首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Small dioctadecyldimethylammonium chloride (DODAC) vesicles prepared by sonication fuse upon addition of NaCl as detected by several methods (electron microscopy, trapped volume determinations, temperature-dependent phase transition curves, and osmometer behavior. In contrast, small sodium dihexadecyl phosphate (DHP) vesicles mainly aggregate upon NaCl addition as shown by electron microscopy and the lack of osmometer behavior. Scatter-derived absorbance changes of small and large DODAC or DHP vesicles as a function of time after salt addition were obtained for a range of NaCl or amphiphile concentration. These changes were interpreted in accordance with a phenomenological model based upon fundamental light-scattering laws and simple geometrical considerations. Short-range hydration repulsion between DODAC (or DHP) vesicles is possibly the main energy barrier for the fusion process.  相似文献   

2.
A novel label-free electrogenerated chemiluminescence (ECL) aptasensor for the determination of lysozyme is designed employing lysozyme binding aptamer (LBA) as molecular recognition element for lysozyme as a model analyte and Ru(bpy)(3)(2+) as an ECL signal compound. This ECL aptasensor was fabricated by self-assembling the thiolated LBA onto the surface of a gold electrode. Using this aptasensor, sensitive quantitative detection of lysozyme is realized on basis of the competition of lysozyme with Ru(bpy)(3)(2+) cation for the binding sites of LBA. In the presence of lysozyme, the aptamer sequence prefers to form the LBA-lysozyme complex, the less negative environment allows Ru(bpy)(3)(2+) cations to be less bound electrostatically to the LBAs on the electrode surface, in conjunction with the generation of a decreased ECL signal. The integrated ECL intensity versus the concentration of lysozyme was linear in the range from 6.4×10(-10) M to 6.4×10(-7) M. The detection limit was 1.2×10(-10) M. This work demonstrates that using the competition of target protein with an ECL signal compound Ru(bpy)(3)(2+) for binding sites of special aptamer confined on the electrode is promising approach for the design of label-free ECL aptasensors for the determination of proteins.  相似文献   

3.
A simple spectroscopic method for the evaluation of the effect that perturbers may have on a membrane model is described. The model was made from dihexadecyl phosphate (DHP) bilayers. The perturbers used were unconventional anesthetics (n-alcohols C1-C8; n-hexane and n-pentane) and conventional anesthetics (chloroform, methoxyflurane, halothane and enflurane). The results show a correlation between vesicle permeation by anesthetics and their clinical potency. Two modes of perturbation by which the anesthetics may induce vesicle permeation are proposed.  相似文献   

4.
The substituted tris(bipyridine)ruthenium(II) complexes {[Ru(bpy)(2)(4,4'-bbob)](2+) and [Ru(bpy)(2)(5,5'-bbob)](2+) [where bpy=2,2'-bipyridine and bbob=bis(benzoxazol-2-yl)-2,2'-bipyridine] have been prepared and compared to the previously studied complex [Ru(bpy)(2)(4,4'-bbtb)](2+) [where bbtb=bis(benzothiazol-2-yl)-2,2'-bipyridine]. From the UV/VIS titration studies, Delta-[Ru(bpy)(2)(4,4'-bbob)](2+) displays a stronger association than the Lambda-isomer with calf-thymus DNA (ct-DNA). For [Ru(bpy)(2)(5,5'-bbob)](2+), there appears to be minimal interaction with ct-DNA. The results of fluorescence titration studies suggest that [Ru(bpy)(2)(4,4'-bbob)](2+) gives an increase in emission intensity with increasing ct-DNA concentrations, with an enantiopreference for the Delta isomer, confirmed by membrane dialysis studies. The fluorescent intercalation displacement studies revealed that [Ru(bpy)(2)(4,4'-bbob)](2+) and [Ru(bpy)(2)(5,5'-bbob)](2+) display a preference for more open DNA structures such as bulge and hairpin sequences. While Lambda-[Ru(bpy)(2)(4,4'-bbtb)](2+) has shown the most significant affinity for all the oligonucleotides sequences screened in previous studies, it is the Delta isomer of the comparable benzoxazole ruthenium(II) complex (Delta-[Ru(bpy)(2)(4,4'-bbob)](2+)) that preferentially binds to DNA.  相似文献   

5.
Herein, an ultrasensitive solid-state tris(2,2'-bipyridyl) ruthenium(II) (Ru(bpy)(3)(2+)) electrochemiluminescence (ECL) aptasensor using in-situ produced ascorbic acid as coreactant was successfully constructed for detection of thrombin. Firstly, the composite of Ru(bpy)(3)(2+) and platinum nanoparticles (Ru-PtNPs) were immobilized onto Nafion coated glass carbon electrode, followed by successive adsorption of streptavidin-alkaine phosphatase conjugate (SA-ALP) and biotinylated anti-thrombin aptamer to successfully construct an ECL aptasensor for thrombin determination. In our design, Pt nanoparticles in Ru(bpy)(3)(2+)-Nafion film successfully inhibited the migration of Ru(bpy)(3)(2+) into the electrochemically hydrophobic region of Nafion and facilitated the electron transfer between Ru(bpy)(3)(2+) and electrode surface. Furthermore, ALP on the electrode surface could catalyze hydrolysis of ascorbic acid 2-phosphate to in-situ produce ascorbic acid, which co-reacted with Ru(bpy)(3)(2+) to obtain quite fast, stable and greatly amplified ECL signal. The experimental results indicated that the aptasensor exhibited good response for thrombin with excellent sensitivity, selectivity and stability. A linear range of 1 × 10(-15)-1 × 10(-8) M with an ultralow detection limit of 0.33 fM (S/N=3) was obtained. Thus, this procedure has great promise for detection of thrombin present at ultra-trace levels during early stage of diseases.  相似文献   

6.
Synthesis and photophysical properties of three Ru(bpy)(3)(2+)-Ptz (bpy = 2,2'-bipyridine and Ptz = phenothiazine) dyads, where the number of Ptz groups increased from one to three, are reported. The MLCT absorption bands of these compounds were slightly red shifted compared to Ru(bpy)(3)(2+). The emission, however, was highly quenched and this is attributed to electron transfer from the Ptz moiety to the excited Ru(bpy)(3)(2+) to generate the charge separated state Ru(bpy)(3)(+)-Ptz (+). Observed electron transfer rates (k(et) > 10(8) s(-1)) were much faster than those previously reported (k(et) < 10(7) s(-1)) for linked Ru(bpy)(3)(2+)-Ptz systems. Compared to the previous systems, back electron transfer rates in these systems were about 100 times slower. This has enabled us to observe the charge separated state in nanosecond flash photolysis experiments. Transient absorptions assignable to Ru(bpy)(3)(+) and Ptz (+), having lifetimes in the range of 10-30 ns were observed. In order to explain the fast charge separation and slow charge recombination rates, formation of a folded conformer where the Ptz group attached to one bpy residue comes closer to and associates with another bpy moiety was invoked. A scheme which explains the fast electron transfer and slow recombination in this pre-associated state is proposed.  相似文献   

7.
The interactions of five bis(bipyridyl) Ru(II) complexes of pteridinyl-phenanthroline ligands with calf thymus DNA have been studied. The pteridinyl extensions were selected to provide hydrogen-bonding patterns complementary to the purine and pyrimidine bases of DNA and RNA. The study includes three new complexes [Ru(bpy)(2)(L-pterin)](2+), [Ru(bpy)(2)(L-amino)](2+), and [Ru(bpy)(2)(L-diamino)](2+) (bpy is 2,2'-bipyridine and L-pterin, L-amino, and L-diamino are phenanthroline fused to pterin, 4-aminopteridine, and 2,4-diaminopteridine), two previously reported complexes [Ru(bpy)(2)(L-allox)](2+) and [Ru(bpy)(2)(L-Me(2)allox)](2+) (L-allox and L-Me(2)allox are phenanthroline fused to alloxazine and 1,3-dimethyalloxazine), the well-known DNA intercalator [Ru(bpy)(2)(dppz)](2+) (dppz is dipyridophenazine), and the negative control [Ru(bpy)(3)](2+). Reported are the syntheses of the three new Ru-pteridinyl complexes and the results of calf thymus DNA binding experiments as probed by absorption and fluorescence spectroscopy, viscometry, and thermal denaturation titrations. All Ru-pteridine complexes bind to DNA via an intercalative mode of comparable strength. Two of these four complexes-[Ru(bpy)(2)(L-pterin)](2+) and [Ru(bpy)(2)(L-allox)](2+)-exhibit biphasic DNA melting curves interpreted as reflecting exceptionally stable surface binding. Three new complexes-[Ru(bpy)(2)(L-diamino)](2+), [Ru(bpy)(2)(L-amino)](2) and [Ru(bpy)(2)(L-pterin)](2+)-behave as DNA molecular "light switches."  相似文献   

8.
The spectroscopic and electrochemiluminescence (ECL) properties of dipicolinic acid (DPA), (bpy)(2)Ru(2+) (bpy = 2,2'-bipyridine) and the species formed when DPA and (bpy)(2)Ru(2+) [abbreviated to (bpy)(2)Ru(DPA)(+)] are allowed to react are reported. The UV-Vis absorption maxima for (bpy)(2)Ru(2+) and (bpy)(2)Ru(DPA)(+) are 493 and 475 nm, respectively, indicating the in situ formation of a complex between DPA and (bpy)(2)Ru(2+). DPA, (bpy)(2)Ru(2+) and (bpy)(2)Ru(DPA)(+) display ECL upon oxidation in the presence of the oxidative-reductive co-reactant tri-n-propylamine (TPrA). The ECL of (bpy)(2)Ru(DPA)(+) is at least two-fold higher than either of the parent species. An ECL spectrum of (bpy)(2)Ru(DPA)(+) displays a peak maximum 40 nm red-shifted from the photoluminescence peak maximum, suggesting that the excited state formed electrochemically is different from that formed spectroscopically.  相似文献   

9.
An ECL approach was developed for the determination of codeine or morphine based on tris(2,2'-bipyridine)ruthenium(II) (Ru(bpy)(3)(2+)) immobilized in organically modified silicates (ORMOSILs). Tetramethoxysilane (TMOS) and dimethyldimethoxysilane (DiMe-DiMOS) were selected as co-precursors for ORMOSILs, which were then immobilized on a surface of glassy carbon electrode (GCE) by a dip-coating process. Ru(bpy)(3)(2+) was immobilized in the ORMOSIL film via ion-association with poly(p-styrenesulphonate). The ORMOSIL-modified GCE presented good electrochemical and photochemical activities. In a flow system, the eluted codeine or morphine was oxidized on the modified GCE and reacted with immobilized Ru(bpy)(3)(2+) at a potential of +1.20 V (vs. Ag/AgCl). The modified electrode was used for the ECL determination of codeine or morphine and showed high sensitivity. The calibration curves were linear in the range 2 x 10(-8)-5 x 10(-5) mol/L for codeine and 1 x 10(-7)-3 x 10(-4) mol/L for morphine. The detection limit was 5 x 10(-9) mol/L for codeine and 3 x 10(-8) mol/L for morphine, at signal:noise ratio (S:N)=3. Both codeine and morphine showed reproducibility with RSD values <2.5% at 1.0 x 10(-6) mol/L. Furthermore, the modified electrode immobilized Ru(bpy)(3)(2+) was applied to the ECL determination of codeine or morphine in incitant samples.  相似文献   

10.
A "turn-on" photoelectrochemical sensor for Hg(2+) detection based on thymine-Hg(2+)-thymine interaction is presented by using a thymine-rich oligonucleotide film and a double-strand DNA intercalator, Ru(bpy)(2)(dppz)(2+) (bpy=2,2'-bipyridine, dppz=dipyrido[3,2-a:2',3'-c]phenazine) as the photocurrent signal reporter. The presence of Hg(2+) induces the formation of a double helical DNA structure which provides binding sites for Ru(bpy)(2)(dppz)(2+). The double helical structure was confirmed by circular dichroism and fluorescence measurements. Under the optimized conditions, a linear relationship between photocurrent and Hg(2+) concentration was obtained over the range of 0.1 nM to 10 nM Hg(2+), with a detection limit of 20 pM. Interference by 10 other metal ions was negligible. Analytical results of Hg(2+) spiked into tap water and lake water by the sensor were in good agreement with mass spectrometry data. With the advantages of high sensitivity and selectivity, simple sensor construction, low instrument cost and low sample volume, this method is potentially suitable for the on-site monitoring of Hg(2+) contamination.  相似文献   

11.
Electrochemiluminescence (ECL) based on allantoin and tris(2,2'-bipyridine)ruthenium (II) [Ru(bpy)3 (2+)] was studied in aqueous alkaline buffer solution (pH 11.0). In a flowing system, the eluted allantoin was mixed with 1.0 mmol/L Ru(bpy)3 (2+). When the solution passed through a thin layer flow electrolytic cell equipped with a glassy carbon disc electrode (22.1 mm2), both hydroxyl groups of allantoin and Ru(bpy)3 (2+) were oxidized at the potential of +1.50 V (vs. Ag/AgCl). The luminescence with lambdamax 610 nm caused by the reaction of electrolytically formed Ru(bpy)3 (2+) with alkoxide radical to generate the excited state of Ru(bpy)3 (2+*). A possible ECL process of allantoin in Ru(bpy)3 (2+) alkaline solution has been discussed. In addition, the factors affecting the ECL response of allantoin are also investigated.  相似文献   

12.
Upon sonication in water above 55°, dihexadecyl phosphate forms aqueous dispersions. Gel filtration, substrate entrapment and electron microscopic investigations indicate that these dispersions consist of closed vesicles possessing the characteristics of single bilayer liposomes. These dispersions are quite sensitive to the presence of salts. These wholly synthetic phosphate diester vesicles provide one of the simplest models for the mimicry of membrane and transport functions.  相似文献   

13.
Guo QY  Chen MJ  Li Q  Xu J  Li H  Xu ZH 《DNA and cell biology》2011,30(5):329-336
A novel, yet effective method for identifying DNA-binding modes of [Ru(bpy)(2)dmt](2+) (where bpy?=?2,2'-bipyridine and dmt?=?2,3-dimethyl-1,4,8,9-tetra-aza-triphenylene) on an indium tin oxide electrode has been successfully developed by introducing Cu(2+) ion and ethylenediaminetetraacetic acid. The results from emission spectra and fluorescence microscopic images suggested that [Ru(bpy)(2)dmt](2+) not only associates with Cu(2+) ion in both the absence and presence of DNA but also shows strong affinity with DNA in the presence of Cu(2+). Evidence for the strong binding of [Ru(bpy)(2)dmt](2+) to DNA was determined from the interface studies using electrochemical methods. The present study suggests that a combination of photoluminescence measurement with electrochemical methods identifies the DNA-binding behavior of luminescent molecules with redox activities. [Ru(bpy)(2)dmt](2+) binds to DNA via an intercalative mode.  相似文献   

14.
A new Ru(II) complex of [Ru(bpy)(2)(Hpip)](2+) {bpy = 2,2'bipyridine; Hppip = 2-(4-(pyridin-2-yl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline} has been synthesized by grafting of 2-pyridyl to parent complex [Ru(bpy)(2)(Hpip)](2+) {Hppip = 2-(4-phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline}. The acid-base properties of [Ru(bpy)(2)(Hpip)](2+) studied by UV-visible and luminescence spectrophotometric pH titrations, revealed off-on-off luminescence switching of [Ru(bpy)(2)(Hpip)](2+) that was driven by the protonation/deprotonation of the imidazolyl and the pyridyl moieties. The complex was demonstrated to be a DNA intercalator with an intrinsic DNA binding constant of (5.56 ± 0.2) x 10(5) M-1 in buffered 50 mM NaCl, as evidenced by UV-visible and luminescence titrations, reverse salt effect, DNA competitive binding with ethidium bromide, steady-state emission quenching by [Fe(CN)6]4-, DNA melting experiments and viscosity measurements. The density functional theory method was also used to calculate geometric/electronic structures of the complex in an effort to understand the DNA binding properties. All the studies indicated that the introduction of 2-pyridyl onto Hpip ligand is more favorable for extension of conjugate plane of the main ligand than that of phenyl, and for greatly enhanced ct-DNA binding affinity accordingly.  相似文献   

15.
We carried out time-resolved luminescence and transient absorption studies of tris(2,2'-bipyridine)ruthenium(ii) complex, Ru(bpy)3(2+) assembled in the supercages of zeolites X and Y exchanged with various alkali metal cations. The average lifetime of the luminescence decay, a measure of the photoinduced electron transfer (PET) rate, of Ru(bpy)3(2+)* was found to decrease with increasing the electron-acceptor strength of the host which is represented by the Sanderson's electronegativity scale. This result strongly suggests that the zeolite host plays the role of electron acceptor for Ru(bpy)3(2+)*. However, we could not detect Ru(bpy)3(3+) in the transient absorption spectra, most likely due to very low absorption coefficient of Ru(bpy)3(3+) and to the low efficiency of net PET. For the above observation to be made, it is essential to employ the dehydrated zeolite hosts to allow direct interaction between the guest Ru(ii) complex and the host framework. The present study demonstrates the active role of the zeolite hosts during the PET of incorporated Ru(bpy)3(2+) under the carefully controlled experimental conditions. This report demonstrates the fact that the zeolite hosts can serve as electron acceptors although in the past zeolites were shown to play the role of electron donors.  相似文献   

16.
Membrane vesicles were isolated from purified liver lysosomes of rats treated with Triton WR-1339. In order to preserve ATP-dependent acidification activity, proteolysis of membranes was minimized by adding protease inhibitors and by centrifuging to form dilute bands of vesicles rather than highly concentrated pellets. The membrane vesicle fraction represented about 20% of the total lysosomal protein, 80% of the ATPase activity, and 3% of the solute proteins as marked by N-acetylglucosaminidase. About one-half of the membranes were oriented right side out. The space unavailable to [14C]sucrose corresponded to 3 microliters/mg of membrane protein which indicates that the membranes form vesicles about one-tenth the size of lysosomes. Uptake of either [14C]methylamine or [14C]chloroquine by lysosomal membrane vesicles was ATP-dependent, indicating acidification of the intravesicle space. The acidification activity was inhibited when either 1.5 microM carbonyl cyanide p-trifluoromethoxy-phenylhydrazone, 100 microM dicyclohexylcarbodiimide, or millimolar concentrations of such permeant weak bases as ammonium sulfate and dansyl cadaverine were added. Acidification of lysosomal vesicles by ATP occurred electroneutrally. This acidification activity was not dependent on added salts but was inhibited by the anion transport inhibitors pyridoxal phosphate and diisothiocyanostilbene disulfonic acid, thus suggesting co-transport of protons and anions. Results which indicate that phosphate is the transported anion included (a) ATP-dependent uptake of [32P]phosphate by lysosomal membrane vesicles and (b) stimulation of ATP-dependent acidification of these vesicles by added phosphate. These observations provide further evidence that maintenance of the acid intralysosomal pH necessary for activation of lysosomal hydrolases is due to an ATP-driven proton pump located in the lysosomal membrane.  相似文献   

17.
Voltage-clamp experiments were performed on twitch skeletal muscle fibres in a double sucrose-gap device in order to investigate the effect of 1,4-dihydropyridines (DHP) on excitation-contraction coupling during 50 ms step depolarizations. External solution used was free of permeant anions and contained only Ca++ as permeant cation. It is shown that in these conditions Nifedipine (a Ca++ channel antagonist) and BAY K 8644 (a Ca++ channel agonist) inhibit contraction in a way independent of their action on the gating of tubular calcium channels. These results indicate also that a close relation between DHP receptors and calcium channels must be taken with caution.  相似文献   

18.
Bacteriorhodopsin functions as an electrogenic, light-driven proton pump in Halobacterium halobium. In cell envelope vesicles, its photocycle kinetics can be correlated with membrane potential. The initial decay rate of the M photocycle intermediate(s) decreases with increasing membrane potential, allowing the construction of a calibration curve. The laser (592.5 nm) was flashed at various time delays following the start of background illumination (592 +/- 25 nm) and transient absorbance changes at 418 nm monitored in cell envelope vesicles. The vesicles were loaded with and suspended in either 3 M NaCl or 3 M KCl buffered with 50 mM HEPES at pH 7.5 and the membrane permeability to protons modified by pretreatment with N,N'-dicyclohexylcarbodiimide. In each case the membrane potential rose with a halftime of approximately 75 ms. The steady-state potential achieved depends on the cation present and the proton permeability of the membrane, i.e., higher potentials are developed in dicyclohexylcarbodiimide treated vesicles or in NaCl media as compared with KCl media. The results are modeled using an irreversible thermodynamics formulation, which assumes a constant driving reaction affinity (Ach) and a variable reaction rate (Jr) for the proton-pumping cycle of bacteriorhodopsin. Additionally, the model includes a voltage-gated, electrogenic Na+/H+ antiporter that is active when vesicles are suspended in NaCl. Estimates for the linear phenomenological coefficients describing the overall proton-pumping cycle (Lr = 3.5 X 10(-11)/mol2/J X g X s), passive cation permeabilities (LHu = 2 X 10(-10), LKu = 2.2 X 10(-10), LNau = 1 X 10(-11)), and the Na+/H+ exchange via the antiporter (Lex = 5 X 10(-11)) have been obtained.  相似文献   

19.
A suite of small unilamellar vesicles (SUVs) composed of mixtures of phospholipids and cholesterol (CH) or the synthetic surfactant dihexadecyl phosphate (DHP) and cholesterol was investigated using a homologous series of solvatochromic pi* indicators coupled with size exclusion methods and photon correlation spectroscopy (PCS). The solvatochromic method, which is based on the measurement of solvent-dependent shifts in lambda(max) from UV-Vis spectra of solubilized indicators, was used to quantify the dipolarity and polarizability (pi*) of probe solvation environments. The partitioning of the series of individual di-n-alkyl-p-nitroaniline (DNAP) pi* indicators in PG(24)PC(46)Chol(30) and DHP(70)Chol(30) SUVs was examined as a function of the head group structure as well as the method of dye-vesicle preparation. Solubilization of the larger more hydrophobic probes in the bilayer portion of PG(24)PC(46)Chol(30) SUVs was aided through physical entrapment. Such physical methods were not needed for the smaller indicators or for the range of indicators in the DHP(70)Chol(30) dispersions. Extrusion and size-exclusion chromatographic methodologies for the preparation of physically entrapped dopants in SUVs of fixed size range demonstrated that the larger (longer alkyl chain) dopants in the series resided in PG(24)PC(46)Chol(30) liposomes with a wider range of sizes, while the smaller more polar solutes tended to be entrapped in smaller vesicles with a narrower size range.  相似文献   

20.
A redox-active [Ru(bpy)(2)(tatp)](2+)-BSA-SWCNTs (bpy=2,2'-bipyridine, tatp=1,4,8,9-tetra-aza-triphenylene, BSA=bovine serum albumin, SWCNTs=single-walled carbon nanotubes) hybrid film is fabricated on an indium-tin oxide (ITO) electrode via one-step electrochemical co-assembly approach. BSA is inherently dispersive and therefore served as the linking mediator of SWCNTs, which facilitate the redox reactions of [Ru(bpy)(2)(tatp)](2+) employed as a reporter of BSA. The evidences from differential pulse voltammetry, cyclic voltammetry, scanning electron microscope, emission spectroscopy and fluorescence microscope reveal that the [Ru(bpy)(2)(tatp)](2+)-BSA-SWCNTs hybrid can be electrochemically co-assembled on the ITO electrode, showing two pairs of well-defined Ru(II)-based redox waves. Furthermore, the electrochemical co-assembly of the [Ru(bpy)(2)(tatp)](2+)-BSA-SWCNTs hybrid is found to be strongly dependent on the simultaneous presence of BSA and SWCNTs, indicating a good linear response to BSA in the range from 6 to 50mgL(-1). The results from this study provide an electrochemical co-assembly method for the development of non-redox protein biosensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号