首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The effects of exogenous glycine on homocysteine (HoCys)-induced reductions in chick (Gallus gallus) embryo viability, HoCys-induced increases in brain and hepatic membrane lipid peroxidation, HoCys-induced apoptosis (caspase-3 activities) in brain and hepatic tissues, and HoCys-induced reductions in brain and hepatic S-adenosylemethionine (SAM)/S-adenosylhomocysteine (SAH) levels were studied. Exogenous HoCys caused reductions in percent living embryos and reductions in embryo masses. Exogenous glycine attenuated these HoCys-induced reductions in embryo viability. Brain and liver tissues of HoCys-treated embryos exhibited increased caspase-3 activities, increased lipid hydroperoxide (LPO) levels, and reduced levels of long-chain polyunsaturated membrane fatty acids. While exogenous glycine attenuated HoCys-induced changes in brain caspase-3 activities, brain LPO levels, and brain membrane PUFA levels, exogenous glycine was less effective in attenuating HoCys-induced changes in hepatic caspase-3 activities and hepatic membrane PUFA levels. HoCys-induced reductions in SAM/SAH ratios were observed in brains and livers. Exogenous glycine attenuated HoCys-induced reductions in brain SAM/SAH. However, glycine was unable to attenuate HoCys-induced reductions in hepatic SAM/SAH levels.  相似文献   

2.
Injection of L-glucose (9.29 micromol/kg egg) into the air sac of fertile chicken eggs during the first 3 days of embryonic development (E(0-2)) has been reported to cause hyperglycemia and membrane lipid peroxidation in embryonic chick hepatic membranes. These observations have now been extended into embryonic chick brains at 11 days of development (theoretical stage 37). L-glucose caused a 1.7-fold increase in serum D-glucose levels (p< or =0.05), a 1.4-fold decrease in the % living embryos (p< or =0.05), a 1.1-fold decrease in embryonic masses (p< or =0.05), and a 1.4-fold decrease in embryonic brain masses (p< or =0.05) as compared to controls. L-glucose also caused a 3.8-fold increase in brain lipid hydroperoxide (LPO) levels (p< or =0.05) and complex changes in the relative fatty acid composition of brain membranes. Consistent with the hypothesis of hyperglycemia-induced increases in lipid peroxidation were decreased docosahexaenoic acid (DHA: 22: 6, n-3) levels as compared to controls (p< or =0.05). However, hyperglycemia-induced increased docosapentaenoic acid (DPA: 22:5, n-6) levels, decreased arachidonic acid (20; 4, n-6) levels, decreased linoleic acid (18:2, n-6) levels, and increased levels of several saturated short-chain membrane fatty acids were also observed as compared to controls (p< or =0.05). l-glucose caused a 12-fold increase in brain homocysteine levels, a 2.5-fold decrease in S-adenosylmethionine levels, and a 2-fold increase in S-adenosylhomocysteine levels as compared to controls (p< or =0.05). These hyperglycemia-induced alterations were poorly attenuated by exogenous folic acid (181.2 micromol/kg egg).  相似文献   

3.
In adult systems, high homocysteine (HoCys) levels inhibit methylation reactions and can induce apoptosis in the central nervous system. In embryos, exogenous HoCys is teratogenic and is associated with neural tube defects. Because, methylation inhibitors and inducers of apoptosis can influence membrane composition, we have studied whether or not embryonic exposure to HoCys influenced membrane phospholipid levels, membrane fatty acid composition, and Caspase-3 activities in embryonic chick brains. Embryonic exposure to HoCys caused reduced brain phosphatidylcholine levels and increased levels of brain phosphatidylethanolamine. Exogenous HoCys also promoted decreased levels of long-chain, unsaturated membrane fatty acids and increased levels of saturated short-chain membrane fatty acids. These HoCys-induced brain membrane changes correlated with HoCys-induced increases in brain Caspase-3 activities, HoCys-induced reductions in brain mass, HoCys-induced reductions in embryo mass, and HoCys-induced reductions in the percentage of embryos that survived to 11 days of development (theoretical stage 37). Thus, HoCys-induced changes in brain membrane composition correlated with HoCys-induced apoptosis and reduced embryo viability.  相似文献   

4.
BACKGROUND: This project investigated whether or not EtOH-induced reductions in the levels of long-chain polyunsaturated membrane fatty acids could be attenuated by exogenous exposure to either alpha-tocopherol, gamma-tocopherol, or diallyl sulfide (DAS). METHODS: At 0 days of development, fertile chicken eggs were injected with a single dose of either saline supplemented with various concentrations of EtOH, alpha- or gamma-tocopherol and EtOH, or DAS and EtOH. At 18 days of development, brains were isolated and subjected to membrane analyses. RESULTS: When exposed to EtOH, concentrations ranging from 0-60.50 microm/Kg egg, dose-dependent decreases in the levels of brain 18:0, 18:1 (n-9), 18:2 (n-6), 18:3 (n-3), and 20:4 (n-6) were observed. These ethanol-induced changes in membrane fatty acid composition correlated with ethanol-induced reductions in brain mass, brain protein levels, acetylcholine esterase (AChE) activities and correlated with increased lipid hydroperoxide levels. Exposure to either 2.5 microm alpha-tocopherol/Kg egg and 6.050 mm EtOH/Kg egg, or 2.5 microm alpha-tocopherol/ Kg egg and 6.050 mm EtOH/Kg egg attenuated EtOH-induced changes in membrane fatty acid composition, brain mass, brain protein levels, AChE activities, and lipid hydroperoxide levels. Embryonic exposure to the cytochrome p450-2E1 inhibitor, diallyl sulfide (DAS), also attenuated EtOH-induced decreases in long-chain, unsaturated membrane fatty acids. However, embryonic exposure to DAS promoted abnormally low brain mass. CONCLUSION: EtOH-induced reductions in the levels of brain long-chain polyunsaturated fatty acid are caused by lipid peroxidation.  相似文献   

5.
Lipid composition, intracellular products of lipid peroxidation (LPO), and the activities of extracellular enzymes were studied during submerged cultivation of the xylotrophic fungus Lentinus (Panus) tigrinus VKM F-3616D. The maximum secretion of ligninolytic enzymes during the phase of active mycelium growth correlated with increased content of readily oxidized phospholipids and unsaturated fatty acids and with low content of the LPO products. In the idiophase, which was characterized by lower excretion of extracellular ligninolytic enzymes, the content of more stable phospholipids, saturated fatty acids, and LPO products increased. A relationship between the composition of mycelial lipids and the secretion of ligninolytic enzymes was revealed.  相似文献   

6.
The regulation of the nature and quantity of the fatty acids produced in vivo by Acholeplasma laidlawii B in the presence of various exogenous fatty acids has been investigated. In the presence of exogenous medium- or long-chain fatty acids, the organism appears to reduce the amounts of de novo biosynthesized fatty acids in its cellular lipid pool by two distinct mechanisms: an excretion of biosynthesized fatty acids to the growth medium as free fatty acids, and a reduction in total de novo biosynthetic output. These two mechanisms do not suffice to maintain constant total membrane lipid levels, but they do appear to significantly moderate the effect of exogenous fatty acids on the level of membrane lipid. In the presence of short-chain fatty acids, total membrane lipid levels are not elevated. Exogenous fatty acids can cause shifts in the average chain length of de novo biosynthesized fatty acids; the magnitudes and directions of these shifts can be correlated with the specificity of the exogenous species for esterification to the 1- or the 2-position of the glycerol moiety of membrane glycerolipids. As the various endogenously synthesized fatty acids differ in their positional specificity for glycerolipid esterification, we propose that the competition of an exogenous species with significant specificity for a particular position with the endogenously derived fatty acids specific for that position can selectively depress the synthesis of such endogenously derived species, thereby altering the overall product spectrum of de novo fatty acid biosynthesis in vivo.  相似文献   

7.
Linoleic acid, and its hydroperoxides and secondary autoxidation products were orally administered to rats (400 mg/rat). Their effects on hepatic lipid metabolism were examined. Linoleic acid reduced the activities of de novo synthesis of fatty acids and acetyl-CoA carboxylase. It decreased the CoASH level and caused the accumulation of long-chain acyl-CoA. Hydroperoxides changed the compositions of unsaturated fatty acids in the hepatic lipids and lowered the content of neutral lipids. Secondary products stimulated carnitine palmitoyltransferase and decreased the content of neutral lipids. They reduced the activities of de novo synthesis of fatty acids and acetyl-CoA carboxylase, and the levels of CoASH and acetyl-CoA. Thus, the effect of secondary products was apparently different from those of linoleic acid and its hydroperoxides.  相似文献   

8.
Lipid composition, intracellular products of lipid peroxidation (LPO), and the activities of extracellular enzymes were studied during submerged cultivation of the xylotrophic fungus Lentinus (Panus) tigrinus VKMF-3616D. The maximum secretion of ligninolytic enzymes during the phase of active mycelium growth correlated with increased content of readily oxidized phospholipids and unsaturated fatty acids and with low content of the LPO products. In the idiophase, which was characterized by lower excretion of extracellular ligninolytic enzymes, the content of more stable phospholipids, saturated fatty acids, and LPO products increased. A relationship between the composition of mycelial lipids and the secretion of ligninolytic enzymes was revealed.  相似文献   

9.
1. The effects of unsaturated fatty acids on drug-metabolizing enzymes in vitro were measured by using rat and rabbit hepatic 9000g supernatant fractions. 2. Unsaturated fatty acids inhibited the hepatic microsomal metabolism of ;type I' drugs with inhibition increasing with unsaturation: arachidonic acid>linolenic acid>linoleic acid>oleic acid. Inhibition was independent of lipid peroxidation. Linoleic acid competitively inhibited the microsomal O-demethylation of p-nitroanisole and the N-demethylation of (+)-benzphetamine. 3. The hepatic microsomal metabolism of ;type II' substrates, aniline and (-)-amphetamine, was not affected by unsaturated fatty acids. 4. The rate of reduction of p-nitrobenzoic acid and Neoprontosil was accelerated by unsaturated fatty acids. 5. Linoleic acid up to 3.5mm did not decelerate the generation of NADPH by rat liver soluble fraction, nor the activity of NADPH-cytochrome c reductase of rat liver microsomes. Hepatic microsomal NADPH oxidase activity was slightly enhanced by added linoleic acid. 6. No measurable disappearance of exogenously added linoleic acid occurred when this fatty acid was incubated with rat liver microsomes and an NADPH source. 7. The unsaturated fatty acids used in this study produced type I spectra when added to rat liver microsomes, and affected several microsomal enzyme activities in a manner characteristic of type I ligands.  相似文献   

10.
We have previously reported that chronic valproate administration reduced ketonemia in suckling mice and fasting epileptic children. The present study demonstrates that even a single dose of valproate in the therapeutic range for man caused a prolonged reduction of plasma beta-hydroxybutyrate levels in normal infant mice; the plasma glucose concentration was also significantly lowered. In the livers of these animals, there were extraordinary decreases in levels of free coenzyme A, acetyl CoA and free carnitine. Concomitantly concentrations of acid-soluble fatty acid (short-chain, non-acetyl) coenzyme A esters and of acid-insoluble (long-chain) fatty acid carnitine esters increased. There was evidence for inhibition of the metabolic flux through the Krebs citric acid cycle at those enzyme reactions which require coenzyme A. While valproate doubled liver alanine levels, concentrations of liver aspartate, glutamate and glutamine were reduced. All of the valproate-induced metabolite changes can be explained by the decrease of coenzyme A due to the accumulation of acid-soluble (non-acetyl) coenzyme A esters (presumably valproyl CoA and further metabolites). Decreased coenzyme A would limit the activities of one or more enzymes in the pathway of fatty acid oxidation and the Krebs citric acid cycle. Secondary decreases in acetyl CoA would limit both ketogenesis and gluconeogenesis. Decreased levels of selected hepatic amino acids could reflect their use as alternative fuels. The effect of clinical doses of valproate in infant mice may relate to the valproate-associated syndrome of hepatic failure and Reye-like encephalopathy in some infants and children and suggest a simple screen for those who may be at particular risk.  相似文献   

11.
Exposure to ethanol at 0 days of development induced changes in total membrane fatty acid composition at 18 days of development. When exposed to ethanol concentrations ranging from 0–743.27μm/kg egg wt, decreased levels of long-chain, unsaturated membrane fatty acids and increased levels of short-chain, saturated membrane fatty acids were observed in embryonic chick brains at 18 days of development. The ratios of unsaturated membrane/saturated membrane fatty acids correlated with an ethanol-induced reduction in neuron densities within the cerebral hemispheres and three different regions of the optic lobes with correlation coefficients (r) ranging from 0.44 [F = (1, 32) 7.84; P ≤ 0.009] to 0.59 [F = (1, 32) 17.38; P ≤ 0.0002]. The ratios of long-chain/short-chain membrane fatty acids also correlated with an ethanol-induced reduction in neuron densities within the cerebral hemispheres and three different regions of the optic lobes with correlation coefficients (r) ranging from 0.51 [F = (1, 32) 11.27; P≤ 0.002] to 0.66 [F = (1, 32) 24.40; P ≤ 0.0001]. Cell fractionation studies indicated that the ethanol-induced changes in brain membrane fatty acid composition were restricted to microsomal membranes.  相似文献   

12.
Saccharomyces cerevisiae is an ideal model eukaryote for studying fatty-acid transport. Yeast are auxotrophic for unsaturated fatty acids when grown under hypoxic conditions or when the fatty-acid synthase inhibitor cerulenin is included in the growth media. The FAT1 gene encodes a protein, Fat1p, which is required for maximal levels of fatty-acid import and has an acyl CoA synthetase activity specific for very-long-chain fatty acids suggesting this protein plays a pivotal role in fatty-acid trafficking. In the present work, we present evidence that Fat1p and the murine fatty-acid transport protein (FATP) are functional homologues. FAT1 is essential for growth under hypoxic conditions and when cerulenin was included in the culture media in the presence or absence of unsaturated fatty acids. FAT1 disruptants (fat1Delta) fail to accumulate the fluorescent long-chain fatty acid fatty-acid analogue 4, 4-difluoro-5-methyl-4-bora-3a,4a-diaza-s-indacene-3-do decanoic acid (C1-BODIPY-C12), have a greatly diminished capacity to transport exogenous long-chain fatty acids, and have very long-chain acyl CoA synthetase activities that were 40% wild-type. The depression in very long-chain acyl CoA synthetase activities were not apparent in cells grown in the presence of oleate. Additionally, beta-oxidation of exogenous long-chain fatty acids is depressed to 30% wild-type levels. The reduction of beta-oxidation was correlated with a depression of intracellular oleoyl CoA levels in the fat1Delta strain following incubation of the cells with exogenous oleate. Expression of either Fat1p or murine FATP from a plasmid in a fat1Delta strain restored these phenotypic and biochemical deficiencies. Fat1p and FATP restored growth of fat1Delta cells in the presence of cerulenin and under hypoxic conditions. Furthermore, fatty-acid transport was restored and was found to be chain length specific: octanoate, a medium-chain fatty acid was transported in a Fat1p- and FATP-independent manner while the long-chain fatty acids myristate, palmitate, and oleate required either Fat1p or FATP for maximal levels of transport. Lignoceryl CoA synthetase activities were restored to wild-type levels in fat1Delta strains expressing either Fat1p or FATP. Fat1p or FATP also restored wild-type levels of beta-oxidation of exogenous long-chain fatty acids. These data show that Fat1p and FATP are functionally equivalent when expressed in yeast and play a central role in fatty-acid trafficking.  相似文献   

13.
In this study the influence of long-term feeding of an alpha-linolenic acid (LNA) enriched diet on the sensitivity of SHR to catecholamine-induced myocardial injury was investigated. An enhanced ischemic vulnerability after LNA supplementation was observed as indicated both by a marked decrease of enzyme activities in the myocardium and by a pronounced elevation of plasma enzymes. Distinctly higher TBARS levels in heart tissue and plasma of LNA rich fed SHR suggest that an exaggerated lipid peroxidation might contribute to the increased ischemic vulnerability. Non-enzymatic lipid peroxidation is favoured by a feeding-provoked enrichment in highly unsaturated fatty acids in tissue phospholipids. Under such conditions of enhanced substrate availability for radical-induced lipid peroxidation an increased requirement for antioxidants can be assumed which might not sufficiently be met by tocopherol-supplementation in SHR because of their known defects in antioxidative defense mechanisms.  相似文献   

14.
The effect of N-palmitoylethanolamine (NPE, 10(-5) M) on the lipid peroxidation (LPO) processes, phospholipid and fatty acid content in the rat liver at perfusion and ischemia during the liver preservation was estimated. As early as at the 5th min of perfusion by cooled conserving solution "Eurocollins", LPO activation was determined. Simultaneously the content of lysophosphatidylcholine (LPC) and phosphatidylserine increased, the total cholesterol level decreased. The redistribution of saturated and unsaturated fatty acids quantity was detected. The addition of NPE into "Eurocollins" solution reduced the accumulation of malonedialdehyde and LPC, modified the fatty acids content. These effects, evidently, formed the basis of the protective action of NPE on the hepatic tissues under anoxia.  相似文献   

15.
9-Oxononanoic acid, which is one of the major products of the autoxidation of linoleic acid, was administered orally to rats and its effect on hepatic lipid metabolism was investigated. The de novo synthesis of fatty acids was strongly reduced 30 h after the administration of 100 mg of 9-oxononanoic acid as compared to that in the saline-administered group. Activity of acetyl-CoA carboxylase decreased by 60% and the activity of carnitine palmitoyltransferase increased by 35% in the test group. The level of triacylglycerols in serum was low and the level of free fatty acids remained unchanged. Thus, the administration of 9-oxononanoic acid decreased hepatic lipogenesis. It is generally believed that the reduction in lipogenesis is facilitated by a decrease in the NADPH level. The ratio of NADPH/NADP in the test group, however, became high as compared to that in the control group, and the activities of glucose 6-phosphate and isocitrate dehydrogenases increased. On the other hand, the levels of CoA derivatives, especially long-chain acyl-CoA, were higher in the test group than in the control. Therefore, the reduction of hepatic lipogenesis in the 9-oxononanoic acid group could be attributed to the inhibition of acetyl-CoA carboxylase by the accumulated long-chain acyl-CoA.  相似文献   

16.
Type 2 diabetes is characterized by two major defects: a dysregulation of pancreatic hormone secretion (quantitative and qualitative--early phase, pulsatility--decrease of insulin secretion, increase in glucagon secretion), and a decrease in insulin action on target tissues (insulin resistance). The defects in insulin action on target tissues are characterized by a decreased in muscle glucose uptake and by an increased hepatic glucose production. These abnomalities are linked to several defects in insulin signaling mechanisms and in several steps regulating glucose metabolism (transport, key enzymes of glycogen synthesis or of mitochondrial oxidation). These postreceptors defects are amplified by the presence of high circulating concentrations of free fatty acids. The mechanisms involved in the of long-chain fatty acids are reviewed in this paper. Indeed, elevated plasma free fatty acids contribute to decrease muscle glucose uptake (mainly by reducing insulin signaling) and to increase hepatic glucose production (stimulation of gluconeogenesis by providing cofactors such as acetyl-CoA, ATP and NADH). Chronic exposure to high levels of plasma free fatty acids induces accumulation of long-chain acyl-CoA into pancreatic beta-cells and to the death of 50 % of beta-cell by apoptosis (lipotoxicity).  相似文献   

17.
The effects of unsaturated fatty acids on the activities of peroxisomal enzymes of Tetrahymena pyriformis were investigated. When saturated fatty acids and the corresponding unsaturated fatty acids (C18) were added to the culture medium at 0.05%, the activities of peroxisomal enzymes [fatty acyl-CoA oxidase (FAO), carnitine acetyltransferase (CAT), isocitrate lyase (ICL), and malate synthase (MS)] were significantly increased. The order of effectiveness was linoleic acid greater than oleic acid greater than stearic acid. However, alpha-linolenic acid and gamma-linolenic acid at the same concentration were lethal to the cells. The inhibitory effect on growth disappeared upon addition of an antioxidant, alpha-tocopherol. Lipid peroxides derived from unsaturated fatty acids induced marked cell lysis. In the presence of a low concentration (0.005%) of linolenic acid the production of lipid peroxide was lower and no inhibitory effect on the growth was observed, while the activities of peroxisomal enzymes participating in lipid metabolism and that of catalase were significantly increased. These results indicate that the peroxisomal enzyme systems related to the beta-oxidations of fatty acids and the glyoxylate cycle are regulated by unsaturated long-chain fatty acids, including linolenic acid, at low concentrations, as well as by saturated fatty acid in the medium.  相似文献   

18.
The peroxidation of C18 unsaturated fatty acids by fungal manganese peroxidase (MnP)/Mn(II) and by chelated Mn(III) was studied with application of three different methods: by monitoring oxygen consumption, by measuring conjugated dienes and by thiobarbituric acid-reactive substances (TBARS) formation. All tested polyunsaturated fatty acids (PUFAs) were oxidized by MnP in the presence of Mn(II) ions but the rate of their oxidation was not directly related to degree of their unsaturation. As it has been shown by monitoring oxygen consumption and conjugated dienes formation the linoleic acid was the most easily oxidizable fatty acid for MnP/Mn(II) and chelated Mn(III). However, when the lipid peroxidation (LPO) activity was monitored by TBARS formation the linolenic acid gave the highest results. High accumulation of TBARS was also recorded during peroxidation of linoleic acid initiated by MnP/Mn(II). Action of Mn(III)-tartrate on the PUFAs mimics action of MnP in the presence of Mn(II) indicating that Mn(III) ions are involved in LPO initiation. Although in our experiments Mn(III) tartrate gave faster than MnP/Mn(II) initial oxidation of the unsaturated fatty acids with consumption of O2 and formation of conjugated dienes the process was not productive and did not support further development of LPO. The higher effectiveness of MnP/Mn(II)-initiated LPO system depends on the turnover of manganese provided by MnP. It is proposed that the oxygen consumption assay is the best express method for evaluation of MnP- and Mn(III)-initiated peroxidation of C18 unsaturated fatty acids.  相似文献   

19.
Hepatic steatosis, the accumulation of lipids in the liver, is widely believed to result in insulin resistance. To test the causal relationship between hepatic steatosis and insulin resistance, we generated mice that overexpress acyl-CoA:diacylglycerol acyltransferase 2 (DGAT2), which catalyzes the final step of triacylglycerol (TG) biosynthesis, in the liver (Liv-DGAT2 mice). Liv-DGAT2 mice developed hepatic steatosis, with increased amounts of TG, diacylglycerol, ceramides, and unsaturated long-chain fatty acyl-CoAs in the liver. However, they had no abnormalities in plasma glucose and insulin levels, glucose and insulin tolerance, rates of glucose infusion and hepatic glucose production during hyperinsulinemic-euglycemic clamp studies, or activities of insulin-stimulated signaling proteins in the liver. DGAT1 overexpression in the liver also failed to induce glucose or insulin intolerance. Our results indicate that DGAT-mediated lipid accumulation in the liver is insufficient to cause insulin resistance and show that hepatic steatosis can occur independently of insulin resistance.  相似文献   

20.
Determination of reliable bioindicators of diabetes-induced oxidative stress and the role of dietary vitamin E supplementation were investigated. Blood (plasma) chemistries, lipid peroxidation (LPO), and antioxidant enzyme activities were measured over 12 weeks in New Zealand White rabbits (control, diabetic, and diabetic + vitamin E). Cholesterol and triglyceride levels did not correlate with diabetic state. PlasmaLPOwas influenced by diabetes and positively correlated with glucose concentration only, not cholesterol or triglycerides. Liver glutathione peroxidase (GPX) activity negatively correlated with glucose and triglyceride levels. Plasma and erythrocyte GPX activities positively correlated with glucose, cholesterol, and triglyceride concentrations. Liver superoxide dismutase activity positively correlated with glucose and cholesterol concentration. Vitamin E reduced plasma LPO, but did not affect the diabetic state. Thus, plasmaLPOwas the most reliable indicator of diabetes-induced oxidative stress. Antioxidant enzyme activities and types of reactive oxygen species generated were tissue dependent. Diabetes-induced oxidative stress is diminished by vitamin E supplementation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号