首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human chromosome 2 contains large blocks of segmental duplications (SDs), both within and between proximal 2p and proximal 2q, and these may contribute to the frequency of the common variant inversion inv(2)(p11.2q13). Despite their being cytogenetically homogeneous, we have identified four different breakpoint combinations by fluorescence in situ hybridization mapping of 40 cases of inv(2)(p11.2q13) of European origin. For the vast majority of inversions (35/40), the breakpoints fell within the same spanning BACs, which hybridized to both 2p11.2 and 2q13 on the normal and inverted homologues. Sequence analysis revealed that these BACs contain a significant proportion of intrachromosomal SDs with sequence homology to the reciprocal breakpoint region. In contrast, BACs spanning the rare breakpoint combinations contain fewer SDs and with sequence homology only to the same chromosome arm. Using haplotype analysis, we identified a number of related family subgroups with identical or very closely related haplotypes. However, the majority of cases were not related, demonstrating for the first time that the inv(2)(p11.2q13) is a truly recurrent rearrangement. Therefore, there are three explanations to account for the frequent observation of the inv(2)(p11.2q13): the majority have arisen independently in different ancestors, while a minority either have been transmitted from a common founder or have different breakpoints at the molecular cytogenetic level.  相似文献   

2.
The pericentric inv(10)(p11.2q21.2) mutation has been frequently identified in cytogenetic laboratories, is phenotypically silent, and is considered to be a polymorphic variant. Cloning and sequencing of the junction fragments on 10p11 and 10q21 revealed that neither inversion breakpoint directly involved any genes or repetitive sequences, although both breakpoint regions contain a number of repeats. All 20 apparently unrelated inv(10) families in our study had identical breakpoints, and detailed haplotype analysis showed that the inversions were identical by descent. Thus, although considered a common variant, inv(10)(p11.2q21.2) has a single ancestral founder among northern Europeans.  相似文献   

3.
4.
Pericentric inversions of the human Y chromosome (inv(Y)) are the result of breakpoints in Yp and Yq. Whether these breakpoints occur recurrently on specific hotspots or appear at different locations along the repeat structure of the human Y chromosome is an open question. Employing FISH for a better definition and refinement of the inversion breakpoints in 9 cases of inv(Y) chromosomes, with seemingly unvarying metacentric appearance after banding analysis, unequivocally resulted in heterogeneity of the pericentric inversions of the human Y chromosome. While in all 9 inv(Y) cases the inversion breakpoints in the short arm fall in a gene-poor region of X-transposed sequences proximal to PAR1 and SRY in Yp11.2, there are clearly 3 different inversion breakpoints in the long arm. Inv(Y)-types I and II are familial cases showing inversion breakpoints that map in Yq11.23 or in Yq11.223, outside the ampliconic fertility gene cluster of DAZ and CDY in AZFc. Inv(Y)-type III shows an inversion breakpoint in Yq11.223 that splits the DAZ and CDY fertility gene-cluster in AZFc. This inversion type is representative of both familial cases and cases with spermatogenetic impairment. In a further familial case of inv(Y), with almost acrocentric morphology, the breakpoints are within the TSPY and RBMY repeat in Yp and within the heterochromatin in Yq. Therefore, the presence of specific inversion breakpoints leading to impaired fertility in certain inv(Y) cases remains an open question.  相似文献   

5.
Investigation of the origins of human autosomal inversions   总被引:1,自引:1,他引:0  
A significant proportion of both pericentric and paracentric inversions have recurrent breakpoints and so could either have arisen through multiple independent events or be identical by descent (IBD) with a single common ancestor. Of two common variant inversions previously studied, the inv(2)(p11q13) was genuinely recurrent while the inv(10)(p11.2q21.2) was IBD in all cases tested. Excluding these two variants we have ascertained 257 autosomal inversion probands at the Wessex Regional Genetics Laboratory. There were 104 apparently recurrent inversions, representing 35 different breakpoint combinations and we speculated that at least some of these had arisen on more than one occasion. However, haplotype analysis identified no recurrent cases among eight inversions tested, including the variant inv(5)(p13q13). The cases not IBD were shown to have different breakpoints at the molecular cytogenetic level. No crossing over was detected within any of the inversions and the founder haplotypes extended for variable distances beyond the inversion breakpoints. Defining breakpoint intervals by FISH mapping identified no obvious predisposing elements in the DNA sequence. In summary the vast majority of human inversions arise as unique events. Even apparently recurrent inversions, with the exception of the inv(2)(p12q13), are likely to be either derived from a common ancestor or to have subtly different breakpoints. Presumably the lack of selection against most inversions allows them to accumulate and disperse amongst different populations over time. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Ectopic exchange between transposable elements or other repetitive sequences along a chromosome can produce chromosomal inversions. As a result, genome sequence studies typically find sequence similarity between corresponding inversion breakpoint regions. Here, we identify and investigate the breakpoint regions of the X chromosome inversion distinguishing Drosophila mojavensis and Drosophila arizonae. We localize one inversion breakpoint to 13.7 kb and localize the other to a 1-Mb interval. Using this localization and assuming microsynteny between Drosophila melanogaster and D. arizonae, we pinpoint likely positions of the inversion breakpoints to windows of less than 3000 bp. These breakpoints define the size of the inversion to approximately 11 Mb. However, in contrast to many other studies, we fail to find significant sequence similarity between the 2 breakpoint regions. The localization of these inversion breakpoints will facilitate future genetic and molecular evolutionary studies in this species group, an emerging model system for ecological genetics.  相似文献   

7.
Drosophila subobscura is a paleartic species of the obscura group with a rich chromosomal polymorphism. To further our understanding on the origin of inversions and on how they regain variation, we have identified and sequenced the two breakpoints of a polymorphic inversion of D. subobscura—inversion 3 of the O chromosome—in a population sample. The breakpoints could be identified as two rather short fragments (~300 bp and 60 bp long) with no similarity to any known transposable element family or repetitive sequence. The presence of the ~300‐bp fragment at the two breakpoints of inverted chromosomes implies its duplication, an indication of the inversion origin via staggered double‐strand breaks. Present results and previous findings support that the mode of origin of inversions is neither related to the inversion age nor species‐group specific. The breakpoint regions do not consistently exhibit the lower level of variation within and stronger genetic differentiation between arrangements than more internal regions that would be expected, even in moderately small inversions, if gene conversion were greatly restricted at inversion breakpoints. Comparison of the proximal breakpoint region in species of the obscura group shows that this breakpoint lies in a small high‐turnover fragment within a long collinear region (~300 kb).  相似文献   

8.
A male child with multiple congenital anomalies initially was clinically diagnosed as having Smith-Lemli-Opitz syndrome (SLOS). Subsequent cytogenetic studies revealed an interstitial deletion of 17p11.2, which is associated with Smith-Magenis syndrome (SMS). Biochemical studies were not supportive of a diagnosis of SLOS, and the child did not display the typical SMS phenotype. The father's karyotype showed a paracentric inversion of 17p, with breakpoints in p11.2 and p13.3, and the same inversion was also found in two of the father's sisters. FISH analyses of the deleted and inverted 17p chromosomes indicated that the deletion was similar to that typically seen in SMS patients and was found to bracket the proximal inversion breakpoint. Available family members were genotyped at 33 polymorphic DNA loci in 17p. These studies determined that the deletion was of paternal origin and that the inversion was of grandpaternal origin. Haplotype analysis demonstrated that the 17p11.2 deletion arose following a recombination event involving the father's normal and inverted chromosome 17 homologues. A mechanism is proposed to explain the simultaneous deletion and apparent "reinversion" of the recombinant paternal chromosome. These findings have implications for prenatal counseling of carriers of paracentric inversions, who typically are considered to bear minimal reproductive risk.  相似文献   

9.
Mental retardation is a very common and extremely heterogeneous disorder that affects about 3% of the human population. Its molecular basis is largely unknown, but many loci have been mapped to the X chromosome. We report on two mentally retarded females with X;autosome translocations and breakpoints in Xp11, viz., t(X;17)(p11;p13) and t(X;20)(p11;q13). (Fiber-) FISH analysis assigned the breakpoints to different subbands, Xp11.4 and Xp11.23, separated by approximately 8 Mb. High-resolution mapping of the X- chromosome breakpoints using Southern blot hybridization resulted in the isolation of breakpoint-spanning genomic subclones of 3 kb and 0. 5 kb. The Xp11.4 breakpoint is contained within a single copy sequence, whereas the Xp11.23 breakpoint sequence resembles an L1 repetitive element. Several expressed sequences map close to the breakpoints, but none was found to be inactivated. Therefore, mechanisms other than disruption of X-chromosome genes likely cause the phenotypes.  相似文献   

10.
This report describes a nearly 25-year-old female with an interstitial deletion of band 14 in the long arm of one chromosome 6 (6q14). The deletion is contained within a de novo pericentric inversion with breakpoints in 6p11.2 and 6q15 (Karyotype 46,XX, del(6)(q13q15),inv(6)(p11.2q15). The distal breakpoint of the deletion and the pericentric inversion at 6q15 are the same, but the proximal breakpoints differ. Since cells with other chromosomal findings were not detected in cultured lymphocytes and fibroblasts, chromosome mosaicism seems unlikely. Thus, it is assumed that the inversion and the deletion originated from the same event. The development of a distinctive phenotype in the patient was observed over a period of 22 years. It includes characteristic dysmorphic facial features such as ocular hypertelorism, flat nasal bridge, prominent zygomatic bones, and a depressed glabella. A striking, non-progressive deficit of motor control is manifest in an inability to use her hands properly and a broad-based slow-motion-like gait. Although severely deficient in abstract mental abilities and speech development, she is well adapted to family life and to a school for retarded individuals. Normal height and head circumference, and reduced sensitivity to pain are noteworthy. Presumably the deletion caused the phenotype and the distinct behavioral pattern. This patient probably represents a novel chromosomal phenotype that results from aggregate haploinsufficiency of gene loci in the deleted region.  相似文献   

11.
Inversions are an important form of structural variation, but they are difficult to characterize, as their breakpoints often fall within inverted repeats. We have developed a method called 'haplotype fusion' in which an inversion breakpoint is genotyped by performing fusion PCR on single molecules of human genomic DNA. Fusing single-copy sequences bracketing an inversion breakpoint generates orientation-specific PCR products, exemplified by a genotyping assay for the int22 hemophilia A inversion on Xq28. Furthermore, we demonstrated that inversion events with breakpoints embedded within long (>100 kb) inverted repeats can be genotyped by haplotype-fusion PCR followed by bead-based single-molecule haplotyping on repeat-specific markers bracketing the inversion breakpoint. We illustrate this method by genotyping a Yp paracentric inversion sponsored by >300-kb-long inverted repeats. The generality of our methods to survey for, and genotype chromosomal inversions should help our understanding of the contribution of inversions to genomic variation, inherited diseases and cancer.  相似文献   

12.
Machado CA  Haselkorn TS  Noor MA 《Genetics》2007,175(3):1289-1306
There is increasing evidence that chromosomal inversions may facilitate the formation or persistence of new species by allowing genetic factors conferring species-specific adaptations or reproductive isolation to be inherited together and by reducing or eliminating introgression. However, the genomic domain of influence of the inverted regions on introgression has not been carefully studied. Here, we present a detailed study on the consequences that distance from inversion breakpoints has had on the inferred level of gene flow and divergence between Drosophila pseudoobscura and D. persimilis. We identified the locations of the inversion breakpoints distinguishing D. pseudoobscura and D. persimilis in chromosomes 2, XR, and XL. Population genetic data were collected at specific distances from the inversion breakpoints of the second chromosome and at two loci inside the XR and XL inverted regions. For loci outside the inverted regions, we found that distance from the nearest inversion breakpoint had a significant effect on several measures of divergence and gene flow between D. pseudoobscura and D. persimilis. The data fitted a logarithmic relationship, showing that the suppression of crossovers in inversion heterozygotes also extends to loci located outside the inversion but close to it (within 1-2 Mb). Further, we detected a significant reduction in nucleotide variation inside the inverted second chromosome region of D. persimilis and near one breakpoint, consistent with a scenario in which this inversion arose and was fixed in this species by natural selection.  相似文献   

13.
Length and position of breakpoints are characteristics of inversions that can be precisely determined on the polytene chromosomes of Drosophila species, and they provide crucial information about the processes that govern the origin and evolution of inversions. Eighty-six paracentric inversions described in the Drosophila buzzatii species complex and 18 inversions induced by introgressive hybridization in D. buzzatii were analyzed. In contrast to previous studies, inversion length and breakpoint distribution have been considered simultaneously. We conclude that: (1) inversion length is a selected trait; rare inversions are predominantly small while evolutionarily successful inversions, polymorphic and fixed, are predominantly intermediate in length; a nearly continuous variation in length, from small to medium sized, is found between less and more successful inversions; (2) there exists a significant negative correlation between length and number of polymorphic inversions per species which explains 39% of the inversion length variance; (3) natural selection on inversion length seems the main factor determining the relative position of breakpoints along the chromosomes; (4) the distribution of breakpoints according to their band location is non-random, with chromosomal segments that accumulate up to eight breakpoints.  相似文献   

14.
To better map the location of the von Recklinghausen neurofibromatosis (NF1) gene, we have characterized a somatic cell hybrid designated 7AE-11. This microcell-mediated, chromosome-transfer construct harbors a centromeric segment and a neo-marked segment from the distal long arm of human chromosome 17. We have identified 269 cosmid clones with human sequences from a 7AE-11 library and, using a panel of somatic cell hybrids with a total of six chromosome 17q breakpoints, have mapped 240 of these clones on chromosome 17q. The panel included a hybrid (NF13) carrying a der(22) chromosome that was isolated from an NF1 patient with a balanced translocation, t(17;22) (q11.2;q11.2). Fifty-three of the cosmids map into a region spanning the NF13 breakpoint, as defined by the two closest flanking breakpoints (17q11.2 and 17q11.2-q12). RFLP clones from a subset of these cosmids have been mapped by linkage analysis in normal reference families, to localize the NF1 gene more precisely and to enhance the potential for genetic diagnosis of this disorder. The cosmids in the NF1 region will be an important resource for testing DNA blots of large-fragment restriction-enzyme digests from NF1 patient cell lines, to detect rearrangements in patients' DNA and to identify the 17;22 NF1 translocation breakpoint.  相似文献   

15.
We report on two unrelated cases of pericentric inversion 46,XY,inv(7)(p11q21.1) associated with distinct pattern of malformation including mental retardation, development delay, ectrodactyly, facial dismorphism, high arched palate. Additionally, one case was found to be characterized by mesodermal dysplasia. Cytogenetic analysis of the families indicated that one case was a paternally inherited inversion whereas another case was a maternally inherited one. Molecular cytogenetic studies have shown paternal inversion to have a breakpoint within centromeric heterochromatin being the cause of alphoid DNA loss. Maternal inversion was also associated with a breakpoint within centromeric heterochromatin as well as inverted euchromatic chromosome region flanked by two disrupted alphoid DNA blocks. Basing on molecular cytogenetic data we hypothesize the differences of clinical manifestations to be produced by a position effect due to localization of breakpoints within variable centromeric heterochromatin and, alternatively, due to differences in the location breakpoints, disrupteding different genes within region 7q21-q22. Our results reconfirm previous linkage analyses suggested 7q21-q22 as a locus of ectrodactily and propose inv (7)(p11q21.1) as a cause of recognizable pattern of malformations or a new chromosomal syndrome.  相似文献   

16.
17.
Schmidt S  Claussen U  Liehr T  Weise A 《Human genetics》2005,117(2-3):213-219
We compared the chromosomal breakpoints of evolutionary conserved and constitutional inversions. Multicolor banding and human-specific bacterial artificial chromosomes were applied to map the breakpoints of constitutional pericentric inversions on human chromosomes 2 and 9. For the first time, we present a high-resolution analysis of the breakpoint regions, which are characterized by gene destitution, co-localization with fragile sites, multitude repeats as well as pseudogenes and, remarkably, a large sequence homology to the opposite breakpoint. In contrast, evolutionary inversion breakpoints lack such extensive cross-hybridizing regions and are often associated with fragile sites of the genome and low-copy repeats. These molecular characteristics gave evidence for different types of inversion formation and indicate that evolutionary inversions cannot originate from constitutional inversions like those of chromosomes 2 and 9. Finally, the constitutional inversion breakpoints were investigated on three different great ape species and on four test persons each bearing the same cytogenetically determined inversion on chromosomes 2 and 9, respectively. Our data indicate the existence of different molecular breakpoints for the two variant chromosomes.  相似文献   

18.
Additional vein (Adv) is a dominant mutation that affects the first wing vein in Drosophila. It also manifests a recessive lethal phenotype and is associated with a large inversion. Using a combination of genetic and cytogenetic techniques, we show that Adv interacts with engrailed (en), likely because one of the inversion breakpoints interferes with en function. Genetic interaction studies reveal that Adv is lethal in trans with various lethal alleles of en and gives an engrailed-like wing phenotype with weak alleles of en. In situ hybridization to polytene chromosomes using en cDNA demonstrates that one of the inversion breakpoints lies within the en coding region. Although the cause of the wing phenotype is not determined herein, it likely is caused by the other inversion breakpoint interfering with a different function. The characterization of this mutation could expedite studies to understand what molecular events result in the Adv phenotype and thereby provide insight into the development of the first wing vein in Drosophila.  相似文献   

19.
Precise localization of NF1 to 17q11.2 by balanced translocation.   总被引:25,自引:11,他引:14       下载免费PDF全文
A female patient is described with von Recklinghausen neurofibromatosis (NF1) in association with a balanced translocation between chromosome 17 and 22 [46,XX,t(17;22)(q11.2;q11.2)]. The breakpoint in chromosome 17 is cytogenetically identical to a previously reported case of NF1 associated with a 1;17 balanced translocation and suggests that the translocation events disrupt the NF1 gene. This precisely maps the NF1 gene to 17q11.2 and provides a physical reference point for strategies to clone the breakpoint and therefore the NF1 gene. A human-mouse somatic cell hybrid was constructed from patient lymphoblasts which retained the derivative chromosome 22 (22pter----22q11.2::17q11.2----17qter) but not the derivative 17q or normal 17. Southern blot analysis with genes and anonymous probes known to be in proximal 17q showed ErbA1, ErbB2, and granulocyte colony-stimulating factor (CSF3) to be present in the hybrid and therefore distal to the breakpoint, while pHHH202 (D17S33) and beta crystallin (CRYB1) were absent in the hybrid and therefore proximal to the breakpoint. The gene cluster including ErbA1 is known to be flanked by the constitutional 15;17 translocation breakpoint in hybrid SP3 and by the acute promyelocytic leukemia (APL) breakpoint, which provides the following gene and breakpoint order: cen-SP3-(D17S33,CRYB1)-NF1-(CSF3,ERBA1, ERBB2)-APL-tel. The flanking breakpoints of SP3 and API are therefore useful for rapidly localizing new markers to the neurofibromatosis critical region, while the breakpoints of the two translocation patients provide unique opportunities for reverse genetic strategies to clone the NF1 gene.  相似文献   

20.
To investigate patterns of genetic recombination within a heterozygous paracentric inversion of chromosome 9 (46XY inv[9] [q32q34.3]), we performed sperm typing using a series of polymorphic microsatellite markers spanning the inversion region. For comparison, two donors with cytogenetically normal chromosomes 9, one of whom was heterozygous for a pericentric chromosome 2 inversion (46XY inv[2] [p11q13]), were also tested. Linkage analysis was performed by use of the multilocus linkage-analysis program SPERM, and also CRI-MAP, which was adapted for sperm-typing data. Analysis of the controls generated a marker order in agreement with previously published data and revealed no significant interchromosomal effects of the inv(2) on recombination on chromosome 9. FISH employing cosmids containing appropriate chromosome 9 markers was used to localize the inversion breakpoint of inv(9). Analysis of inv(9) sperm was performed by use of a set of microsatellite markers that mapped centromeric to, telomeric to, and within the inversion breakpoints. Three distinct patterns of recombination across the region were observed. Proximal to the centromeric breakpoint, recombination was similar to normal levels. Distal to the telomeric breakpoint, there was an increase in recombination found in the inversion patient. Finally, within the inversion, recombination was dramatically reduced, but several apparent double recombinants were found. A putative model explaining these data is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号