,自引:0,他引:4  
The lack of functional cystic fibrosis (CF) transmembrane conductance regulator (CFTR) in the apical membranes of CF airway epithelial cells abolishes cAMP-stimulated anion transport, and bacteria, eventually including Pseudomonas aeruginosa, bind to and accumulate in the mucus. Flagellin released from P. aeruginosa triggers airway epithelial Toll-like receptor 5 and subsequent NF-B signaling and production and release of proinflammatory cytokines that recruit neutrophils to the infected region. This response has been termed hyperinflammatory because so many neutrophils accumulate; a response that damages CF lung tissue. We first review the contradictory data both for and against the idea that epithelial cells exhibit larger-than-normal proinflammatory signaling in CF compared with non-CF cells and then review proposals that might explain how reduced CFTR function could activate such proinflammatory signaling. It is concluded that apparent exaggerated innate immune response of CF airway epithelial cells may have resulted not from direct effects of CFTR on cellular signaling or inflammatory mediator production but from indirect effects resulting from the absence of CFTRs apical membrane channel function. Thus, loss of Cl, HCO3, and glutathione secretion may lead to reduced volume and increased acidification and oxidation of the airway surface liquid. These changes concentrate proinflammatory mediators, reduce mucociliary clearance of bacteria and subsequently activate cellular signaling. Loss of apical CFTR will also hyperpolarize basolateral membrane potentials, potentially leading to increases in cytosolic [Ca2+], intracellular Ca2+, and NF-B signaling. This hyperinflammatory effect of CF on intracellular Ca2+ and NF-B signaling would be most prominently expressed during exposure to both P. aeruginosa and also endocrine, paracrine, or nervous agonists that activate Ca2+ signaling in the airway epithelia. Pseudomonas aeruginosa; Toll-like receptor; NF-B; oxidative stress; acidic airway surface liquid; calcium  相似文献   

16.
Cystic fibrosis (CF) is characterised by impaired epithelial ion transport and is caused by mutations in the cystic fibrosis conductance regulator protein (CFTR), a cAMP/PKA and ATP-regulated chloride channel. We recently demonstrated a cAMP/PKA/calcineurin (CnA)-driven association between annexin 2 (anx 2), its cognate partner –S100A10 and cell surface CFTR. The complex is required for CFTR and outwardly rectifying chloride channel function in epithelia. Since the cAMP/PKA-induced Cl current is absent in CF epithelia, we hypothesized that the anx 2–S100A10/CFTR complex may be defective in CFBE41o cells expressing the commonest F508del-CFTR (ΔF-CFTR) mutation. Here, we demonstrate that, despite the presence of cell surface ΔF-CFTR, cAMP/PKA fails to induce anx 2–S100A10/CFTR complex formation in CFBE41o− cells homozygous for F508del-CFTR. Mechanistically, PKA-dependent serine phosphorylation of CnA, CnA–anx 2 complex formation and CnA-dependent dephosphorylation of anx 2 are all defective in CFBE41o− cells. Immunohistochemical analysis confirms an abnormal cellular distribution of anx 2 in human and CF mouse epithelia.

Thus, we demonstrate that cAMP/PKA/CnA signaling pathway is defective in CF cells and suggest that loss of anx 2–S100A10/CFTR complex formation may contribute to defective cAMP/PKA-dependent CFTR channel function.  相似文献   


17.
Cystic fibrosis (CF) is a lethal recessive genetic disease caused by mutations in the CFTR gene. The gene product is a PKA-regulated anion channel that is important for fluid and electrolyte transport in the epithelia of lung, gut, and ducts of the pancreas and sweat glands. The most common CFTR mutation, ΔF508, causes a severe, but correctable, folding defect and gating abnormality, resulting in negligible CFTR function and disease. There are also a large number of rare CF-related mutations where disease is caused by CFTR misfolding. Yet the extent to which defective biogenesis of these CFTR mutants can be corrected is not clear. CFTRV232D is one such mutant that exhibits defective folding and trafficking. CFTRΔF508 misfolding is difficult to correct, but defective biogenesis of CFTRV232D is corrected to near wild-type levels by small-molecule folding correctors in development as CF therapeutics. To determine if CFTRV232D protein is competent as a Cl(-) channel, we utilized single-channel recordings from transfected human embryonic kidney (HEK-293) cells. After PKA stimulation, CFTRV232D channels were detected in patches with a unitary Cl(-) conductance indistinguishable from that of CFTR. Yet the frequency of detecting CFTRV232D channels was reduced to ~20% of patches compared with 60% for CFTR. The folding corrector Corr-4a increased the CFTRV232D channel detection rate and activity to levels similar to CFTR. CFTRV232D-corrected channels were inhibited with CFTR(inh-172) and stimulated fourfold by the CFTR channel potentiator VRT-532. These data suggest that CF patients with rare mutations that cause CFTR misfolding, such as CFTRV232D, may benefit from treatment with folding correctors and channel potentiators in development to restore CFTRΔF508 function.  相似文献   

18.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP sensitive Cl- channel that is defective in cystic fibrosis (CF). The most frequent mutation, namely deltaF508-CFTR, accounts for 66% of CF. Here we show that cAMP-activation of CFTR occurs via at least two distinct pathways: activation of CFTR molecules already present in the plasma membrane and protein kinase A (PKA)-mediated vesicular transport of new CFTR molecules to the plasma membrane and functional insertion into the membrane. We investigated the mechanisms that are responsible for these activation pathways using the Xenopus laevis oocytes expression system. We expressed CFTR and recorded continuously membrane current (Im), conductance (Gm) and capacitance (Cm), which is a direct measure of membrane surface area. Expression of CFTR alone did not change the plasma membrane surface area. However, activation of CFTR with cAMP increased Im, Gm and Cm while deltaF508-CFTR-expressing oocytes showed no response on cAMP. Inhibition of protein kinase A or buffering intracellular Ca2+ abolished the cAMP-induced increase in Cm while increases of Im and Gm were still present. ATP or the xanthine derivative 8-cyclopentyl-1,3-dipropylxanthine (CPX) did not further activate CFTR. Insertion of pre-formed CFTR into the plasma membrane could be prevented by compounds that interfere with intracellular transport mechanisms such as primaquine, brefeldin A, nocodazole. From these data we conclude that cAMP activates CFTR by at least two distinct pathways: activation of CFTR already present in the plasma membrane and exocytotic delivery of new CFTR molecules to the oocyte membrane and functional insertion into it.  相似文献   

19.
Defective transepithelial electrolyte transport is thought to initiate cystic fibrosis (CF) lung disease. Yet, how loss of CFTR affects electrolyte transport remains uncertain. CFTR?(/)? pigs spontaneously develop lung disease resembling human CF. At birth, their airways exhibit a bacterial host defense defect, but are not inflamed. Therefore, we studied ion transport in newborn nasal and tracheal/bronchial epithelia in tissues, cultures, and in vivo. CFTR?(/)? epithelia showed markedly reduced Cl? and HCO?? transport. However, in contrast to a widely held view, lack of CFTR did not increase transepithelial Na(+) or liquid absorption or reduce periciliary liquid depth. Like human CF, CFTR?(/)? pigs showed increased amiloride-sensitive voltage and current, but lack of apical Cl? conductance caused the change, not increased Na(+) transport. These results indicate that CFTR provides the predominant transcellular pathway for Cl? and HCO?? in porcine airway epithelia, and reduced anion permeability may initiate CF airway disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号