首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structures of two response regulators (RRs) from the cyanobacterium Calothrix PCC7601, RcpA and RcpB, were solved to 1.9- and 1.75-A resolution, respectively. RcpA was found in phosphorylated and RcpB in nonphosphorylated form. Both RRs are members of phytochrome-associated, light-sensing two-component signal transduction pathways, based on histidine kinase-mediated receptor autophosphorylation and phosphorelay to a RR. Despite the overall folding similarity to CheY-type RRs ((beta/alpha)(5)-motif), RcpA and RcpB form homodimers, irrespective of their phosphorylation state, giving insight into a signal transduction putatively different from that of other known RRs. Dimerization is accomplished by a C-terminal extension of the RR polypeptide chain, and the surface formed by H4, beta 5, and H5, which constitute a hydrophobic contact area with distinct interactions between residues of either subunit. Sequence alignments reveal that the identified dimerization motif is archetypal for phytochrome-associated RRs, making them a novel subgroup of CheY-type RRs. The protein structures of RcpA and RcpB are compared to the recently presented protein structure of Rcp1 from Synechocystis.  相似文献   

2.
The Tad (tight adherence) macromolecular transport system, which is present in many bacterial and archaeal species, represents an ancient and major new subtype of type II secretion. The tad genes are present on a genomic island named the widespread colonization island (WCI), and encode the machinery that is required for the assembly of adhesive Flp (fimbrial low-molecular-weight protein) pili. The tad genes are essential for biofilm formation, colonization and pathogenesis in the genera Aggregatibacter (Actinobacillus), Haemophilus, Pasteurella, Pseudomonas, Yersinia, Caulobacter and perhaps others. Here we review the structure, function and evolution of the Tad secretion system.  相似文献   

3.
The type two secretion system is a large, trans-envelope apparatus that secretes toxins across the outer membrane of many Gram-negative bacteria. In Aeromonas hydrophila, ExeA interacts with peptidoglycan and forms a heteromultimeric complex with ExeB that is required for assembly of the ExeD secretin of the secretion system in the outer membrane. While the peptidoglycan-ExeAB (PG-AB) complex is required for ExeD assembly, the assembly mechanism remains unresolved. We analyzed protein-protein interactions to address the hypothesis that ExeD assembly in the outer membrane requires direct interaction with the PG-AB complex. Yeast and bacterial two hybrid analyses demonstrated an interaction between the periplasmic domains of ExeB and ExeD. Two-codon insertion mutagenesis of exeD disrupted lipase secretion, and immunoblotting of whole cells demonstrated significantly reduced secretin in mutant cells. Mapping of the two-codon insertions and deletion analysis showed that the ExeB-ExeD interaction involves the N0 and N1 subdomains of ExeD. Rotational anisotropy using the purified periplasmic domains of ExeB and ExeD determined that the apparent dissociation constant of the interaction is 1.19±0.16 µM. These results contribute important support for a putative mechanism by which the PG-AB complex facilitates assembly of ExeD through direct interaction between ExeB and ExeD. Furthermore, our results provide novel insight into the assembly function of ExeB that may contribute to elucidating the role of homologous proteins in secretion of toxins from other Gram negative pathogens.  相似文献   

4.
5.
The Type II Secretion System (T2SS) is a molecular machine that drives the secretion of fully-folded protein substrates across the bacterial outer membrane. A key element in the machinery is the secretin: an integral, multimeric outer membrane protein that forms the secretion pore. We show that three distinct forms of T2SSs can be distinguished based on the sequence characteristics of their secretin pores. Detailed comparative analysis of two of these, the Klebsiella-type and Vibrio-type, showed them to be further distinguished by the pilotin that mediates their transport and assembly into the outer membrane. We have determined the crystal structure of the novel pilotin AspS from Vibrio cholerae, demonstrating convergent evolution wherein AspS is functionally equivalent and yet structurally unrelated to the pilotins found in Klebsiella and other bacteria. AspS binds to a specific targeting sequence in the Vibrio-type secretins, enhances the kinetics of secretin assembly, and homologs of AspS are found in all species of Vibrio as well those few strains of Escherichia and Shigella that have acquired a Vibrio-type T2SS.  相似文献   

6.
The genome of the filamentous cyanobacterium Calothrix sp. PCC7601 contains two genes, cphA and cphB, encoding proteins with similarity to plant phytochromes and bacterial histidine kinases. In vitro, CphA and CphB readily attach a tetrapyrrole chromophore to develop spectrally active holoproteins that are photointerconvertible between a red light-absorbing and a far-red light-absorbing form. Together with the putative response regulators, RcpA and RcpB, the putative histidine kinases, CphA and CphB, are suggested to constitute two two-component systems of light-dependent signal transduction. In this report, we demonstrate the kinase activity of both CphA and CphB. In vitro experiments carried out on the purified proteins show that CphA and CphB are autophosphorylated in the presence of ATP and that phospho-CphA is capable of efficient phosphotransfer to RcpA as is phospho-CphB towards RcpB. The autophosphorylation and the phosphorelay are dependent on light. Both activities are reduced under red light vs. far-red light irradiation. No phosphoryl transfer occurred between phospho-CphA and RcpB or between phospho-CphB and RcpA. The response regulators RcpA and RcpB can receive a phosphoryl moiety also from the small phospho-donor acetyl phosphate. The stability of the phosphorylated regulators is not affected by CphA and CphB or light.  相似文献   

7.
Related outer membrane proteins, termed secretins, participate in the secretion of macromolecules across the outer membrane of many Gram-negative bacteria. In the pullulanase-secretion system, PulS, an outer membrane-associated lipoprotein, is required both for the integrity and the proper outer membrane localization of the PulD secretin. Here we show that the PulS-binding site is located within the C-terminal 65 residues of PulD. Addition of this domain to the filamentous phage secretin, pIV, or to the unrelated maltose-binding protein rendered both proteins dependent on PulS for stability. A chimeric protein composed of bacteriophage f1 pIV and the C-terminal domain of PulD required properly localized PulS to support phage assembly. An in vivo complex formed between the pIV-PulD65 chimera and PulS was detected by co-immunoprecipitation and by affinity chromatography.  相似文献   

8.
Aeromonas hydrophila transports extracellular protein toxins via the type II secretion system, an export mechanism comprised of numerous proteins that spans both the inner and outer membranes. Two components of this secretion system, ExeA and ExeB, form a complex in the inner membrane that functions to locate and/or assemble the ExeD secretin in the outer membrane. In the studies reported here, two-codon insertion mutagenesis of exeA revealed that an insertion at amino acid 495 in the C-terminal region of ExeA did not alter ExeAB complex formation yet completely abrogated its involvement in ExeD secretin assembly and thus rendered the bacteria secretion negative. In silico analysis of protein motifs with similar amino acid profiles revealed that this amino acid is located within a putative peptidoglycan (PG) binding motif in the periplasmic domain of ExeA. Substitution mutations of three highly conserved amino acids in the motif were constructed. In cells expressing each of these mutants, the ability to assemble the ExeD secretin or secrete aerolysin was lost, while ExeA retained the ability to form a complex with ExeB. In in vivo cross-linking experiments, wild-type ExeA could be cross-linked to PG, whereas the three substitution mutants of ExeA could not. These data indicate that PG binding and/or remodelling plays a role in the function of the ExeAB complex during assembly of the ExeD secretin.  相似文献   

9.
Proteins called secretins form large multimeric complexes that are essential for macromolecular transit across the outer membrane of Gram-negative bacteria. Evidence suggests that the channels formed by some secretin complexes are not tightly closed, but their permeability properties have not been well characterized. Here, we used cell-free synthesis coupled with spontaneous insertion into liposomes to investigate the permeability of the secretin PulD. Leakage assays using preloaded liposomes indicated that PulD allows the efflux of small fluorescent molecules with a permeation cutoff similar to that of general porins. Other secretins were also found to form similar pores. To define the polypeptide region involved in determining the pore size, we analyzed a collection of PulD variants and studied the roles of gates 1 and 2, which were previously reported to affect the pore size of filamentous phage f1 secretin pIV, in assembly and pore formation. Liposome leakage and a novel in vivo assay showed that replacement of the conserved proline residue at position 443 in PulD by leucine increased the apparent size of the pore. The in vitro approach described here could be used to study the pore properties of membrane proteins whose production in vivo is toxic.  相似文献   

10.
The type II secretion system is a multiprotein assembly spanning the inner and outer membranes in Gram-negative bacteria. It is found in almost all pathogenic bacteria where it contributes to virulence, host tissue colonization, and infection. The exoproteins are secreted across the outer membrane via a large translocation channel, the secretin, which typically adopts a dodecameric structure. These secretin channels have large periplasmic N-terminal domains that reach out into the periplasm for communication with the inner membrane platform and with a pseudopilus structure that spans the periplasm. Here we report the crystal structure of the N-terminal periplasmic domain of the secretin XcpQ from Pseudomonas aeruginosa, revealing a two-lobe dimeric assembly featuring parallel subunits engaging in well defined interactions at the tips of each lobe. We have employed structure-based engineering of disulfide bridges and native mass spectrometry to show that the periplasmic domain of XcpQ dimerizes in a concentration-dependent manner. Validation of these insights in the context of cellular full-length XcpQ and further evaluation of the functionality of disulfide-linked XcpQ establishes that the basic oligomerization unit of XcpQ is a dimer. This is consistent with the notion that the dodecameric secretin assembles as a hexamer of dimers to ensure correct projection of the N-terminal domains into the periplasm. Therefore, our studies provide a key conceptual advancement in understanding the assembly principles and dynamic function of type II secretion system secretins and challenge recent studies reporting monomers as the basic subunit of the secretin oligomer.  相似文献   

11.
Investigations into protein folding are largely dominated by studies on monomeric proteins. However, the transmembrane domain of an important group of membrane proteins is only formed upon multimerization. Here, we use in vitro translation-coupled folding and insertion into artificial liposomes to investigate kinetic steps in the assembly of one such protein, the outer membrane secretin PulD of the bacterial type II secretion system. Analysis of the folding kinetics, measured by the acquisition of distinct determinants of the native state, provides unprecedented evidence for a sequential multistep process initiated by membrane-driven oligomerization. The effects of varying the lipid composition of the liposomes indicate that PulD first forms a “prepore” structure that attains the native state via a conformational switch.  相似文献   

12.
13.
Type IV pili (T4P) are retractile appendages that contribute to the virulence of bacterial pathogens. PilF is a Pseudomonas aeruginosa lipoprotein that is essential for T4P biogenesis. Phenotypic characterization of a pilF mutant confirmed that T4P-mediated functions are abrogated: T4P were no longer present on the cell surface, twitching motility was abolished, and the mutant was resistant to infection by T4P retraction-dependent bacteriophage. The results of cellular fractionation studies indicated that PilF is the outer membrane pilotin required for the localization and multimerization of the secretin, PilQ. Mutation of the putative PilF lipidation site untethered the protein from the outer membrane, causing secretin assembly in both inner and outer membranes. T4P-mediated twitching motility and bacteriophage susceptibility were moderately decreased in the lipidation site mutant, while cell surface piliation was substantially reduced. The tethering of PilF to the outer membrane promotes the correct localization of PilQ and appears to be required for the formation of stable T4P. Our 2.0-Å structure of PilF revealed a superhelical arrangement of six tetratricopeptide protein-protein interaction motifs that may mediate the contacts with PilQ during secretin assembly. An alignment of pseudomonad PilF sequences revealed three highly conserved surfaces that may be involved in PilF function.  相似文献   

14.
Gram-negative bacteria assemble functional amyloid surface fibers called curli. CsgB nucleates the major curli subunit protein, CsgA, into a self-propagating amyloid fiber on the cell surface. The CsgG lipoprotein is sufficient for curlin transport across the outer membrane and is hypothesized to be the central molecule of the curli fiber secretion and assembly complex. We tested the hypothesis that the curli secretion protein, CsgG, was restricted to certain areas of the cell to promote the interaction of CsgA and CsgB during curli assembly. Here, electron microscopic analysis of curli-producing strains showed that relatively few cells in the population contacted curli fibers and that curli emanated from spatially discrete points on the cell surface. Microscopic analysis revealed that CsgG was surface exposed and spatially clustered around curli fibers. CsgG localization to the outer membrane and exposure of the surface domain were not dependent on any other csg-encoded protein, but the clustering of CsgG required the csg-encoded proteins CsgE, CsgF, CsgA, and CsgB. CsgG formed stable oligomers in all the csg mutant strains, but these oligomers were distinct from the CsgG complexes assembled in wild-type cells. Finally, we found that efficient fiber assembly was required for the spatial clustering of CsgG. These results suggest a new model where curli fiber formation is spatially coordinated with the CsgG assembly apparatus.  相似文献   

15.
Aggregatibacter actinomycetemcomitans establishes a tenacious biofilm that is important for periodontal disease. The tad locus encodes the components for the secretion and biogenesis of Flp pili, which are necessary for the biofilm to form. TadZ is required, but its function has been elusive. We show that tadZ genes belong to the parA/minD superfamily of genes and that TadZ from A. actinomycetemcomitans (AaTadZ) forms a polar focus in the cell independent of any other tad locus protein. Mutations indicate that regions in AaTadZ are required for polar localization and biofilm formation. We show that AaTadZ dimerizes and that all TadZ proteins are predicted to have a Walker‐like A box. However, they all lack the conserved lysine at position 6 (K6) present in the canonical Walker‐like A box. When the alanine residue (A6) in the atypical Walker‐like A box of AaTadZ was converted to lysine, the mutant protein remained able to dimerize and localize, but it was unable to allow the formation of a biofilm. Another essential biofilm protein, the ATPase (AaTadA), also localizes to a pole. However, its correct localization depends on the presence of AaTadZ. We suggest that the TadZ proteins mediate polar localization of the Tad secretion apparatus.  相似文献   

16.
The ability to translocate virulence proteins into host cells through a type III secretion apparatus (TTSS) is a hallmark of several Gram-negative pathogens including Shigella, Salmonella, Yersinia, Pseudomonas, and enteropathogenic Escherichia coli. In common with other types of bacterial secretion apparatus, the assembly of the TTSS complex requires the preceding formation of its integral outer membrane secretin ring component. We have determined at 1.5 A the structure of MxiM28-142, the Shigella pilot protein that is essential for the assembly and membrane association of the Shigella secretin, MxiD. This represents the first atomic structure of a secretin pilot protein from the several bacterial secretion systems containing an orthologous secretin component. A deep hydrophobic cavity is observed in the novel 'cracked barrel' structure of MxiM, providing a specific binding domain for the acyl chains of bacterial lipids, a proposal that is supported by our various lipid/MxiM complex structures. Isothermal titration analysis shows that the C-terminal domain of the secretin, MxiD525-570, hinders lipid binding to MxiM.  相似文献   

17.
The type II secretion system (T2SS) functions as a transport mechanism to translocate proteins from the periplasm to the extracellular environment. The ExeA homologue in Aeromonas hydrophila, GspA(Ah), is an ATPase that interacts with peptidoglycan and forms an inner membrane complex with the ExeB homologue (GspB(Ah)). The complex may be required to generate space in the peptidoglycan mesh that is necessary for the transport and assembly of the megadalton-sized ExeD homologue (GspD(Ah)) secretin multimer in the outer membrane. In this study, the requirement for GspAB in the assembly of the T2SS secretin in Aeromonas and Vibrio species was investigated. We have demonstrated a requirement for GspAB in T2SS assembly in Aeromonas salmonicida, similar to that previously observed in A. hydrophila. In the Vibrionaceae species Vibrio cholerae, Vibrio vulnificus, and Vibrio parahaemolyticus, gspA mutations significantly decreased assembly of the secretin multimer but had minimal effects on the secretion of T2SS substrates. The lack of effect on secretion of the mutant of gspA of V. cholerae (gspA(Vc)) was explained by the finding that native secretin expression greatly exceeds the level needed for efficient secretion in V. cholerae. In cross-complementation experiments, secretin assembly and secretion in an A. hydrophila gspA mutant were partially restored by the expression of GspAB from V. cholerae in trans, further suggesting that GspAB(Vc) performs the same role in Vibrio species as GspAB(Ah) does in the aeromonads. These results indicate that the GspAB complex is functional in the assembly of the secretin in Vibrio species but that a redundancy of GspAB function may exist in this genus.  相似文献   

18.
Secretins form large oligomeric assemblies in the membrane that control both macromolecular secretion and uptake. Several Pasteurellaceae are naturally competent for transformation, but the mechanism for DNA assimilation is largely unknown. In Haemophilus influenzae, the secretin ComE has been demonstrated to be essential for DNA uptake. In closely related Aggregatibacter actinomycetemcomitans, an opportunistic pathogen in periodontitis, the ComE homolog HofQ is believed to be the outer membrane DNA translocase. Here, we report the structure of the extra-membranous domains of HofQ at 2.3 Å resolution by X-ray crystallography. We also show that the extra-membranous domains of HofQ are capable of DNA binding. The structure reveals two secretin-like folds, the first of which is formed by means of a domain swap. The second domain displays extensive structural similarity to K homology (KH) domains, including the presence of a GxxG motif, which is essential for the nucleotide-binding function of KH domains, suggesting a possible mechanism for DNA binding by HofQ. The data indicate a direct involvement in DNA acquisition and provide insight into the molecular basis for natural competence.  相似文献   

19.
Gram-negative bacteria secrete virulence factors and assemble fibre structures on their cell surface using specialized secretion systems. Three of these, T2SS, T3SS and T4PS, are characterized by large outer membrane channels formed by proteins called secretins. Usually, a cognate lipoprotein pilot is essential for the assembly of the secretin in the outer membrane. The structures of the pilotins of the T3SS and T4PS have been described. However in the T2SS, the molecular mechanism of this process is poorly understood and its structural basis is unknown. Here we report the crystal structure of the pilotin of the T2SS that comprises an arrangement of four α-helices profoundly different from previously solved pilotins from the T3SS and T4P and known four α-helix bundles. The architecture can be described as the insertion of one α-helical hairpin into a second open α-helical hairpin with bent final helix. NMR, CD and fluorescence spectroscopy show that the pilotin binds tightly to 18 residues close to the C-terminus of the secretin. These residues, unstructured before binding to the pilotin, become helical on binding. Data collected from crystals of the complex suggests how the secretin peptide binds to the pilotin and further experiments confirm the importance of these C-terminal residues in vivo.  相似文献   

20.
Neisseria gonorrhoeae uses a type IV secretion system (T4SS) to secrete chromosomal DNA into the medium, and this DNA is effective in transforming other gonococci via natural transformation. In addition, the T4SS is important in the initial stages of biofilm development and mediates intracellular iron uptake in the absence of TonB. To better understand the mechanism of type IV secretion in N. gonorrhoeae, we examined the expression levels and localization of two predicted T4SS outer membrane proteins, TraK and TraB, in the wild-type strain as well as in overexpression strains and in a strain lacking all of the T4SS proteins. Despite very low sequence similarity to known homologues, TraB (VirB10 homolog) and TraK (VirB9 homolog) localized similarly to related proteins in other systems. Additionally, we found that TraV (a VirB7 homolog) interacts with TraK, as in other T4SSs. However, unlike in other systems, neither TraK nor TraB required the presence of other T4SS components for proper localization. Unlike other gonococcal T4SS proteins we have investigated, protein levels of the outer membrane proteins TraK and TraB were extremely low in wild-type cells and were undetectable by Western blotting unless overexpressed or tagged with a FLAG3 triple-epitope tag. Localization of TraK-FLAG3 in otherwise wild-type cells using immunogold electron microscopy of thin sections revealed a single gold particle on some cells. These results suggest that the gonococcal T4SS may be present in single copy per cell and that small amounts of T4SS proteins TraK and TraB are sufficient for DNA secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号