共查询到20条相似文献,搜索用时 9 毫秒
1.
The vanilloid receptor 1(VR1) is a nonselective cation channel that is activated by pungent vanilloid compound, extracellular protons, or noxious heat. mRNA of VR1 and vanilloid receptor 1-like receptor (VRL1) were expressed in PC12 cells, and only VRI mRNA was detected in glioma and A10 cell lines. VRI protein was demonstrated in PC12 cells by immunocytochemistry and Western blotting. Capsaicin (CPS), the VRI receptor agonist, led to an increase in intracellular calcium ion, and this effect was blocked by pretreatment with VR1 receptor antagonist capsazepin (CPZ). Treatment of PC12 cells with low concentration of CPS (5-50 microM) increased reactive oxygen species (ROS) production, and inducible nitric oxide synthase (iNOS) was expressed after CPS treatment for 24 h. These CPS-induced changes are inhibited by pretreatment of CPZ. These findings suggest that CPS-induced iNOS expression through the VR1 and/or VRL1-mediated pathway, and this may explain the CPS-mediated physiological and pathological effects in neuron system. 相似文献
2.
Acetylbritannilatone suppresses NO and PGE2 synthesis in RAW 264.7 macrophages through the inhibition of iNOS and COX-2 gene expression 总被引:5,自引:0,他引:5
In order to elucidate the mechanism of anti-inflammatory effect of 1-o-acetylbritannilatone (ABL) isolated from Inula Britannica-F, we investigated ABL for its ability to inhibit the inflammatory factor production in RAW 264.7 macrophages. The studies showed that ABL not only inhibited LPS/IFN-gamma-mediated nitric oxide (NO) production and inducible nitric synthase (iNOS) expression, but also decreased LPS/IFN-gamma-induced prostaglandin E2 (PGE2) production and cyclo-oxygenase-2 (COX-2) expression in a concentration-dependent manner. EMSA demonstrated that ABL inhibited effectively the association of NF-kappaB, which is necessary for the expression of iNOS and COX-2, with its binding motif in the promoter of target genes. These data suggest that ABL suppress NO and PGE2 synthesis in RAW 264.7 macrophages through the inhibition of iNOS and COX-2 gene expression, respectively. The anti-inflammatory effect of ABL involves blocking the binding of NF-kappaB to the promoter in the target genes and inhibiting the expression of iNOS and COX-2. 相似文献
3.
Chronic inflammation associated with tumor necrosis factor (TNF)-alpha and reactive oxygen species (ROS) is the hallmark of tuberculosis. Mycobacterium tuberculosis (MTB) directly stimulates human monocytes to secrete TNF-alpha. We show the augmented expression of TNF-alpha mRNA in MTB-infected monocytes by cellular activation and ROS was suppressed by allicin in a dose-dependent manner. Also, allicin enhanced the glutathione peroxidase activity, which correlated inversely with the downregulation of ROS and TNF-alpha in MTB-infected monocytes. Hence, allicin may prove to be a valuable natural antioxidant in combating tuberculosis. 相似文献
4.
M. Dora Carrión Mariem Chayah Antonio Entrena Ana López Miguel A. Gallo Darío Acuña-Castroviejo M. Encarnación Camacho 《Bioorganic & medicinal chemistry》2013,21(14):4132-4142
In a preliminary article, we reported a series of 4,5-dihydro-1H-pyrazole derivatives as neuronal nitric oxide synthase (nNOS) inhibitors. Here we present the data about the inhibition of inducible nitric oxide synthase (iNOS) of these compounds. In general, we can confirm that these pyrazoles are nNOS selective inhibitors. In addition, taking these compounds as a reference, we have designed and synthesized a series of new derivatives by modification of the heterocycle in 1-position, and by introduction of electron-donating or electron-withdrawing substituents in the aromatic ring. These derivatives have been evaluated as nNOS and iNOS inhibitors in order to identify new compounds with improved activity and selectivity. Compound 3r, with three methoxy electron-donating groups in the phenyl moiety, is the most potent nNOS inhibitor, showing good selectivity nNOS/iNOS. 相似文献
5.
Inducible nitric oxide synthase mediates cytokine release: the time course in conscious and septic rats 总被引:4,自引:0,他引:4
Nitric oxide (NO), tumor necrosis factor-alpha (TNF-alpha), and interleukin 1-beta (IL-1beta) are postulated to play a key pathophysiologic role during sepsis. In this study, we examined the time course of inducible NO synthase (iNOS) mRNA expression and the plasma TNF-alpha and IL-1beta in lipopolysaccharide (LPS)-treated conscious rats. The hemodynamic pattern in septic shock is more similar to clinical conditions without anesthesia. The data showed that a significant increase in iNOS mRNA levels was found in the spleen, lung, liver, with slight elevation in the heart and kidney at 3 h after LPS administration. However, iNOS mRNA levels were not elevated significantly in all tissues examined at 24 h. In the plasma, TNF-alpha and IL-1beta culminated within 1 h, and reduced gradually to baseline levels in a relatively short period (within 9 h). The results suggest that local NO production by activation of iNOS mRNA expression and cytokine release may contribute to LPS-induced organ dysfunction at various time points. 相似文献
6.
IFN-γ and TNF-α are major proinflammatory cytokines implicated in islet β-cell destruction, which results in type-1 diabetes; however, the underlying mechanism is not clear. Using pancreatic β-cell line MIN6N8 cells, co-treatment with TNF-α and IFN-γ, but neither cytokine alone, synergistically induced apoptosis, correlated with the activation of the JNK/SAPK, which resulted in the production of reactive oxidative species (ROS) and loss of mitochondrial transmembrane potential (ΔΨm). Additionally, cells transfected with wild-type JNK1 became more susceptible to apoptosis induced by TNF-α/IFN-γ through ROS production and loss of Δψm, while cascading apoptotic events were prevented in dominant-negative JNK1-transfected or JNK inhibitor SP600125-treated cells. As the antioxidant, N-acetyl-cysteine, failed to completely suppress apoptosis induced by TNF-α/IFN-γ, an additional pathway was considered to be involved. The level of p53 was significantly increased through synergistic activation of JNK by TNF-α/IFN-γ. Furthermore, the synergistic effect of TNF-α/IFN-γ on apoptosis and ROS production was further potentiated by the overexpression of wild-type p53, but not with mutant p53. This synergistic activation of JNK/SAPK by TNF-α/IFN-γ was also induced in insulin-expressing pancreatic islet cells, and increased ROS production and p53 level, which was significantly inhibited by SP600125. Collectively, these data demonstrate that TNF-α/IFN-γ synergistically activates JNK/SAPK, playing an important role in promoting apoptosis of pancreatic β-cell via activation of p53 pathway together with ROS. 相似文献
7.
Peroxisomes are cell organelles bounded by a single membrane with a basically oxidative metabolism. Peroxisomes house catalase and H2O2‐producing flavin‐oxidases as the main protein constituents. However, since their discovery in early fifties, a number of new enzymes and metabolic pathways have been reported to be also confined to these organelles. Thus, the presence of exo‐ and endo‐peptidases, superoxide dismutases, the enzymes of the plant ascorbate‐glutathione cycle plus ascorbate and glutathione, several NADP‐dehydrogenases, and also L‐arginine‐dependent nitric oxide synthase activity has evidenced the relevant role of these organelles in cell physiology. In recent years, the study of new functions of peroxisomes has become a field of intensive research in cell biology, and these organelles have been proposed to be a source of important signal molecules for different transduction pathways. In plants, peroxisomes participate in seed germination, leaf senescence, fruit maturation, response to abiotic and biotic stress, photomorphogenesis, biosynthesis of the plant hormones jasmonic acid and auxin, and in cell signaling by reactive oxygen and nitrogen species (ROS and RNS, respectively). In order to decipher the nature and specific role of the peroxisomal proteins in these processes, several approaches including in vivo and in vitro import assays and generation of mutants have been used. In the last decade, the development of genomics and the report of the first plant genomes provided plant biologists a powerful tool to assign to peroxisomes those proteins which harbored any of the two peroxisomal targeting signals (PTS, either PTS1 or PTS2) described so far. Unfortunately, those molecular approaches could not give any response to those proteins previously localized in plant peroxisomes by classical biochemical and cell biology methods that did not contain any PTS. However, more recently, proteomic studies of highly purified organelles have provided evidence of the presence in peroxisomes of new proteins not previously reported. Thus, the contribution of proteomic approaches to the biology of peroxisomes is essential, not only for elucidation of the mechanisms involved in the import of the PTS1‐ and PTS2‐independent proteins, but also to the understanding of the role of these organelles in the cell physiology of plant growth and development. 相似文献
8.
Maud Bréard 《Free radical research》2013,47(3):206-213
Serotonin (5HT) was shown to induce in vitro the production of ROS in the presence of neuronal nitric oxide synthase (nNOS) in addition to the basal NO? formation. With the aim of understanding this mechanism, this study investigated the potential binding of 5HT to nNOS. By using [3H]5HT, it is reported here that 5HT binds to nNOS, but only when the enzyme is active and in a superoxide-dependent manner. This binding is prevented by DPI but not by L-NAME. The formation of 5HT-nNOS complex was shown to be very well correlated with the production of ROS by 5HT in the presence of nNOS. A mechanism involving nNOS only in its initial step is proposed to explain both the formation of 5HT-nNOS complex and the production of ROS observed in the presence of nNOS and 5HT. 相似文献
9.
10.
The main complication in betulinic acid (BA) based drug delivery has been observed due to its bulk structure. The present study demonstrates the potential effects of self assembled nano size betulinic acid (SA-BA) by treating human leukemic cell lines (KG-1A and K562) and its normal counterpart. Self assembly property of BA was investigated using SEM and DLS study which showed that the BA forms fibrous structure having few nanometers in diameter. Selective anti-leukemic efficacy study of SA-BA was investigated by cell viability assay. Mode of leukemic cell death and probable pathway of apoptosis was monitored by measuring ROS level, pro and anti-inflammatory cytokine status and expression of caspase-8 and caspage-3 by immunocytochemistry. Higher efficacy of SA-BA over non-assemble BA was monitored toward cancer cells, with no relevant toxicity to normal blood cells. SA-BA facilitated reactive oxygen species (ROS) mediated leukemic cell death, confirmed by pre-treatment of N-acetyl-L-cysteine. Induction of apoptosis by SA-BA treatment increased pro-inflammatory cytokines, specifically potentiated TNF-α mediated cell death, confirmed by expression of caspase-8 and caspage-3 by immunocytochemistry. This study explored the better anti-leukemic efficacy of SA-BA over BA and this modification will enrich the use of BA in cancer therapy. 相似文献
11.
Induction of endogenous antioxidants and phase 2 enzymes by alpha-lipoic acid in rat cardiac H9C2 cells: protection against oxidative injury 总被引:3,自引:0,他引:3
Alpha-lipoic acid (LA) has recently been reported to exert protective effects on various forms of oxidative cardiac disorders. However, the mechanisms underlying LA-mediated cardioprotection remain to be investigated. This study was undertaken to determine whether LA treatment could increase endogenous antioxidants and phase 2 enzymes in cultured cardiomyocytes, and whether such increased cellular defenses could afford protection against oxidative cardiac cell injury. Incubation of rat cardiac H9C2 cells with low micromolar concentrations of LA resulted in a significant induction of a scope of cellular antioxidants and phase 2 enzymes in a concentration- and/or time-dependent fashion. These include catalase, reduced glutathione, glutathione reductase, glutathione S-transferase, and NAD(P)H:quinone oxidoreductase-1 (NOQ1). Induction of catalase and NOQ1 was most dramatic among the above LA-inducible antioxidants and phase 2 enzymes. To further investigate the protective effects of the LA-induced cellular defenses on oxidative cardiac cell injury, H9C2 cells were pretreated with LA (25-100 microM) for 72h and then exposed to xanthine oxidase (XO)/xanthine, a system that generates reactive oxygen species (ROS), for another 24h. We observed that LA pretreatment of H9C2 cells led to a marked protection against XO/xanthine-mediated cytotoxicity, as detected by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium reduction assay. The cytoprotective effects also exhibited a LA concentration-dependent fashion. Moreover, the LA pretreatment resulted in a great inhibition of intracellular accumulation of ROS in H9C2 cells following incubation with XO/xanthine. Taken together, this study demonstrates for the first time that a number of endogenous antioxidants and phase 2 enzymes in cultured cardiomyocytes can be induced by LA at low micromolar concentrations, and that the LA-mediated elevation of cellular defenses is accompanied by a markedly increased resistance to ROS-elicited cardiac cell injury. The results of this study have important implications for the cardioprotective effects of LA. 相似文献
12.
13.
Plantainoside D protects adriamycin-induced apoptosis in H9c2 cardiac muscle cells via the inhibition of ROS generation and NF-kappaB activation 总被引:1,自引:0,他引:1
Kim DS Woo ER Chae SW Ha KC Lee GH Hong ST Kwon DY Kim MS Jung YK Kim HM Kim HK Kim HR Chae HJ 《Life sciences》2007,80(4):314-323
Plantainoside D (PD), was isolated from the leaves of Picrorhiza scrophulariiflora (Scrophulariaceae). The anti-oxidative activity of PD was evaluated based on scavenging effects on hydroxyl radicals and superoxide anion radicals. Adriamycin (ADR) is a potent anti-tumor drug known to cause severe cardiotoxicity. Although ADR generates free radicals, the role of free radicals in the development of cardiac toxicity has not been understood. This study was undertaken to investigate the protective effect of PD against ADR-induced apoptosis. In vitro, ADR caused dose-dependent toxicity in H9c2 cardiac muscle cells. Pre-treatment of the cardiac muscle cells with PD significantly reduced ADR-induced apoptosis of cardiac muscle cells. PD inhibited the ROS produced by ADR in the cardiac muscle cells. As well, PD increased GSH(glutathione), compared with ADR. In response to ADR, NF-kappaB was activated in H9c2 cells. However the treatment of PD reduced the activation of NF-kappaB. We also observed that the NF-kappaB inhibitor, PDTC, inhibited the cytotoxic effect on ADR-induced apoptosis in cardiac muscle cells. In parallel, IkappaBalpha-dominant negative plasmid-overexpression abrogated ADR-induced apoptosis in H9c2 cardiac muscle cells. In conclusion, these results suggest that Plantaionoside D can inhibit ADR-induced apoptosis in H9C2 cardiac muscle cells via inhibition of ROS generation and NF-kappaB activation. The pure compound PD can be a potential candidate agent which protects cardiotoxicity in ADR-exposed patients. 相似文献
14.
In the present study, we investigated antiinflammatory effects of six flavonoids isolated from the rhizomes of Belamcanda chinensis (Iridaceae) in RAW 264.7 macrophages. The results indicated that irigenin concentration dependently inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin (PG) E(2) production. Furthermore, this compound inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 proteins and mRNAs without an appreciable cytotoxic effect. Treatment of the transfectant RAW 264.7 cells with irigenin reduced the level of nuclear factor-kappaB (NF-kappaB) activity, also effectively lowered NF-kappaB binding measured by electrophoretic mobility shift assay (EMSA), which was associated with decreased p65 protein levels in the nucleus. On the basis of the above data, we suggest that the effect of irigenin in decreasing LPS-induced NO and PGE(2) synthesis is due to diminish the mRNA and protein expression of iNOS and COX-2, respectively, also may be due to under the suppression of NF-kappaB activation. Therefore, irigenin isolated from the rhizomes of Belamcanda chinensis could be offered as a leading compound for anti-inflammation. 相似文献
15.
Nakao A Kaczorowski DJ Zuckerbraun BS Lei J Faleo G Deguchi K McCurry KR Billiar TR Kanno S 《Biochemical and biophysical research communications》2008,367(3):674-679
Galantamine, a reversible inhibitor of acetylcholine esterase (AChE), is a novel drug treatment for mild to moderate Alzheimer’s disease and vascular dementia. Interestingly, it has been suggested that galantamine treatment is associated with more clinical benefit in patients with mild-to-moderate Alzheimer disease compared to other AChE inhibitors. We hypothesized that the protective effects of galantamine would involve induction of the protective gene, heme oxygenase-1 (HO-1), in addition to enhancement of the cholinergic system. Brain microvascular endothelial cells (mvECs) were isolated from spontaneous hypertensive rats. Galantamine significantly reduced H2O2-induced cell death of mvECs in association with HO-1 induction. These protective effects were completely reversed by nuclear factor-κB (NF-κB) inhibition or HO inhibition. Furthermore, galantamine failed to induce HO-1 in mvECs which lack inducible nitric oxide synthase (iNOS), supplementation of a nitric oxide (NO) donor or iNOS gene transfection on iNOS-deficient mvECs resulted in HO-1 induction with galantamine. These data suggest that the protective effects of galantamine require NF-κB activation and iNOS expression, in addition to HO-1. Likewise, carbon monoxide (CO), one of the byproducts of HO, up-regulated HO-1 and protected mvECs from oxidative stress in a similar manner. Our data demonstrate that galantamine mediates cytoprotective effects on mvECs through induction HO-1. This pharmacological action of galantamine may, at least in part, account for the superior clinical efficacy of galantamine in vascular dementia and Alzheimer disease. 相似文献
16.
The Rational Design of β Cell Cytoprotective Gene Transfer Strategies: Targeting Deleterious iNOS Expression 总被引:1,自引:0,他引:1
Islet transplantation represents a promising therapeutic strategy for the treatment of type 1 diabetes mellitus (T1DM) [Hakim
and Papalois (Ann Ital Chir 75:1–7, 2004); Jaeckel et al. (Internist (Berl) 45:1268–1280, 2004); Sutherland et al. (Transplant
Proc 36:1697–1699, 2004)]. The insulin-secreting pancreatic β cells of the islet allograft are, however, subject to recurrent
immune-mediated damage. Principal among the molecular culprits involved in this destructive process is the proinflammatory
cytokine IL-1β. IL-1β-induced β cell destruction may be mediated by the generation of NO and/or ROS, although the relative
importance of NO and ROS in this process remains unclear. This study broadly encompassed three arms of investigation: the
first of these was geared toward the establishment of a robust in vitro cell system for the study of IL-1β-induced pathophysiology;
the second arm aimed to provide a comparative analysis of the gene transfer profiles of the three most commonly used gene
transfer vehicles, namely plasmid vectors, adenoviral vectors, and lentiviral vectors, in the aforementioned cell system;
the final arm aimed to screen an array of potentially cytoprotective gene transfer strategies incorporating the optimal gene
transfer vectors. Briefly, we established an in vitro β cell system that accurately reflected primary β cell cytokine-induced
pathophysiology. That is, IL-1β exposure (100 U/ml) induced a time-dependent decrease in rat insulinoma (RIN) cell viability,
which coincided with an induction in iNOS expression and nitrite accumulation. Gene transfer studies using plasmid, adenoviral,
or lentiviral vectors underscored the superiority of viral vector-based gene transfer strategies for the manipulation of this
β cell line. Using these vectors, we provide evidence that NF-κB-based iNOS inhibition confers significant protection against
IL-1β-induced damage whereas antioxidant overexpression fails to provide protection. Conferred cytoprotection was associated
with a suppression of iNOS expression and nitrite accumulation. From a therapeutic standpoint, gene transfer strategies employing
efficient viral vectors to target iNOS activation may harbour therapeutic potential in preserving β cell survival against
proinflammatory cytokine exposure. 相似文献
17.
18.
The chemotherapeutic isothiocyanate sulforaphane (SFN) was early linked to anticarcinogenic and antiproliferative activities. Soon after, this compound, derived from cruciferous vegetables, became an excellent and useful trial for anti-cancer research in experimental models including growth tumor, metastasis, and angiogenesis. Many subsequent reports showed modifications in mitochondrial signaling, functionality, and integrity induced by SFN. When cytoprotective effects were found in toxic and ischemic insult models, seemingly contradictory behaviors of SFN were discovered: SFN was inducing deleterious changes in cancer cell mitochondria that eventually would carry the cell to death via apoptosis and also was protecting noncancer cell mitochondria against oxidative challenge, which prevented cell death. In both cases, SFN exhibited effects on mitochondrial redox balance and phase II enzyme expression, mitochondrial membrane potential, expression of the family of B cell lymphoma 2 homologs, regulation of proapoptotic proteins released from mitochondria, activation/inactivation of caspases, mitochondrial respiratory complex activities, oxygen consumption and bioenergetics, mitochondrial permeability transition pore opening, and modulation of some kinase pathways. With the ultimate findings related to the induction of mitochondrial biogenesis by SFN, it could be considered that SFN has effects on mitochondrial dynamics that explain some divergent points. In this review, we list the reports involving effects on mitochondrial modulation by SFN in anti-cancer models as well as in cytoprotective models against oxidative damage. We also attempt to integrate the data into a mechanism explaining the various effects of SFN on mitochondrial function in only one concept, taking into account mitochondrial biogenesis and dynamics and making a comparison with the theory of reactive oxygen species threshold of cell death. Our interest is to achieve a complete view of cancer and protective therapies based on SFN that can be extended to other chemotherapeutic compounds with similar characteristics. The work needed to test this hypothesis is quite extensive. 相似文献
19.
Chunfeng Xie Xiaoting Li Jianyun Zhu Jieshu Wu Shanshan Geng Caiyun Zhong 《Bioorganic & medicinal chemistry》2019,27(3):516-524
Magnesium Isoglycyrrhizinate (MgIG), a novel molecular compound extracted from licorice root, has exhibited greater anti-inflammatory activity and hepatic protection than glycyrrhizin and β-glycyrrhizic acid. In this study, we investigated the anti-inflammatory effect and the potential mechanism of MgIG on Lipopolysaccharide (LPS)-treated RAW264.7 cells. MgIG down-regulated LPS-induced pro-inflammatory mediators and enzymes in LPS-treated RAW264.7 cells, including TNF-α, IL-6, IL-1β, IL-8, NO and iNOS. The generation of reactive oxygen species (ROS) in LPS-treated RAW264.7 cells was also reduced. MgIG attenuated NF-κB translocation by inhibiting IKK phosphorylation and IκB-α degradation. Simultaneously, MgIG also inhibited LPS-induced activation of MAPKs, including p38, JNK and ERK1/2. Taken together, these results suggest that MgIG suppresses inflammation by blocking NF-κB and MAPK signaling pathways, and down-regulates ROS generation and inflammatory mediators. 相似文献
20.
Exposure to adverse temperature conditions is a common stress factor for plants. In order to cope with heat stress, plants activate several defence mechanisms responsible for the control of reactive oxygen species (ROS) and redox homeostasis. Specific heat shocks (HSs) are also able to activate programmed cell death (PCD). In this paper, the alteration of several oxidative markers and ROS scavenging enzymes were studied after subjecting cells to two different HSs. Our results suggest that, under moderate HS, the redox homeostasis is mainly guaranteed by an increase in glutathione (GSH) content and in the ascorbate peroxidase (APX) and catalase (CAT) activities. These two enzymes undergo different regulatory mechanisms. On the other hand, the HS-induced PCD determines an increase in the activity of the enzymes recycling the ascorbate- and GSH-oxidized forms and a reduction of APX; whereas, CAT decreases only after a transient rise of its activity, which occurs in spite of the decrease of its gene expression. These results suggest that the enzyme-dependent ROS scavenging is enhanced under moderate HS and suppressed under HS-induced PCD. Moreover, the APX suppression occurring very early during PCD, could represent a hallmark of cells that have activated a suicide programme. 相似文献