首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Escobar syndrome is a form of arthrogryposis multiplex congenita and features joint contractures, pterygia, and respiratory distress. Similar findings occur in newborns exposed to nicotinergic acetylcholine receptor (AChR) antibodies from myasthenic mothers. We performed linkage studies in families with Escobar syndrome and identified eight mutations within the gamma -subunit gene (CHRNG) of the AChR. Our functional studies show that gamma -subunit mutations prevent the correct localization of the fetal AChR in human embryonic kidney-cell membranes and that the expression pattern in prenatal mice corresponds to the human clinical phenotype. AChRs have five subunits. Two alpha, one beta, and one delta subunit are always present. By switching gamma to epsilon subunits in late fetal development, fetal AChRs are gradually replaced by adult AChRs. Fetal and adult AChRs are essential for neuromuscular signal transduction. In addition, the fetal AChRs seem to be the guide for the primary encounter of axon and muscle. Because of this important function in organogenesis, human mutations in the gamma subunit were thought to be lethal, as they are in gamma -knockout mice. In contrast, many mutations in other subunits have been found to be viable but cause postnatally persisting or beginning myasthenic syndromes. We conclude that Escobar syndrome is an inherited fetal myasthenic disease that also affects neuromuscular organogenesis. Because gamma expression is restricted to early development, patients have no myasthenic symptoms later in life. This is the major difference from mutations in the other AChR subunits and the striking parallel to the symptoms found in neonates with arthrogryposis when maternal AChR auto-antibodies crossed the placenta and caused the transient inactivation of the AChR pathway.  相似文献   

2.
Neural factors regulate AChR subunit mRNAs at rat neuromuscular synapses   总被引:21,自引:6,他引:21  
To elucidate the nature of signals that control the level and spatial distribution of mRNAs encoding acetylcholine receptor (AChR), alpha-, beta-, gamma-, delta- and epsilon-subunits in muscle fibers chronic paralysis was induced in rat leg muscles either by surgical denervation or by different neurotoxins that cause disuse of the muscle or selectively block neuromuscular transmission pre- or postsynaptically and cause an increase of AChRs in muscle membrane. After paralysis, the levels and the spatial distributions of the different subunit-specific mRNAs change discoordinately and seem to follow one of three different patterns depending on the subunit mRNA examined. The level of epsilon-subunit mRNA and its accumulation at the end-plate are largely independent on the presence of the nerve or electrical muscle activity. In contrast, the gamma-subunit mRNA level is tightly coupled to innervation. It is undetectable or low in innervated normally active muscle and in innervated but disused muscle, whereas it is abundant along the whole fiber length in denervated muscle or in muscle in which the neuromuscular contact is intact but the release of transmitter is blocked. The alpha-, beta-, and delta-subunit mRNA levels show a different pattern. Highest amounts are always found at end-plate nuclei irrespective of whether the muscle is innervated, denervated, active, or inactive, whereas in extrasynaptic regions they are tightly controlled by innervation partially through electrical muscle activity. The changes in the levels and distribution of gamma- and epsilon-subunit-specific mRNAs in toxin-paralyzed muscle correlate well with the spatial appearance of functional fetal and adult AChR channel subtypes along the muscle fiber. The results suggest that the focal accumulation at the synaptic region of mRNAs encoding the alpha-, beta-, delta-, and epsilon-subunits, which constitute the adult type end-plate channel, is largely determined by at least two different neural factors that act on AChR subunit gene expression of subsynaptic nuclei.  相似文献   

3.
Agrin activates MuSK, a receptor tyrosine kinase expressed in skeletal muscle, leading to tyrosine phosphorylation of the acetylcholine receptor (AChR) beta-subunit and clustering of AChRs. The importance of AChR beta-subunit tyrosine phosphorylation in clustering AChRs and regulating synaptic differentiation is poorly understood. We generated mice with targeted mutations in the three intracellular tyrosines of the AChR beta-subunit (AChR-beta(3F/3F)). Mice lacking AChR beta-subunit tyrosine phosphorylation thrive postnatally and have no overt behavioral defects, indicating that AChR beta-subunit tyrosine phosphorylation is not essential for the formation of neuromuscular synapses. Nonetheless, the size of synapses and the density of synaptic AChRs are reduced in AChR- beta(3F/3F) mutant mice. Moreover, synapses are structurally simplified and the organization of postjunctional folds is aberrant in mice lacking tyrosine phosphorylation of the AChR beta-subunit. Furthermore, mutant AChRs cluster poorly in response to agrin and are readily extracted from the cell surface of cultured myotubes by non-ionic detergent. These data indicate that tyrosine phosphorylation of the AChR beta-subunit has an important role in organizing AChRs and regulating synaptic differentiation.  相似文献   

4.
Both neurotrophic factors and activity regulate synaptogenesis. At neuromuscular synapses, the neural factor agrin released from motor neuron terminals stimulates postsynaptic specialization by way of the muscle specific kinase MuSK. In addition, activity through acetylcholine receptors (AChRs) has been implicated in the stabilization of pre- and postsynaptic contacts on muscle at various stages of development. We show here that activation of AChRs with specific concentrations of nicotine is sufficient to induce AChR aggregation and that this induction requires the function of L-type calcium channels (L-CaChs). Furthermore, AChR function is required for agrin induced AChR aggregation in C2 muscle cells. The same concentrations of nicotine did not induce observable tyrosine phosphorylation on either MuSK or the AChR beta subunit, suggesting significant differences between the mechanisms of agrin and activity induced aggregation. The AChR/L-CaCh pathway provides a mechanism by which neuromuscular signal transmission can act in concert with the agrin-MuSK signaling cascade to regulate NMJ formation.  相似文献   

5.
We have used subunit-specific antibodies to identify and to characterize partially the alpha, beta, gamma, and delta subunits of rat skeletal muscle acetylcholine receptor (AChR) on immunoblots. The alpha subunit of rat muscle is a single band of 42 kDa, whereas the beta subunit has an apparent molecular mass of 48 kDa. Both alpha and beta subunits are glycosylated and contain one or more N-linked oligosaccharide chains that are sensitive to endoglycosidase H digestion. The gamma and delta subunits, on the other hand, each appear as doublets on immunoblots, with apparent molecular masses of 52 kDa (gamma), 48 kDa (gamma') and 58 kDa (delta), 53 kDa (delta'), respectively. In each case, the two bands are structurally related and the lower band is probably the partial degradation product of the corresponding upper band. Each of the four gamma and delta polypeptides is N-glycosylated and contains both endoglycosidase H-sensitive and endoglycosidase H-resistant oligosaccharides. When the AChRs purified from embryonic, neonatal, adult, and denervated adult rat muscles were compared, no differences in the mobilities of alpha, beta, or delta subunits on sodium dodecyl sulfate gels were detected among them, either with or without endoglycosidase treatment. The gamma subunits, which were present in AChRs purified from neonatal, embryonic, or denervated rat muscles, were also identical; no gamma subunit was detected, however, in AChRs of normal adult rat muscle.  相似文献   

6.
7.
Madhavan R  Peng HB 《IUBMB life》2005,57(11):719-730
The neuromuscular junction (NMJ) is a synapse that develops between a motor neuron and a muscle fiber. A defining feature of NMJ development in vertebrates is the re-distribution of muscle acetylcholine (ACh) receptors (AChRs) following innervation, which generates high-density AChR clusters at the postsynaptic membrane and disperses aneural AChR clusters formed in muscle before innervation. This process in vivo requires MuSK, a muscle-specific receptor tyrosine kinase that triggers AChR re-distribution when activated; rapsyn, a muscle protein that binds and clusters AChRs; agrin, a nerve-secreted heparan-sulfate proteoglycan that activates MuSK; and ACh, a neurotransmitter that stimulates muscle and also disperses aneural AChR clusters. Moreover, in cultured muscle cells, several additional muscle- and nerve-derived molecules induce, mediate or participate in AChR clustering and dispersal. In this review we discuss how regulation of AChR re-distribution by multiple factors ensures aggregation of AChRs exclusively at NMJs.  相似文献   

8.
W N Green  A F Ross  T Claudio 《Neuron》1991,7(4):659-666
Different combinations of Torpedo acetylcholine receptor (AChR) subunits stably expressed in mouse fibroblasts were used to establish a role for phosphorylation in AChR biogenesis. When cell lines expressing fully functional AChR complexes (alpha 2 beta gamma delta) were labeled with 32P, only gamma and delta subunits were phosphorylated. Forskolin, which causes a 2- to 3-fold increase in AChR expression by stimulating subunit assembly, increased unassembled gamma phosphorylation, but had little effect on unassembled delta. The forskolin effect on subunit phosphorylation was rapid, significantly preceding its effect on expression. The pivotal role of the gamma subunit was established by treating alpha beta gamma and alpha beta delta cell lines with forskolin and observing increased expression of only alpha beta gamma complexes. This effect was also observed in alpha gamma, but not alpha delta cells. We conclude that the cAMP-induced increase in expression of cell surface AChRs is due to phosphorylation of unassembled gamma subunits, which leads to increased efficiency of assembly of all four subunits.  相似文献   

9.
The expression of acetylcholine receptors (AChR) at neuromuscular synapses in skeletal muscle is regulated by innervation. Recent evidence suggests that the neurotrophic factors involved in the expression of AChR subunit genes may be related to the prion protein (PrPc), a protein of unknown function expressed primarily in neurons which, in its modified form, PrPSc, is thought to have a role in the pathogenesis of transmissible spongiform encephalopathies. We have tested for an involvement of PrPc in the neurotrophic regulation of synaptic AChRs in muscle by comparing the contents of AChR epsilon- and gamma-subunit mRNAs by Northern blot analysis and by in situ hybridization in mice with normal and with deleted PrP genes. At the protein level, AChR expression was assessed electrophysiologically. No difference was found between muscles from the two types of animals, suggesting that the neural regulation of AChR subunit expression in skeletal muscle can be mediated by factors that are not derived from the PrP gene.  相似文献   

10.
The isolation and characterization of five clones carrying sequences of the alpha-, beta-, gamma-, delta- and epsilon-subunit precursors of the rat muscle acetylcholine receptor (AChR) are described. The deduced amino acid sequences indicate that these polypeptides contain 457-519 amino acids and reveal the structural characteristics common to subunits of ligand-gated ion channels. The pattern of subunit-specific mRNA levels in rat muscle shows characteristic changes during development and following denervation, suggesting that innervation of muscle reduces the expression of the alpha-, beta- and delta-subunit mRNAs, suppresses the expression of the gamma-subunit mRNA, and induces expression of epsilon-subunit mRNA. Subunit-specific cRNAs generated in vitro were injected into Xenopus laevis oocytes, resulting in the assembly of two functionally different AChR channel subtypes. The AChR gamma, composed of the alpha-, beta-, gamma- and delta-subunits, has functional properties similar to those of the native AChRs in fetal muscle. The AChR epsilon, composed of alpha-, beta-, delta- and epsilon-subunits, corresponds to the end-plate channel of the adult muscle. Thus in rat skeletal muscle the motor nerve regulates the expression of two functionally different AChR subtypes with different molecular composition by the differential expression of subunit-specific mRNAs.  相似文献   

11.
To study the functional and structural roles of the epsilon subunit in adult muscle acetylcholine receptor (AChR), we have co-expressed the alpha and epsilon subunits of the mouse receptor in transfected fibroblasts. Ligand binding studies suggest that association of epsilon with alpha subunit results in a lower association rate constant for 125I-labeled alpha-bungarotoxin binding than that of the unassembled alpha subunit, approaching that for toxin binding to the AChR. Furthermore, alpha epsilon complexes contain high affinity binding sites for competitive antagonists and agonists not present in the unassembled alpha subunit, but similar to one of the two nonequivalent binding sites in the adult AChR. Structural analysis of alpha epsilon complexes by sucrose gradient velocity centrifugation suggests that some of the complexes formed are trimers or tetramers of alpha and epsilon subunits. Comparison of these data with those previously obtained for alpha gamma complexes suggests that gamma and epsilon have homologous functional roles and identical structural positions in the fetal and adult AChRs, respectively.  相似文献   

12.
《The Journal of cell biology》1989,108(6):2277-2290
Torpedo californica acetylcholine receptor (AChR) alpha-, beta-, gamma- , and delta-subunit cDNAs were each stably introduced into muscle and/or fibroblast cell lines using recombinant retroviral vectors and viral infection, or using SV-40 vectors and DNA-mediated cotransfection. The expressed proteins were characterized in terms of their molecular mass, antigenicity, posttranslational processing, cell surface expression, stability in fibroblasts, stability in differentiated and undifferentiated muscle cells, and ability (of alpha) to bind alpha-bungarotoxin (BuTx). We demonstrated that the alpha, beta, gamma, and delta polypeptides acquired one, one, two, and three units of oligosaccharide, respectively. If all four subunits were expressed in the same cell, fully functional cell surface AChRs were produced which had a Kd for BuTx of 7.8 X 10(-11) M. In contrast, subunits expressed individually were not detected on the surface of fibroblasts and the Kd for BuTx binding to individual alpha polypeptides was only approximately 4 X 10(-7) M. The half-lives of the alpha, gamma, and delta subunits at 37 degrees C were all found to be quite short (approximately 43 min), while the half-life of the beta subunit was found to be even shorter (approximately 12 min). The unique half-life of the beta subunit suggests that it might perform a key regulatory role in the process of AChR subunit assembly. One stable fibroblast cell line was established by transfection that expressed beta, gamma, and delta subunits simultaneously. When this cell line was infected with a retroviral alpha recombinant, fully functional cell surface AChRs were produced. The successful expression of this pentameric protein complex combining transfection and infection techniques demonstrates one strategy for stably introducing the genes of a heterologous multisubunit protein complex into cells.  相似文献   

13.
Formation of the vertebrate neuromuscular junction (NMJ) takes place in a stereotypic pattern in which nerves terminate at select sarcolemmal sites often localized to the central region of the muscle fibers. Several lines of evidence indicate that the muscle fibers may initiate postsynaptic differentiation independent of the ingrowing nerves. For example, nascent acetylcholine receptors (AChRs) are pre-patterned at select regions of the muscle during the initial stage of neuromuscular synaptogenesis. It is not clear how these pre-patterned AChR clusters are assembled, and to what extent they contribute to pre- and post-synaptic differentiation during development. Here, we show that genetic deletion of the AChR gamma-subunit gene in mice leads to an absence of pre-patterned AChR clusters during initial stages of neuromuscular synaptogenesis. The absence of pre-patterned AChR clusters was associated with excessive nerve branching, increased motoneuron survival, as well as aberrant distribution of acetylcholinesterase (AChE) and rapsyn. However, clustering of muscle specific kinase (MuSK) proceeded normally in the gamma-null muscles. AChR clusters emerged at later stages owing to the expression of the AChR epsilon-subunit, but these delayed AChR clusters were broadly distributed and appeared at lower level compared with the wild-type muscles. Interestingly, despite the abnormal pattern, synaptic vesicle proteins were progressively accumulated at individual nerve terminals, and neuromuscular synapses were ultimately established in gamma-null muscles. These results demonstrate that the gamma-subunit is required for the formation of pre-patterned AChR clusters, which in turn play an essential role in determining the subsequent pattern of neuromuscular synaptogenesis.  相似文献   

14.
At the peripheral neuromuscular junction (NMJ), a significant number of nicotinic acetylcholine receptors (AChRs) recycle back into the postsynaptic membrane after internalization to intermingle with not-yet-internalized ;pre-existing' AChRs. However, the way in which these receptor pools are maintained and regulated at the NMJ in living animals remains unknown. Here, we demonstrate that recycled receptors in functional synapses are removed approximately four times faster than pre-existing receptors, and that most removed recycled receptors are replaced by new recycled ones. In denervated NMJs, the recycling of AChRs is significantly depressed and their removal rate increased, whereas direct muscle stimulation prevents their loss. Furthermore, we show that protein tyrosine phosphatase inhibitors cause the selective accumulation of recycled AChRs in the peri-synaptic membrane without affecting the pre-existing AChR pool. The inhibition of serine/threonine phosphatases, however, has no effect on AChR recycling. These data show that recycled receptors are remarkably dynamic, and suggest a potential role for tyrosine dephosphorylation in the insertion and maintenance of recycled AChRs at the postsynaptic membrane. These findings may provide insights into long-term recycling processes at less accessible synapses in the central nervous system in vivo.  相似文献   

15.
Neuromuscular synapse formation is brought about by a complex bi-directional exchange of information between the innervating motor neuron and its target skeletal muscle fiber. Agrin, a heparin sulfate proteoglycan, is released from the motor nerve terminal to activate its muscle-specific kinase (MuSK) receptor that leads to a second messenger cascade requiring rapsyn to ultimately bring about AChR clustering in the muscle membrane. Rapsyn performs many functions in skeletal muscle. First, rapsyn and AChRs co-target to the postsynatic apparatus. Second, rapsyn may self associate to stabilize and promote AChR clustering. Third, rapsyn is essential for AChR cluster formation. Fourth, rapsyn is required to transduce the agrin-evoked MuSK phosphorylation signal to AChRs. Finally, rapsyn links AChRs to the utrophin-associated complex, which appears to be required for AChR stabilization as well as maturation of the neuromuscular junction. Proteins within the utrophin-associated complex such as α-dystrobrevin and α-syntrophin are also important for signaling events that affect neuromuscular synapse stability and function. Here we review our current understanding of the role of the postsynaptic-submembrane machinery involving rapsyn and the utrophin-associated complex at the neuromuscular synapse. In addition we briefly review how these studies of the neuromuscular junction relate to GABAergic and glycinergic synapses in the CNS.  相似文献   

16.
We used transient transfection in COS cells to compare the properties of mouse muscle acetylcholine receptors (AChRs) containing alpha, beta, delta, and either gamma or epsilon subunits. gamma- and epsilon-AChRs had identical association rates for binding 125I-alpha-bungarotoxin, and identical curves for inhibition of toxin binding by d-tubocurarine, but epsilon-AChRs had a significantly longer half-time of turnover in the membrane than gamma-AChRs. A myasthenic serum specific for the embryonic form of the AChR reduced toxin binding to gamma-, but not epsilon-AChRs. The gamma-AChRs had channel characteristics of embryonic AChRs, whereas the major class of epsilon-AChR channels had the characteristics of adult AChRs. Two minor channel classes with smaller conductances were also seen with epsilon-AChR. Thus, some, but not all, of the differences between AChRs at adult endplates and those in the extrasynaptic membrane can be explained by the difference in subunit composition of gamma- and epsilon-AChRs.  相似文献   

17.
1. Mouse fibroblast cell lines were established that stably express Torpedo californica acetylcholine receptors (AChR) on their cell surface in quantities sufficient for biochemical and pharmacological analyses, as well as electrophysiological analysis at the single channel level. 2. Surface-expressed AChRs were shown to be assembled into proper alpha 2 beta gamma delta pentamers. 3. The distribution of surface-AChRs was uniform and identical in every cell. 4. We were able to successfully coculture AChR-fibroblasts with 1-day old Xenopus laevis embryonal neurons and maintain expression of cell surface AChRs. 5. Using the voltage-clamp technique, miniature end-plate currents were recorded from AChR-fibroblasts which were contacted by neurons. The current amplitudes of these AChRs were approximately 10-fold smaller than those observed in Xenopus myocytes, and the rise-times were slower.  相似文献   

18.
The formation of acetylcholine receptor (AChR) clusters at the neuromuscular junction was investigated by observing the sequential changes in AChR cluster distribution on cultured Xenopus muscle cells. AChRs were labeled with tetramethylrhodamine-conjugated alpha-bungarotoxin (TMR-alpha BT). Before innervation AChRs were distributed over the entire surface of muscle cells with occasional spots of high density (hot spots). When the nerve contacted the muscle cell, the large existing hot spots disappeared and small AChR clusters (less than 1 micron in diameter) initially emerged from the background along the area of nerve contact. They grew in size, increased in number, and fused to form larger clusters over a period of 1 or 2 days. Receptor clusters did not migrate as a whole as observed during "cap" formation in B lymphocytes. The rate of recruitment of AChRs at the nerve-muscle junction varied from less than 50 binding sites to 1000 sites/hr for alpha BT. In this study the diffusion-trap mechanism was tested for the nerve-induced receptor accumulation. The diffusion coefficient of diffusely distributed AChRs was measured using the fluorescence photobleaching recovery method and found to be 2.45 X 10(-10) cm2/sec at 22 degrees C. There was no significant difference in these values among the muscle cells cultured without nerve, the non-nerve-contacted muscle cells in nerve-muscle cultures, and the nerve-contacted muscle cells. It was found that the diffusion of receptors in the membrane is not rate-limiting for AChR accumulation.  相似文献   

19.
Agrin, a synapse-organizing protein externalized by motor axons at the neuromuscular junction (NMJ), initiates a signaling cascade in muscle cells leading to aggregation of postsynaptic proteins, including acetylcholine receptors (AChRs). We examined whether nitric oxide synthase (NOS) activity is required for agrin-induced aggregation of postsynaptic AChRs at the embryonic NMJ in vivo and in cultured muscle cells. Inhibition of NOS reduced AChR aggregation at embryonic Xenopus NMJs by 50-90%, whereas overexpression of NOS increased AChR aggregate area 2- to 3-fold at these synapses. NOS inhibitors completely blocked agrin-induced AChR aggregation in cultured embryonic muscle cells. Application of NO donors to muscle cells induced AChR clustering in the absence of agrin. Our results indicate that NOS activity is necessary for postsynaptic differentiation of embryonic NMJs and that NOS is a likely participant in the agrin-MuSK signaling pathway of skeletal muscle cells.  相似文献   

20.
In order to determine the roles of nerves in the formation of clusters of acetylcholine receptors (AChRs) during synaptogenesis, we examined the distribution of AChRs in denervated, nerve-transplanted (neurotized) muscles and in regenerated skeletal muscles of adult chickens by fluorescence microscopy using curaremimetic toxins. In the denervated muscles, many extrajunctional clusters developed at the periphery of some of the muscle nuclei of a single muscle fiber and continued to be present for up to 3 months. The AChR accumulations originally present at the neuromuscular junctions disappeared within 3 weeks. In the neurotized muscles, line-shaped AChR clusters developed at 4 days after transection of the original nerve, but no change in the distribution of AChRs had occurred even at 2 months after implantation of the foreign nerve. The line-shaped AChR clusters were found to be newly formed junctional clusters as they were associated with nerve terminals of similar shape and size. Some of both the line-shaped and extrajunctional clusters were formed at least partly by the redistribution of preexisting AChRs. Finally, based on the above observations, the regenerating muscle fibers in normal muscles and in denervated muscles were examined: The extrajunctional clusters appeared in both kinds of muscles at 2 weeks after injury. Afterward, during the innervation process, the line-shaped AChR clusters developed while the extrajunctional clusters disappeared in the innervated muscles. In contrast with this, in the absence of innervation, only the extrajunctional clusters continued to be present for up to 3 months. These results demonstrate clearly that the nerve not only induces the formation of junctional clusters at the contact site, but also prevents the formation of clusters at the extrajunctional region during synaptogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号