首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Amano T  Gascuel J 《PloS one》2012,7(4):e33922
Recent genome wide in silico analyses discovered a new family (type 2 or family H) of odorant receptors (ORs) in teleost fish and frogs. However, since there is no evidence of the expression of these novel OR genes in olfactory sensory neurons (OSN), it remains unknown if type 2 ORs (OR2) function as odorant receptors. In this study, we examined expression of OR2 genes in the frog Xenopus tropicalis. The overall gene expression pattern is highly complex and differs depending on the gene and developmental stage. RT-PCR analysis in larvae showed that all of the OR2η genes we identified were expressed in the peripheral olfactory system and some were detected in the brain and skin. Whole mount in situ hybridization of the larval olfactory cavity confirmed that at least two OR2η genes so far tested are expressed in the OSN. Because tadpoles are aquatic animals, OR2η genes are probably involved in aquatic olfaction. In adults, OR2η genes are expressed in the nose, brain, and testes to different degrees depending on the genes. OR2η expression in the olfactory system is restricted to the medium cavity, which participates in the detection of water-soluble odorants, suggesting that OR2ηs function as receptors for water-soluble odorants. Moreover, the fact that several OR2ηs are significantly expressed in non-olfactory organs suggests unknown roles in a range of biological processes other than putative odorant receptor functions.  相似文献   

2.
3.
Activity plays critical roles in development and maintenance of the olfactory system, which undergoes considerable neurogenesis throughout life. In the mouse olfactory epithelium, each olfactory sensory neuron (OSN) stably expresses a single odorant receptor (OR) type out of a repertoire of ∼1200 and the OSNs with the same OR identity are distributed within one of the few broadly-defined zones. However, it remains elusive whether and how activity modulates such OR expression patterns. Here we addressed this question by investigating OR gene expression via in situ hybridization when sensory experience or neuronal excitability is manipulated. We first examined the expression patterns of fifteen OR genes in mice which underwent neonatal, unilateral naris closure. After four-week occlusion, the cell density in the closed (sensory-deprived) side was significantly lower (for four ORs), similar (for three ORs), or significantly higher (for eight ORs) as compared to that in the open (over-stimulated) side, suggesting that sensory inputs have differential effects on OSNs expressing different OR genes. We next examined the expression patterns of seven OR genes in transgenic mice in which mature OSNs had reduced neuronal excitability. Neuronal silencing led to a significant reduction in the cell density for most OR genes tested and thinner olfactory epithelium with an increased density of apoptotic cells. These results suggest that sensory experience plays important roles in shaping OR gene expression patterns and the neuronal activity is critical for survival of OSNs.  相似文献   

4.
Merriam LC  Chess A 《Cell》2007,131(5):844-846
Complex regulatory mechanisms lead to the expression in each olfactory neuron of one allele of only one of the 1000 odorant receptor (OR) genes. In this issue, Nguyen et al. (2007) provide evidence that regulatory elements residing within the coding region of OR genes are involved in the singularity of OR gene expression.  相似文献   

5.
6.
An olfactory sensory neuron (OSN) expresses selectively one member from a repertoire of approximately 1000 odorant receptor (OR) genes and projects its axon to a specific glomerulus in the olfactory bulb. Both processes are here recapitulated by MOR23 and M71 OR minigenes, introduced into mice. Minigenes of 9 kb and as short as 2.2 kb are selectively expressed by neurons that do not coexpress the endogenous gene but coproject their axons to the same glomeruli. Deletion of a 395 bp upstream region in the MOR23 minigene abolishes expression. In this region we recognize sequence motifs conserved in many OR genes. Transgenic lines expressing the OR in ectopic epithelial zones form ectopic glomeruli, which also receive input from OSNs expressing the cognate endogenous receptor. This suggests a recruitment through homotypic interactions between OSNs expressing the same OR.  相似文献   

7.
8.
The rostro-caudal extent of odorant receptor expression zones in the rat olfactory epithelium was analysed by means of in situ hybridization. Three broad non-overlapping zones were identified that extended along almost the entire anterior-posterior axis; each zone was composed of several separate bands running anterior to posterior throughout the olfactory epithelium. Superimposed onto these broad zones was the expression area of a particular receptor subtype (OR37); it was restricted to a small region of the epithelial sheet with a high density of reactive neurones in the centre and declining numbers towards the periphery of the region. A quantitative evaluation of the reactive cells revealed that, despite their diferent distribution patterns, all receptor subtypes were expressed in an equal number of neurones.  相似文献   

9.
Vertebrate odorant receptor (OR) genes have been isolated and characterized in several taxa, including bony fish and mammals. However, the search for more ancient vertebrate OR genes has been unsuccessful to date, indicating that these ancient genes share little sequence identity with previously isolated ORs. The lamprey (Lampetra fluviatilis) olfactory epithelium does not appear to express any of the modern vertebrate ORs previously identified in bony fish and mammals. We have isolated and characterized an ancient family of vertebrate membrane receptors from the olfactory epithelium of the lamprey. Sequence analysis reveals similarities with other Class A (rhodopsin-like) G protein-coupled receptors such as serotonin, dopamine, and histamine receptors, but the expression patterns of members of the new family, as well as certain conserved motifs, strongly suggest that the sequences encode ORs. Sequence similarity within the lamprey OR family is low, and Southern blot analysis suggests reduced-sized subfamilies. This novel vertebrate OR gene family, the most ancient isolated to date, is proposed to be involved in the detection of water-borne molecules in jawless fishes. Lamprey OR genes therefore represent a new level of diversity within the vertebrate OR gene family, but also provide clues as to how vertebrate ORs might have emerged. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 383–392, 1998  相似文献   

10.
Olfactory receptors of the OR37 subfamily are characterized by distinct sequence features and are expressed in neurons segregated in a restricted area of the olfactory epithelium. In the present study, we have characterized the complement of OR37-like genes in the mouse. Five OR37-like genes were identified. They reside within only 60kb of DNA on chromosome 4. About 70kb distant from this cluster, two additional olfactory receptor genes are located, which are members of distinct receptor subfamilies. Phylogenetic analysis demonstrated that the two physically linked receptors are closely related to the OR37 subfamily. Studies of gene expression showed that both genes are also expressed in clustered neuron populations located in the typical OR37 region of the epithelium. These data suggest the involvement of locus-dependent mechanisms for the spatial control of OR gene expression.  相似文献   

11.
12.
13.
In the mouse, olfactory sensory neurons (OSNs) expressing the same odorant receptor (OR) converge their axons to a specific set of glomeruli in the olfactory bulb. To study how OR-instructed axonal fasciculation is controlled, we searched for genes whose expression profiles are correlated with the expressed ORs. Using the transgenic mouse in which the majority of OSNs express a particular OR, we identified such genes coding for the homophilic adhesive molecules Kirrel2/Kirrel3 and repulsive molecules ephrin-A5/EphA5. In the CNGA2 knockout mouse, where the odor-evoked cation influx is disrupted, Kirrel2 and EphA5 were downregulated, while Kirrel3 and ephrin-A5 were upregulated, indicating that these genes are transcribed in an activity-dependent manner. Mosaic analysis demonstrated that gain of function of these genes generates duplicated glomeruli. We propose that a specific set of adhesive/repulsive molecules, whose expression levels are determined by OR molecules, regulate the axonal fasciculation of OSNs during the process of glomerular map formation.  相似文献   

14.
Similar to the expression of antigen receptor genes in lymphocytes, the mammalian odorant receptor (OR) genes are expressed in a mutually exclusive and monoallelic manner in olfactory sensory neurons (OSNs). DNA rearrangement has long been regarded as a possible mechanism for the allelic exclusion of the OR genes. However, mice cloned from mature OSN nuclei expressed the full repertoire of ORs, and the possibility of irreversible gene translocation was excluded as a mechanism to activate a single OR gene in each OSN. How is allelic exclusion achieved in the olfactory system? Recent transgenic experiments indicated an inhibitory role of the OR protein in preventing further activation of other OR genes. Stochastic activation of an OR gene and negative-feedback regulation by the OR gene product might ensure the maintenance of the one neuron-one receptor rule in the mammalian olfactory system.  相似文献   

15.
16.
Fuss SH  Omura M  Mombaerts P 《Cell》2007,130(2):373-384
From the approximately 1,200 odorant receptor (OR) genes in the mouse genome, an olfactory sensory neuron is thought to express only one gene. The mechanisms of OR gene choice are not understood. A 2.1 kilobase region (the H element) adjacent to a cluster of seven OR genes has been proposed as a trans- and pan-enhancer for OR gene expression. Here, we deleted the H element by gene targeting in mice. The deletion abolishes expression of a family of three OR genes proximal to H, and H operates in cis on these genes. Deletion of H has a graded effect on expression of a distal group of four OR genes, commensurate with genomic distance. There is no demonstrable effect on expression of OR genes located outside the cluster. Our findings are not consistent with the hypothesis of H as an essential trans-acting enhancer for genome-wide regulation of OR gene expression.  相似文献   

17.
韩宝银  汪凯  焦恒武 《兽类学报》2016,36(4):422-428
翼手目动物(俗称蝙蝠)的食性分化显著,不同食性的蝙蝠具有显著不同的嗅球大小。为了研究嗅觉是否影响了蝙蝠食性的进化,我们利用网上已公布的10种蝙蝠基因组的数据,通过同源比对的方法鉴定出所有的嗅觉受体基因,并进行嗅觉受体基因亚家族的分类,进而比较嗅觉受体基因亚家族的数目差异。结果显示,蝙蝠的嗅觉受体基因与其它哺乳动物一样,都可以分为13个单系起源的亚家族;在Yinpterochiroptera亚目中,OR1/3/7、OR2/13、OR5/8/9等3个嗅觉受体亚家族在食果蝙蝠中均发生了不同程度的扩张,基因数目显著地多于食虫蝙蝠,提示嗅觉在食果蝙蝠取食过程中具有重要的作用。因此,本研究在基因组水平上重现了蝙蝠嗅觉受体基因的进化历史,揭示了3个嗅觉受体基因亚家族的功能可能与食果蝙蝠的食性相关,突出了嗅觉对动物食性的重要作用.  相似文献   

18.
Each olfactory sensory neuron (OSN) expresses a single odorant receptor (OR) from a large repertoire of clustered OR genes. It has been hypothesized that OR gene regulation may involve stochastic DNA rearrangement, which in lymphocytes requires the recombination activating genes, rag1 and rag2. We have recently demonstrated that rag1 is expressed in zebrafish OSNs. Here we report that rag2, the obligate partner for rag1 function, is also expressed in OSNs and that its expression pattern mimics that of rag1. The onset of rag1 and rag2 expression preceded that of known zebrafish ORs and the number of rag1-positive OSNs corresponded with the number expressing the olfactory cyclic nucleotide-gated cation channel, an OSN marker. Zebrafish OSNs are the first example of concurrent rag expression in a nonlymphoid tissue. The expression of rag1 and rag2 in OSNs adds to the list of similarities between the olfactory and immune systems that includes monoallelic and mutually exclusive gene expression.  相似文献   

19.
Lozenge蛋白(Lz蛋白)是昆虫的重要转录因子,在昆虫胚胎发育过程中发挥重要作用。为研究Lozenge在西方蜜蜂Apis mellifera中的作用,本研究克隆了Lozenge基因,并对其进行生物信息学分析,同时基于荧光定量PCR技术检测该基因在西方蜜蜂不同发育时期(卵期、幼虫期、蛹期和成年蜂)和10日龄哺育蜂各组织的表达谱。生物信息学分析结果显示,Lozenge基因的开放阅读框(ORF)为1 554 bp,共编码517个氨基酸,预测分子量为54.63918 kDa,等电点为6.08;结构域预测分析发现Lozenge蛋白含有一个Runt结构域,多物种蛋白序列对比发现该蛋白同源性高。时期表达谱表明,该基因在第1日卵和第2日卵的表达量远高于其他时期,在卵期表达量随时间依次递减,幼虫期表达量极低,蛹期表达量呈先增后减的趋势,而成年蜂中均有表达;组织表达谱显示,该基因在哺育蜂头部、上颚腺中的表达量较高,而在腹部的表达量低。这些结果表明,Lozenge基因可能在西方蜜蜂胚胎期细胞发育过程、哺育蜂蜂王浆合成和分泌过程中发挥重要作用,这些结果为该基因功能的深入研究提供了重要的理论参考。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号