首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An affinity chromatography-based method has been developed for estrogen receptor isolation which requires the inclusion of sodium molybdate in purification buffers for maintaining the large 9-10S form of the receptor. The protein products obtained from affinity chromatography of calf uterine receptor extracts or from extracts presaturated with estradiol have been analyzed by gel electrophoresis under denaturing conditions. Major estrogen sensitive proteins were peptides with Mr approximately 90,000, 65,000 and 50,000. Two additional proteins (60,000 and 53,000) of lower abundance and with demonstrated estrogen sensitivity were also observed. Affinity labeling with [3H]tamoxifen aziridine identified the Mr 65,000 protein as the estrogen receptor and suggested that the Mr 60,000, 53,000 and 50,000 peptide components were derived proteolytically from this parent unit. The 90,000 mol. wt component was readily dissociated from heparin-sepharose immobilized estrogen receptor by elution with low salt buffers without molybdate. Peptide mapping experiments indicated that the 90,000 mol. wt component was not related to the Mr 65,000 and 50,000 estrogen receptors, but confirmed the smaller binding unit to be a proteolytic fragment of the 65,000 mol. wt receptor. The results suggest that the 90K protein associates non-covalently with the Mr 65,000 estrogen binding unit as a nonhormone binding component of the 9-10S receptor.  相似文献   

2.
A 55 kDa nuclear localization signal binding protein (p55) is involved in the transport of the goat uterine estrogen receptor from the cytoplasm to the nuclear pore complex (NPC). p55 forms a complex with a 12 kDa protein (p12) which in turn becomes 'docked' at the NPC. The present study reports on the purification and functional characterization of p12. Both p55 and p12 are Mg2+-dependent ATPases. The protein-protein interactions that take place between these two molecules at the NPC cause an enhancement in the net ATPase activity associated with the protein complex. Presumably, this enhanced ATPase function helps in the final nuclear entry of the estrogen receptor; p55 remains associated with p12 at the nuclear entry site under these conditions.  相似文献   

3.
Synthesis of an estrogen affinity adsorbent containing a disulfide linkage between the steroid and stationary matrix permitted facile purification of high affinity estrogen binding proteins. Following affinity chromatography of either antibody directed against estrone 17-carboxymethyloxime — bovine serum albumin or immature calf uterine cytoplasmic estrogen receptor proteins, the specifically bound protein was recovered by incubating the adsorbent with 2-mercaptoethanol. Crude antibody and uterine cytosol was prepared for affinity chromatography in buffer containing 10?3 to 10?2M cystamine (S-S) to block SH-containing proteins, in order to protect the adsorbent against protein-mediated S-S ag SH exchange. Cystamine was found to markedly stabilize crude cytosol receptor protein by 200–300% compared with preparations obtained under ordinary conditions. Disulfide affinity adsorbents are versatile in that they can be used either under conventional conditions of specific protein recovery, or with 2-mercaptoethanol which removes the ligand and bound protein from the stationary matrix quantitatively.  相似文献   

4.
Non-histone protein-DNA complexes with acceptor activity for estradiol-receptor complexes were reconstituted from fractionated calf uterine chromatin. Acceptor activity had tissue specificity with target tissue binding exceeding non-target tissue binding. The binding of estradiol-receptor complexes to acceptor sites was dependent on intact non-histone protein-DNA complexes, reconstituted select non-histone proteins, and protein equivalent: DNA reconstitution ratios. [3H]Estradiol-receptor complexes were bound to reconstituted non-histone protein-DNA complexes (i.e., nucleoacidic protein) with a high affinity and with a limited number of binding sites. Fractionation of uterine chromatin non-histone proteins identified two major sets of non-histone proteins which had acceptor activity when reconstituted with DNA. Thus, it seems possible to reconstitute nucleoacidic protein fractions with specific acceptor activity for the calf uterine estrogen receptor.  相似文献   

5.
6.
An alternative form of estrogen receptor isolated from goat uterus, the nonactivated estrogen receptor (naER), has no DNA-binding function, although it is closely similar to the classical estrogen receptor (ER) in its hormone binding affinity and specificity. The naER dimerizes with a DNA binding protein, estrogen receptor activation factor (E-RAF). The heterodimer binds to the DNA. Assays carried out during the purification of E-RAF showed that an endogenous inhibitor that is heat stable and dialyzable bound to the E-RAF and prevented the formation of the heterodimer. The inhibitor has been isolated and purified. GC-MS analysis identifies this molecule to be cholesterol. Circular dichroism measurement has shown that the high-affinity binding of cholesterol to E-RAF results in subtle changes in the secondary and the tertiary structure of the protein. The E-RAF with altered conformation fails to dimerize with the naER. Instead of facilitating E-RAF entry into the nucleus, dimerization with the naER prevents it. Similarly, cholesterol binding blocks the nuclear entry of the protein, showing that E-RAF with altered conformation is incapable of interaction with the nuclear pore complex/membrane proteins. The naER-E-RAF heterodimer remains at the nuclear periphery, incapable of further transport. These results indicate the possibility that the dimerization between naER and the E-RAF takes place only within the nuclear compartment. The observation that cholesterol binding prevents nuclear entry of the E-RAF reflects the similarity of E-RAF with the sterol regulatory element (SRE) binding protein that enters the nucleus and binds to SRE only when the intracellular level of cholesterol remains low.  相似文献   

7.
A 62-kDa nuclear protein that transforms the goat uterine nonactivated estrogen receptor (naER) to nuclear estrogen receptor II (nER II) has been isolated and purified. This is being identified as the naER-transforming factor (naER-TF). The transformation is achieved through deglycosylation of the naER. It is observed that the naER-TF action on the naER introduces significant changes in the structural and functional features of the naER. The capacity of the naER to bind estradiol increases 8- to 10-fold, while its hormone binding affinity reduces to a considerable extent following its exposure to naER TF. There is a critical ratio in the concentration of the two proteins, the TF and the naER, that would ensure an optimum transformation process. The transformed naER is incapable of dimerization with the estrogen receptor activation factor (E-RAF).  相似文献   

8.
R E Müller  H H Wotiz 《Steroids》1979,33(4):435-458
In the present paper we report on an improved procedure for the preparation of free uterine cells which avoids the use of trypsin and employs very low concentration of collagenase. The cells released mechanically from the digested tissue are constantly removed from the enzyme containing medium, thus minimizing exposure to collagenase. 60%-70% of the cells which make up the intact uterus are obtained as free cells and 95% of these cells are viable for at least 15 hours at 37 degrees. Metabolic integrity was assessed by measuring the cell's ability to oxidize glucose and synthesize proteins over extended periods of time. The membrane leucine carrier protein and the membrane Na+/K+ ATPase were found to be fully functional. Electron microscopic analysis of the cells confirmed their structural integrity. Data are presented illustrating that with this system the estrogen binding protein is stable at physiological temperatures. The cells contain approximately 30,000 specific estrogen binding sites, with an apparent KA of 5--6 x 10(9) M-1. At 37 degrees 80% of the hormone receptor complexes were in the nuclear fraction, 20% in the cytoplasm. The similarity of the estrogen receptor binding parameters with those measured in the intact tissue after in vivo hormone adminsistration, together with the cells' structural and metabolic integrity make this procedure for the preparation of uterine cell suspensions in high yields particularly suitable for studies in which minimal cell injury is an essential prerequisite.  相似文献   

9.
Exposure of goat uterine nuclei to estradiol in vitro results in an immediate exit of ribonucleoproteins (RNP) from the nuclei to the medium. This RNP exit appears to be mediated by an estrogen receptor localized in small nuclear ribonucleoproteins containing U1 and U2 snRNA. Available evidence indicates that the estrogen receptor involved is not the ERalpha, but an alternative form, which is also a 66 kDa protein. This is the nuclear estrogen receptor II (nER-II) that has no DNA-binding capacity. The transport is estrogen-specific since non-estrogenic steroids do not stimulate the transport of the RNP where the receptor is localized.  相似文献   

10.
J André  A Pfeiffer  H Rochefort 《Biochemistry》1976,15(14):2964-2969
Ethidium bromide, an intercalating drug, was shown to inhibit the in vitro DNA binding of the uterine estradiol-receptor complex. The inhibition was reversible, dose dependent, complete for total saturation of DNA intercalating sites by the dye, and proportional to the extent of intercalated drug. The binding of the receptor to phosphocellulose and poly(adenylic acid)-cellulose was not decreased by this drug. Similar inhibition was also obtained with 9-hydroxyellipticine. Denatured DNA was more efficient at binding the estrogen receptor than phosphocellulose or poly(adenylic acid)-cellulose but less efficient than native DNA. We conclude that the DNA binding of the estrogen receptor cannot be simply interpreted in terms of electrostatic interactions but requires a particular double-helical structure of DNA.  相似文献   

11.
Our laboratory has previously reported that antiestrogen binding to molybdate-stabilized non-transformed estrogen receptor results in a larger form of the receptor in 0.3 M KCl when compared with estrogen bound receptor. Estradiol promoted the formation of monomers in the presence of 0.3 M KCl whereas antiestrogen appeared to promote dimer formation. We have extended these studies examining the rabbit uterine salt-transformed estrogen receptor partially purified by DEAE-cellulose chromatography. We previously demonstrated that estrogen receptor prepared in this way bound to different sites on partially deproteinized chromatin subfractions or reconstituted chromosomal protein/DNA fractions when the receptor was complexed with estrogen vs antiestrogen. Analysis of these receptor preparations indicated that DEAE-cellulose step-elution resulted in a peak fraction which sedimented as a single 5.9S peak in 5-20% sucrose density gradients containing 0.3 M KCl for receptor bound by the antiestrogens H1285 and trans-hydroxytamoxifen. However, receptor bound by estradiol sedimented as 4.5S. These receptor complexes bound DNA-cellulose indicating that these partially purified receptors were transformed. DEAE rechromatography or agarose gel filtration of the partially purified antiestrogen-receptor complexes resulted in significant dissociation of the larger complex into monomers. Incubations of 5.9S antiestrogen-receptor complexes with antibodies against nontransformed steroid receptor-associated proteins (the 59 and 90 kDa proteins) did not result in the interaction of this larger antiestrogen-receptor complex with these antibodies (obtained from L. E. Faber and D. O. Toft, respectively). Our results support the concept that antiestrogen binding induces a different receptor conformation which could affect monomer-dimer equilibrium, thus rendering the antiestrogen-receptor complex incapable of inducing complete estrogenic responses in target tissues.  相似文献   

12.
A new strategy for protein purification using a soluble affinity matrix is described. The method was used for purification of estrogen receptor. Cytosols from rat uteri and human fibroid uterine tissue, after fractionation by ammonium sulfate, were treated with estradiol-polylysine conjugate. The highly basic affinity complex was separated from other proteins by DEAE-Sephacel chromatography. After dissociation of the eluted complex with excess estradiol, the receptor was recovered by CM-Sephadex chromatography. A 2000-fold purification of the rat uterine estrogen receptor was obtained with an activity recovery of 35%.  相似文献   

13.
We have previously shown, in the estrogen-unresponsive C3H mouse mammary tumor that the affinity of the estrogen receptor (ER) for calf thymus DNA in vitro is four-times higher than that of uterine ER [Baskevitch, P. P., Vignon, F., Bousquet, C. and Rochefort, H. (1983) Cancer Res. 43, 2290]. By mixing cytosols from this tumor and uterus, we describe a tumor factor capable of increasing ER affinity for DNA, as assayed by DNA-cellulose chromatography and saturation studies. The activity of this factor was inhibited by alpha-chymotrypsin-inhibitors such as N-tosylphenylalanylchloromethane and chymostatin. Using the fluorogenic substrate glutarylglycylglycylphenylalanyl-N-naphthylamide, we assayed such a protease in the C3H mammary tumor cytosol. This protease and the factor altering ER-DNA binding were eluted together from chromatography on DEAE-cellulose, AcA 44, and carboline-agarose and were sensitive to the same inhibitors. The partially purified factor decreases the molecular mass of the estrogen receptor as seen by denaturing electrophoresis after covalent labelling of the ER with [3H]tamoxifen aziridine. We suggest that the increase of ER affinity for DNA and the decrease of ER molecular size are due to the same protease with an alpha-chymotrypsin-like specificity.  相似文献   

14.
In the present study, culf uterine tissue has been used for isolation of androgen receptors. This tissue appeared to be a favourable source for large-scale purification of androgen receptors, because of the relatively high level of androgen receptors and the low concentration of proteolytic enzymes. The purification involved differential phosphocellulose and DNA affinity chromatography as first steps. The non-transformed receptor was passed through these matrices in order to remove contaminating DNA-binding proteins. After a transformation step to the DNA-binding state, the receptor was bound to DNA cellulose and subsequently eluted with MgCl2. A 0.5% pure androgen receptor preparation was obtained. Photoaffinity labelling with [3H]R1881 (methyltrienolone) was used to determine the size of the receptor at this stage of purification and during the following steps. Subsequently, isoelectric focussing of the partially purified androgen receptor preparation in an aqueous glycerol gradient was performed. In this step, the progesterone receptor, which is copurified with the androgen receptor protein during the first part of the purification procedure, focussed at pH 5.5, while the androgen receptor could be isolated at pH 5.8. The isoelectric focussing procedure could be applied in a preparative way for further purification of androgen receptors. After this step an approx. 8% pure preparation was obtained. Polyacrylamide gel electrophoresis of S-carboxymethylated androgen receptor was used as the final purification step. The [3H]methyltrienolone labelled androgen receptor from calf uterus was purified to homogeneity and consisted of one polypeptide with a molecular mass of 110 kDa.  相似文献   

15.
R A Cowan  U H Kim  G C Mueller 《Steroids》1975,25(1):135-143
Studies of the temperature sensitivity of estradiol receptor binding in rabbit uterine cytosol have revealed the existence of an enzyme which catalyzes the covalent binding of estradiol to cytosol proteins. A fraction, prepared by chromatography on Biogel P-200 and incubated at 37 degrees C in the presence of Mn++, exhibited a time-dependent, temperature-sensitive, oxidative binding of estradiol not seen in the crude cytosol preparation. Although the activity of this enzyme was shown to be independent of estradiol binding by the high affinity estrogen receptor, its presence may complicate studies of estrogen receptor action which involve the use of elevated temperatures.  相似文献   

16.
Three proteins of a goat uterine small nuclear ribonucleoprotein (snRNP) fraction, which bind to nuclear estrogen receptor-II (nER-II) have been isolated and purified. These are the p32, p55, and p60 of which p32 is the major nER-II binding protein. Indirect evidence reveals that p32 binds to the nuclear export signal (NES) on the nER-II. nER-II is a snRNA binding protein while p32 does not bind to the RNA. nER-II along with p32 and p55 form an effective Mg(++)ATPase complex, the activation of which appears to be the immediate reason behind the RNP exit from the nuclei following estradiol exposure. The three nER-II binding proteins bind to the nuclear pore complex; nER-II does not possess this property.  相似文献   

17.
The steroid and the DNA bindings of the estrogen receptor of the MtTF4 tumor whose growth is inhibited by estradiol where characterized and compared to those of uterine estrogen receptors. In the tumor cytosol: E protects its binding sites against thermal denaturation, depending on the effects of sodium molybdate upon the dissociation rate of [3H]E at 20 degrees C and the ability of receptor to bind to DNA, the activation (or transformation) process, supposed to be necessary for the full action of estrogen ligand, occurs on estrogen receptor complexes and the calf thymus DNA interacts with estrogen receptor with an affinity similar to that of uterine estrogen receptor. Kinetic and equilibrium studies with 17 alpha-[3H]E both in uterus and tumor indicate that this ligand is fast-associating, fast-dissociating and that its affinity for ER is 2- to 4-fold lower than that of 17 beta-[3H]estradiol one. Competition experiments between 17 beta-[3H]estradiol and the unlabelled 17 alpha epimer reveal, in both uterus and tumor, a time-dependent decrease of the apparent potency of 17 alpha-E to inhibit the binding of [3H]E. It is concluded that the estrogen receptors are very similar in MtTF4 tumor and uterus and the diversity of the response of cell growth to E is due rather to differences at the post-receptor level.  相似文献   

18.
Estrogen receptor (ER) from chicken liver and calf uterus were used to study the capacity and the characteristics of the receptor binding sites (acceptor sites) in chicken target cell nuclei. Binding studies were performed at a physiological salt concentration of 0.15 M KCl. Binding of liver ER to liver nuclei was temperature-dependent, showing a 9-fold increase between 0 and 28 degrees C. The maximal number of acceptor sites measured in this cell-free system (280 sites/nucleus) was considerably lower than measured in nuclei after in vivo administration of estrogen (820 sites/nucleus). Moreover incubation of nuclei with the liver ER preparation resulted in a substantial breakdown of nuclear DNA, making this ER less suitable for DNA binding studies. The temperature-activated calf uterine receptor bound to liver nuclei at 0 degrees C, at which temperature no DNA degradation was measured. To all chicken cell nuclei tested, the receptor bound with a high affinity (Kd = 0.4-1.0 nM). Nuclear binding displayed tissue specificity: oviduct greater than heart, liver greater than spleen greater than erythrocytes and was salt dependent. Calf uterine ER binding in liver nuclei ranged from 3000-6000 acceptor sites per nucleus when assayed under conditions of a constant protein or a constant DNA concentration. Nuclei isolated from estrogen-treated cockerels bound a 2-fold lower number of calf uterine ER complexes when compared to control nuclei. Incubation of nuclei with a fixed concentration of [3H]ER from liver and increasing concentrations of uterine non-radioactive-ER also resulted in a reduced binding of the liver receptor. Both types of experiments suggest that liver and uterine ER compete for a common nuclear acceptor site. Our data demonstrate that the ER from calf uterus is very useful as a probe to examine the nature of the acceptor sites in heterologous chicken target cell nuclei. The assay system functions at 0 degrees C, a temperature at which no DNA degradation occurs.  相似文献   

19.
The rat uterus contains two classes of specific nuclear estrogen-binding sites which may be involved in estrogen action. Type I sites represent the classical estrogen receptor (Kd = 1 nM) and type II sites (Kd = 10-20 nM) are stimulated in the nucleus by estrogen under conditions which cause uterine hyperplasia. Dilution of uterine nuclear fractions from estrogen treated rats prior to quantitation of estrogen binding sites by [3H]estradiol exchange results in an increase (3- to 4-fold) in the measurable quantities of the type II site. Estimates of type I sites are not affected by dilution. These increases in type II sites following nuclear dilution occur independently of protein concentration and result from the dilution of a specific endogeneous inhibitor of [3H]estradiol binding to these sites. The inhibitor activity is present in cytosol preparations from rat uterus, spleen, diaphragm, skeletal muscle, and serum. Preliminary characterization of the inhibitor activity by Sephadex G-25 chromatography shows two distinct peaks which are similar in molecular weight (300). These components (alpha and beta) can be separated on LH-20 chromatography since the beta-peak component is preferentially retained on this lipophilic resin. Partial purification of the LH-20 beta inhibitor component by high performance liquid chromatography and gas-liquid chromatography-mass spectrometric analysis suggests the putative inhibitor activity is not steroidal in nature and consists of two very similar phenanthrene-like molecules (molecular weights 302 and 304). Analysis of cytosol preparations on LH-20 chromatography shows that non-neoplastic tissues (uterus, liver, lactating mammary gland) contain both and inhibitor components whereas estrogen-induced rat mammary tumors contain very low to nonmeasurable quantities of the beta-peak inhibitor activity.  相似文献   

20.
D F Skafar 《Biochemistry》1991,30(25):6148-6154
The studies presented here provided evidence that the calf uterine estrogen and progesterone receptors exhibit different DNA-binding properties in vitro as a result of having different dimerization constants. The affinity of the estrogen and progesterone receptors for DNA was measured by using isocratic elution from DNA-Sepharose. The hormone-free estrogen receptor had a 10-fold higher affinity for DNA than did the hormone-free progesterone receptor when measured at receptor concentrations of 6-12 nM and 180 mM KCl. No effect on DNA binding by binding progesterone to its receptor was detected. This contrasts with the increased affinity for DNA and increased number of ions released upon DNA binding exhibited by the hormone-bound estrogen receptor. Between 2 and 3 ions were released when the progesterone receptor and the diluted estrogen receptor bound DNA. These observations suggested the progesterone receptor was in the monomeric state, whereas the estrogen receptor was in the dimeric state at receptor concentrations of 6-12 nM. When the dimerization constant of the progesterone receptor was measured, the value of approximately 7 nM obtained was 20-fold higher than the value of 0.3 nM reported for the estrogen receptor. This makes it likely the two receptors exist in different forms at the same concentration in vitro. It is also suggested the predominant form of the estrogen and progesterone receptors in vivo could differ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号