首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Y. Hiraizumi 《Genetics》1990,125(3):515-525
Current models of segregation distortion based on previous experimental results predict that, in the Sd heterozygous Rspi/Rsps male, the chromosome carrying the sensitive Rsps allele is distorted or transmitted in a frequency smaller than that of the expected Mendelian 0.5 relative to the chromosome carrying the insensitive Rspi allele. The present study presents a case where this does not occur, that is, when the genotype of the males is supp-X(SD)/Y; Sd E(SD)Rspi M(SD)+/Sd+ E(SD)+ Rsps M(SD)+ where supp-X(SD) is an X chromosome carrying a strong suppressor or suppressors of SD activity and SD+ E(SD)+ Rsps M(SD)+ is the standard cn bw chromosome. Following the "inseminated female transfer" procedure, young males of the above genotype carrying the standard-X instead of the supp-X(SD) chromosome show k values for the SD chromosome (frequencies of the SD chromosome recovered among progeny) of about 0.75, but with the supp-X(SD) chromosome, the k values are reduced to 0.36-0.41. Several possibilities other than the mechanism of segregation distortion to explain the reduced k values are ruled out. The occurrence of "negative segregation distortion" is clearly demonstrated, where the chromosome carrying the Rspi allele is distorted but the chromosome with the Rsps allele is not. This result requires a major modification of the current models or even a new model for the mechanism of segregation distortion to accommodate Rsp allele sensitivity or insensitivity. The present study also shows that males of the genotype, Sd Rspss M(SD)+/Sd+ Rspss M(SD), are almost completely sterile, but their fertility is considerably increased when SD activity is suppressed by the presence of the supp-X(SD) chromosome. This result suggests that the amount of the Sd product is not limited with respect to the interacting sites available, that is, the amount is large enough to interact with both of the Rspss alleles.  相似文献   

2.
Male Drosophila heterozygous for an SD-bearing second chromosome and a normal homolog preferentially transmit the SD chromosome to their offspring. The distorted transmission involves the induced dysfunction of the sperm that receive the SD+ chromosome. The loci on the SD chromosome responsible for causing distortion are the Sd locus the the E(SD) locus. Their target of action on the SD+ chromosome is the Rsps locus. Previous studies of Rsps indicated that deletion of this locus rendered a chromosome insensitive to the action of SD and mapped Rsps physically within the centric heterochromatin of 2R. In this study we have constructed a collection of marked free duplications for the centromeric region of a second chromosome that carried Rsps. The heterochromatic extent of each duplication as well as its sensitivity to distortion was determined. We found that Rsps is the most proximal known locus within the 2R heterochromatin. Furthermore, our results demonstrate that the presence of Rsps is not only necessary but sufficient to confer sensitivity to distortion irrespective of its association with an intact second chromosome or one that pairs meiotically with an SD chromosome. By use of these duplications we increased the usual dosage of Rsps relative to SD to determine whether there was any competition for limited amounts of SD [and/or E(SD)] product. When two Rsps-bearing chromosomes are present within the same spermatocyte nucleus an SD chromosome is capable of causing efficient distortion of both. However, at least in some cases the degree of distortion against a given Rsps was reduced by the presence of an extra dose of Rsps indicating that there was some competition between them. The bearing of these results on present models of segregation distortion are discussed.  相似文献   

3.
R. G. Temin 《Genetics》1991,128(2):339-356
Segregation distortion is a meiotic drive system, discovered in wild populations, in which males heterozygous for an SD chromosome and a sensitive SD+ homolog transmit the SD chromosome almost exclusively. SD represents a complex of three closely linked loci in the centromeric region of chromosome 2: Sd, the Segregation distorter gene; E(SD), the Enhancer of Segregation Distortion, required for full expression of drive; and Rsp, the target for the action of Sd, existing in a continuum of states classifiable into sensitive (Rsps) and insensitive (Rspi). In an SD/SD+ male which is Sd E(SD) Rspi/Sd+ E(SD)+ Rsps, the Sd and E(SD) elements act jointly to induce the dysfunction of those spermatids receiving the Rsps chromosome. By manipulating the number of copies and the position of the Enhancer region, I demonstrated that: (1) E(SD), whether in its normal position or translocated to the Y chromosome, is able to enhance the degree of Sd-caused distortion in a dosage-dependent manner; (2) even in the absence of Sd, the E(SD) allele in two doses can cause significant distortion, in Sd+ or Df(Sd)-bearing genotypes; (3) quantitative differences among Enhancers of different sources suggest allelic variation at E(SD), which could account at least in part for differences among wild SD chromosomes in strength of distortion; (4) E(SD)/E(SD)-mediated distortion, like that of Sd, is directed at the Rsp target, whether Rsp is on the second or the Y chromosome; (5) E(SD), like Sd, is suppressed by an unlinked dominant suppressor of SD action. These results show that E(SD) is independently capable of acting on Rsp and is not a simple modifier of the action of Sd. E(SD) provides an example of a trans-acting gene embedded in heterochromatin that can interact with another heterochromatic gene, Rsp, as well as parallel the effect of a euchromatic gene, Sd.  相似文献   

4.
S. Pimpinelli  P. Dimitri 《Genetics》1989,121(4):765-772
The segregation distortion phenomenon occurs in Drosophila melanogaster males carrying an SD second chromosome and an SD+ homolog. In such males the SD chromosome is transmitted to the progeny more frequently than the expected 50% because of an abnormal differentiation of the SD+-bearing sperms. Three major loci are involved in this phenomenon: SD and Rsp, associated with the SD and SD+ chromosome, respectively, and E(SD). In the present work we performed a cytogenetic analysis of the Rsp locus which was known to map to the centromeric heterochromatin of the second chromosome. Hoechst- and N-banding techniques were used to characterize chromosomes carrying Responder insensitive (Rspi), Responder sensitive (Rsps) and Responder supersensitive (Rspss) alleles. Our results locate the Rsp locus to the h39 region of 2R heterochromatin. This region is a Hoechst-bright, N-banding negative heterochromatic block adjacent to the centromere. Quantitative variations of the h39 region were observed. The degree of sensitivity to Sd was found to be directly correlated with the physical size of that region, demonstrating that the Rsp locus is composed of repeated DNA.  相似文献   

5.
C B Sharp  A J Hilliker 《Génome》1989,32(5):840-846
Segregation distortion is caused by a group of genetic elements in and near the centric heterochromatin of chromosome 2 of Drosophila melanogaster. These elements promote their preferential recovery in heterozygous males by rendering sperm bearing the homologous chromosome dysfunctional. Previous work has shown that numerous Y-autosome translocations are associated with the suppression of the segregation distorter phenotype. The present study examined the effects of translocations between the major autosomes upon the expression of segregation distortion. Autosomal translocations involving either the segregation distorter chromosome or its sensitive homologue had no significant effect upon the expression of segregation distortion. These results argue that linkage arrangement per se may not have a major effect on segregation distortion. The suppression of SD by specific Y-autosomal translocations may be due to the disruption of elements on the Y chromosome that are important for the expression of SD.  相似文献   

6.
水稻日本晴与广陆矮4号杂交F2群体SSR标记偏分离原因探析   总被引:11,自引:1,他引:11  
以全基因组测序已经完成的材料粳稻日本晴和完成了第4染色体全序列测序的籼稻广陆矮4号的杂交F2作为构图群体,共90个单株,构建了一张含148个微卫星标记的水稻分子遗传图谱。该F2群体显著偏分离非常高,发现有49个分子标记表现偏分离(P〈0.05),占总标记数的33.11%,这些偏分离标记中有36个偏向广陆4号,13个偏向杂合体,没有偏向日本晴的偏分离标记。讨论了配子体基因和孢子体基因导致偏分离的原因,通过已经定位的配子体基因和杂种不育基因分布在偏分离集中的区域来进一步说明配子体基因和杂种不育基因确实是导致偏分离形成的原因,而且还通过未定位的标记分析了偏分离的原因。  相似文献   

7.
A genetic linkage map comprising 148 SSR markers loci was constructed using an F2 population consisting of 90 lines derived from a sub-specific cross between a japonica variety Nipponbare and an indica variety Guangluai-4. The F2 population showed high significantly distorted segregations. Among these SSR markers, 49 markers (33.11%) showed the genetics distortion(P<0.05). Of them, 36 markers deviated toward male parent indica GuangLuAi-4 and 13 markers toward heterozygote, but none toward the female parent Nipponbare. It was found that the segregation distortion might be caused by gametophyte and zygote. Since most gametophyte loci and sterility loci were mapped in segregation distortion regions, it indicated that the segregation distortion may be caused by these gametophyte loci and sterility loci. Finally, this research also analyzed the skewed segregation of some markers, which had not been mapped on chromosome.  相似文献   

8.
On the Models of Segregation Distortion in DROSOPHILA MELANOGASTER   总被引:6,自引:6,他引:0       下载免费PDF全文
Martin DW  Hiraizumi Y 《Genetics》1979,93(2):423-435
The Segregation Distorter system of Drosophila melanogaster consists of two major elements, Sd and Rsp. There are two allelic alternatives of Rsp-sensitive (Rsp(s)) and insensitive (Rsp(i)); a chromosome carrying Rsp(i) is not distorted. According to the model proposed by Hartl (1973), these two elements interact to cause segregation distortion. For a sperm to complete the maturation process, it is assumed that the Rsp locus has to be complexed with the product of the Sd locus. This product is assumed to be a multimetric regulatory protein. Three kinds of regulatory multimers may be distinguished: Sd(+)/Sd(+), which is assumed to complex with both Rsp(s) and Rsp(i); Sd(+)/Sd heteromultimers, which complex preferentially with Rsp(i); and Sd/Sd homomultimers, which complex with neither Rsp(s) nor Rsp(i). Most of the regulatory protein in the Sd(+)/Sd heterozygous male is assumed to be the Sd(+)/Sd heteromultimer.--Some modifications of Hartl's model were made by Ganetzky (1977). Rather than the binding of a product of Sd at the Rsp locus being a necessary condition for normal spermigenesis, this binding causes sperm dysfunction. It is assumed that the product of Sd complexes more readily with Rsp(s) than with Rsp(i) and that the amount of Sd product is limited with respect to the number of binding sites available. No function is ascribed to the Sd(+) locus. In order to explain reduced male fertility of some genotypes, Ganetzky further assumes that the Sd product, when not competed for by an Rsp(s) locus, can bind to an Rsp(i) locus.--Two consequences of these models were critically examined: according to these models (1) an Sd Rsp(s)/Sd(+)Rsp(s) male should not show any segregation distortion, and (2) an Sd Rsp(s)/Sd Rsp(s) male should show much reduced fertility, if not complete sterility.--The results of the present study bear on these two points. (1) Rsp(s) locus seems to consist of multiple alleles, each having a different degree of ability to interact with the product of the Sd locus. An Sd Rsp(s)/Sd(+)Rsp(s) male shows a certain degree of segregation distortion when the two Rsp(s) alleles are different, but it shows a normal Mendelian segregation ratio when the Rsp(s) alleles are homozygous. The first prediction of the models is supported by actual observation when the two Rsp(s) alleles are the same. (2) There is a suggestion of slight reduction in fertility, but generally Sd Rsp(s)/Sd Rsp(s) males are quite fertile. Thus, the second prediction is not supported by actual observation. The mechanism of segregation distortion is still open for future studies.  相似文献   

9.
In order to test whether the meiotic drive system Segregation distorter (SD) can operate on the X chromosome to exclude it from functional sperm, we have transposed the Responder locus (Rsp) to this element. This was accomplished by inducing detachments of a compound-X chromosome in females carrying a Y chromosome bearing a Rsps allele. Six Responder-sensitive-bearing X chromosomes, with kappa values ranging from 0.90 to 1.00, were established as permanent lines. Two of these have been characterized more extensively with respect to various parameters affecting meiotic drive. SD males with a Responder-sensitive X chromosome produce almost exclusively male embryos, while those with a Rsp-Y chromosome produce almost exclusively female embryos. This provides a genetic system of great potential utility for the study of early sex-specific differentiation events as it allows the collection of large numbers of embryos of a given sex.  相似文献   

10.
唐丁  郭龙彪  曾大力  张光恒  程祝宽  钱前 《遗传》2006,28(10):1259-1264
遗传异常分离既是自然界非常普遍的现象, 也是生物进化的动力之一。产生异常分离的原因可能与配子体或孢子体的选择有关。利用6个以类病变(lmi)和矮杆突变体(d6)为亲本的杂交组合(F2或F3), 对该类病变和矮杆基因的遗传规律及异常分离现象作初步的分析。结果显示, lmi×02428和d6×93-11的F2群体以及F3株系中存在极端异常分离的现象; LMI基因附近的分子标记ST8-1和D6基因附近的ST7-1、ST7-2、RM5490的带型分离同样也极显著偏离期望比; 偏分离因子与类病斑LMI和矮杆基因D6紧密连锁, 分别位于第8染色体分子标记ST8和ST8-2之间以及第7染色体分子标记ST7-1和ST7-3之间。异常分离现象还与杂交的组合有直接的关系。  相似文献   

11.
In hereditary retinoblastoma, different epidemiological studies have indicated a preferential paternal transmission of mutant retinoblastoma alleles to offspring, suggesting the occurrence of a meiotic drive. To investigate this mechanism, we analyzed sperm samples from six individuals from five unrelated families affected with hereditary retinoblastoma. Single-sperm typing techniques were performed for each sample by study of two informative short tandem repeats located either in or close to the retinoblastoma gene (RB1). The segregation probability of mutant RB1 alleles in sperm samples was assessed by use of the SPERMSEG program, which includes experimental parameters, recombination fractions between the markers, and segregation parameters. A total of 2,952 single sperm from the six donors were analyzed. We detected a significant segregation distortion in the data as a whole (P=.0099) and a significant heterogeneity in the segregation rate across donors (.0092). Further analysis shows that this result can be explained by segregation distortion in favor of the normal allele in one donor only and that it does not provide evidence of a significant segregation distortion in the other donors. The segregation distortion favoring the mutant RB1 allele does not seem to occur during spermatogenesis, and, thus, meiotic drive may result either from various mechanisms, including a fertilization advantage or a better mobility in sperm bearing a mutant RB1 gene, or from the existence of a defectively imprinted gene located on the human X chromosome.  相似文献   

12.
亚洲棉种内群体异常偏分离的分子标记检测   总被引:4,自引:0,他引:4  
李武  林忠旭  张献龙 《遗传学报》2007,34(7):634-640
利用3个形态标记、20个SSR和11个SRAP多态性标记,研究它们在“如东鸡脚桠果”与“美国中棉971”杂交的F2群体中的分离情况。结果表明,77.42%的分子标记表现为偏分离,所有的偏分离标记都偏向母本“如东鸡角桠果”;如此高的偏分离比例以及偏分离标记都偏向一个亲本,这种现象在棉花中是比较罕见的。3种类型的SSR标记和非物种特异性的SRAP标记都表现偏分离,而形态标记则表现为正常分离,这表明该异常偏分离现象是由材料本身的遗传特性所决定的。通过分析偏分离的共显性标记的等位基因频率(p=q)以及各种基因型频率(p2:2pq:q2)的F2分布,发现大多数标记的等位基因频率差异显著而F2基因型频率分布正常,表明这些标记产生偏分离可能是配子体选择的结果。  相似文献   

13.
Daniel L. Hartl 《Genetics》1975,80(3):539-547
In(2L+2R)Cy and In(2LR)Pm2 are inversion-bearing chromosomes, the former carrying a paracentric inversion in each arm and the latter carrying a long pericentric. Both chromosomes produce normal segregation ratios when present in heterozygous males with certain segregation distorter chromosomes. The apparent suppression of distortion by these chromosomes was long attributed to a failure of synapsis, but this hypothesis has fallen out of favor recently because a large number of chromosome aberrations, particularly translocations and inversions, suppress distortion even though their breakpoints fall into no recognizable pattern. Although failure of synapsis does not appear to be the mechanism of suppression of distortion, what is responsible for the suppression remains unknown. In this paper it is shown that In(2L+2R)Cy and In(2LR)Pm2 suppress segregation distortion because they carry Rsp, a component of the segregation distorter system that renders a chromosome insensitive to distortion. Both chromosomes induce "suicide" of chromosomes carrying Sd Rsp+.  相似文献   

14.
J D Faris  B Laddomada  B S Gill 《Genetics》1998,149(1):319-327
Distorted segregation ratios of genetic markers are often observed in progeny of inter- and intraspecific hybrids and may result from competition among gametes or from abortion of the gamete or zygote. In this study, 194 markers mapped in an Aegilops tauschii F2 population were surveyed for distorted segregation ratios. Region(s) with skewed segregation ratios were detected on chromosomes 1D, 3D, 4D, and 7D. These distorter loci are designated as QSd.ksu-1D, QSd. ksu-3D, QSd.ksu-4D, and QSd.ksu-7D. Three regions of segregation distortion identified on chromosome 5D were analyzed in two sets of reciprocal backcross populations to analyze the effect of sex and cytoplasm on segregation distortion. Extreme distortion of marker segregation ratios was observed in populations in which the F1 was used as the male parent, and ratios were skewed in favor of TA1691 alleles. There was some evidence of differential transmission caused by nucleo-cytoplasmic interactions. Our results agree with other studies stating that loci affecting gametophyte competition in male gametes are located on 5DL. The distorter loci on 5DL are designated as QSd.ksu-5D.1, QSd.ksu-5D.2, and QSd.ksu-5D.3.  相似文献   

15.
A series of Chinese hamster ovary cell hybrids were constructed which were heterozygous at the emtB and chr loci. These loci encode two recessive drug-resistance genes (emetine resistance and chromate resistance, respectively) located on a structurally hemizygous region on the long arm of chromosome 2. These heterozygous hybrids therefore exhibit wild-type sensitivity to both emetine and chromate. Drug-resistant variants were then selected in medium containing either emetine or chromate, and the mechanism of reexpression of the recessive drug-resistant allele was determined by karyotypic analysis of the resultant colonies. In previous studies at these loci we have determined that segregation of the recessive phenotype occurs primarily by (1) the loss of the chromosome 2 carrying the wild-type, drug-sensitive, allele, (2) deletion of the long arm of chromosome 2, or (3) loss of one chromosome 2 followed by duplication of the remaining homologue. However, a small proportion of segregants have also been detected which may have arisen by the mechanisms of de novo gene inactivation or mutation. In this report, hybrids are described which were constructed to allow selection for the retention of the chromosome carrying the wild-type allele and which therefore optimize isolation of these rare segregants. We demonstrate by karyotypic analysis, mutation frequency analysis, and microcell-mediated chromosome transfer that these rare segregants occur primarily by gene inactivation. We also demonstrate a dramatic increase in the proportion of segregants occurring by gene inactivation in two of these hybrids as compared with those previously reported, indicating that this mechanism may be an important mode of phenotype segregation in diploid cells and, therefore, in the development of cancers--such as the childhood tumors retinoblastoma and Wilms tumor--resulting from recessive alleles  相似文献   

16.
Pest control by genetic manipulation of sex ratio   总被引:3,自引:0,他引:3  
We model the release of insects carrying an allele at multiple loci that shifts sex ratios in favor of males. We model two approaches to sex ratio alteration. In the first (denoted SD), meiotic segregation (or sperm fertility) is distorted in favor of gametes carrying the male-determining genetic element (e.g., Y-chromosome). It is assumed that any male carrying at least one copy of the SD allele produces only genotypically male offspring. In the second approach (denoted PM), the inserted allele alters sex ratio by causing genetically female individuals to become phenotypically male. It is assumed that any insect carrying at least one copy of the PM allele is phenotypically male. Both approaches reduce future population growth by reducing the number of phenotypic females. The models allow variation in the number of loci used in the release, the size of the release, and the negative fitness effect caused by insertion of each sex ratio altering allele. We show that such releases may be at least 2 orders of magnitude more effective than sterile male releases (SIT) in terms of numbers of surviving insects. For example, a single SD release with two released insects for every wild insect and a 5% fitness cost per inserted allele could reduce the target population to 1/1000th of the no-release population size, whereas a similar-sized SIT release would only reduce the population to one-fifth of its original size. We also compare these two sex ratio alteration approaches to a female-killing (FK) system and the sterile male technique when there are repeated releases over a number of generations. In these comparisons, the SD approach is the most efficient with equivalent pest suppression achieved by release of approximately 1 SD, 1.5-20 PM, 2-70 FK, and 16-3,000 SIT insects, depending on conditions. We also calculate the optimal number of SD and PM allele insertions to be used under various conditions, assuming that there is an additional genetic load incurred for each allelic insertion.  相似文献   

17.
LeMaire-Adkins R  Hunt PA 《Genetics》2000,156(2):775-783
A fundamental principle of Mendelian inheritance is random segregation of alleles to progeny; however, examples of distorted transmission either of specific alleles or of whole chromosomes have been described in a variety of species. In humans and mice, a distortion in chromosome transmission is often associated with a chromosome abnormality. One such example is the fertile XO female mouse. A transmission distortion effect that results in an excess of XX over XO daughters among the progeny of XO females has been recognized for nearly four decades. Utilizing contemporary methodology that combines immunofluorescence, FISH, and three-dimensional confocal microscopy, we have readdressed the meiotic segregation behavior of the single X chromosome in oocytes from XO females produced on two different inbred backgrounds. Our studies demonstrate that segregation of the univalent X chromosome at the first meiotic division is nonrandom, with preferential retention of the X chromosome in the oocyte in approximately 60% of cells. We propose that this deviation from Mendelian expectations is facilitated by a spindle-mediated mechanism. This mechanism, which appears to be a general feature of the female meiotic process, has implications for the frequency of nondisjunction in our species.  相似文献   

18.
Meiotic drive has attracted much interest because it concerns the robustness of Mendelian segregation and its genetic and evolutionary stability. We studied chromosomal meiotic drive in the common shrew (Sorex araneus, Insectivora, Mammalia), which exhibits one of the most remarkable chromosomal polymorphisms within mammalian species. The open question of the evolutionary success of metacentric chromosomes (Robertsonian fusions) versus acrocentrics in the common shrew prompted us to test whether a segregation distortion in favor of metacentrics is present in female and/or male meiosis. Performing crosses under controlled laboratory conditions with animals from natural populations, we found a clear trend toward a segregation distortion in favor of metacentrics during male meiosis, two chromosome combinations (gm and jl) being significantly preferred over their acrocentric homologs. Apart for one Robertsonian fusion (hi), this trend was absent in female meiosis. We propose a model based on recombination events between twin acrocentrics to explain the difference in transmission ratios of the same metacentric in different sexes and unequal drive of particular metacentrics in the same sex. Pooled data for female and male meiosis revealed a trend toward stronger segregation distortion for larger metacentrics. This is partially in agreement with the frequency of metacentrics occurring in natural populations of a chromosome race showing a high degree of chromosomal polymorphism.  相似文献   

19.
Y. Hiraizumi 《Genetics》1993,135(3):831-841
Previous work has shown that the direction of segregation distortion in the SD (Segregation Distorter) system in Drosophila melanogaster can sometimes be reversed, but this was found only with rather weak distorters and the effect was not large. The present study reports large negative segregation distortion in a strong distorter, SD-72 chromosome. In the presence of a specific X chromosome, supp-X(SD), the proportion, k, of SD-72 chromosomes recovered from the SD-72/cn bw males ranges from 0.99 at 20° to 0.11 at 28.5°, whereas with a standard-X chromosome, k ranges from 0.99 to 0.95 for the same temperature range. The temperature-sensitive period is during spermiogenesis. Using a mating system in which the sperm supply is nearly exhausted, it was shown that the negative distortion at high temperatures is due to an absolute reduction in the number of SD-72 chromosomes and an absolute increase in the number of cn bw chromosomes recovered. After adjusting for non-SD-related temperature effects, the amount of decrease in the number of SD-72 progeny is nearly the same as the amount of increase in the number of cn bw progeny, suggesting that the dysfunction switches from a spermatid carrying one homolog to one carrying the other. Negative distortion requires a radical revision of current hypotheses for the mechanism of segregation distortion and a possible modification of the current model is suggested, based on differential recovery of dysfunction in the two homologs during spermiogenesis.  相似文献   

20.
We have shown previously that the progeny of crosses between heterozygous females and C57BL/6 males show transmission ratio distortion at the Om locus on mouse chromosome 11. This result has been replicated in several independent experiments. Here we show that the distortion maps to a single locus on chromosome 11, closely linked to Om, and that gene conversion is not implicated in the origin of this phenomenon. To further investigate the origin of the transmission ratio distortion we generated a test using the well-known effect of recombination on maternal meiotic drive. The genetic test presented here discriminates between unequal segregation of alleles during meiosis and lethality, based on the analysis of genotype at both the distorted locus and the centromere of the same chromosome. We used this test to determine the cause of the transmission ratio distortion observed at the Om locus. Our results indicate that transmission ratio distortion at Om is due to unequal segregation of alleles to the polar body at the second meiotic division. Because the presence of segregation distortion at Om also depends on the genotype of the sire, our results confirm that the sperm can influence segregation of maternal chromosomes to the second polar body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号