首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The regulation of hexose transporters of cultured fibroblasts was investigated by exposing chicken embryo fibroblasts (CEF) to hypertonic culture medium, a condition known to enhance hexose transport activity. The effects of hypertonicity and the role of protein synthesis were examined with CEF in the basal (glucose fed) and transport enhanced (glucose starved) states. Glucose-fed CEF exposed to hypertonic conditions developed four-fold enhancement of hexose transport activity within 4 hrs; this declined in the following 20 hrs to a level slightly higher than the fed control. Protein synthesis was required in part for this effect, since the presence of cycloheximide during hypertonic exposure of fed CEF blocked the increase in of transport by almost 50%. Although the increased transport produced by glucose starvation was not further enhanced by hypertonicity, hypertonic treatment of starved CEF during glucose refeeding largely prevented the loss of transport activity to the basal, fed state. The hypertonic effects were concentration dependent (240mOsm optimal) and could be elicited with NaCl, KCl, or sucrose. Hypertonic treatment typically led to a greater than 50% decline in the incorporation of [3H]leucine into acid-insoluble fractions. The changes in transport were evident at the plasma membrane level, and studies of membrane vesicles prepared from hypertonically treated fed CEF showed a doubling of both [3H]cytochalasin B binding and the Vmax of D-glucose transport. These findings indicate that exposure of CEF to hypertonic conditions has some effects similar to those produced by glucose starvation and suggest that protein synthesis is to some extent involved in the regulation of hexose transporters in CEF.  相似文献   

2.
Irradiation of intact rat adipocytes with high intensity ultraviolet light in the presence of 0.5 microM [3H] cytochalasin B results in the labeling of Mr 43,000 and 46,000 proteins that reside in the plasma membrane fraction. In contrast to the Mr 46,000 protein, the Mr 43,000 component is not observed in the microsome fraction and exhibits lower affinity for [3H]cytochalasin B. Photolabeling of the Mr 43,000 protein is inhibited by cytochalasin D, indicating it is not a hexose transporter component. The Mr 46,000 protein exhibits characteristics expected for the glucose transporter such that D-glucose or 3-O-methylglucose but not cytochalasin D inhibits its photolabeling with [3H] cytochalasin B. Furthermore, insulin addition to intact cells either prior to or after photoaffinity labeling of the Mr 46,000 protein causes a redistribution of this component from the low density microsomes to the plasma membrane fraction, as expected for the hexose transporter. Photolabeling of transporters in both the low density microsome and plasma membrane fractions is inhibited when intact cells are equilibrated with 50 mM ethylidene glucose prior to irradiation with [3H]cytochalasin B. Incubation of intact cells with 50 mM ethylidene glucose for 1 min at 15 degrees C leads to an intracellular concentration of only 2 mM. Under these conditions, the photoaffinity labeling in intact cells of hexose transporters that fractionate with the low density microsomes is unaffected, indicating these transporters are not exposed to the extracellular medium. In contrast, photolabeling in intact insulin-treated cells of hexose transporters that fractionate with the plasma membrane is inhibited under these incubation conditions. The results demonstrate that insulin action results in the exposure to the extracellular medium of previously sequestered hexose transporters.  相似文献   

3.
Glucose as a regulator of insulin-sensitive hexose uptake in 3T3 adipocytes   总被引:5,自引:0,他引:5  
In the present study we examined the role of glucose in the regulation of its own transport activity in the cultured 3T3 fat cell. A regulatory control of glucose became apparent after these cells were cultured in the absence of glucose. Glucose deprivation of the cells was accompanied by a specific time and protein synthesis-dependent increase in dGlc (2-deoxyglucose) uptake (up to 5-fold), which was due to an increase in the apparent Vmax of the transport system. Concomitantly, the stimulatory effect of insulin on hexose uptake almost completely disappeared. Addition of glucose to the glucose-deprived cells rapidly reversed the deprivation effects. Cycloheximide experiments revealed that the glucose deprivation-induced increase in hexose uptake required protein synthesis as well as a protein synthesis-independent response to glucose deprivation that retarded the turnover of hexose transport activity. Taken together, these data indicate that glucose deprivation is accompanied by retardation of the rate of degradation, internalization, or inactivation of hexose transporters while the increase in dGlc uptake requires at least the continuation of protein synthesis-dependent de novo synthesis, insertion, or activation of hexose transporters. Hexose competitively taken up with dGlc, including the nonmetabolizable glucose analogue 3-O-methylglucose, could replace glucose in the process of prevention and reversal of the deprivation effects, indicating that competitive transport but not the metabolism of hexose is a prerequisite for the regulatory effect of glucose on the activity of its own transport system. In conclusion, our results indicate that in cultured 3T3 fat cells glucose itself is involved in the regulation of the activity of its own transport system by influencing the rate of degradation, internalization, or inactivation of hexose transporters by a protein synthesis-independent mechanism.  相似文献   

4.
Previous work demonstrated that glucose controls its own transport rate in rat skeletal muscle: exposure to high glucose levels down-regulates muscle hexose transport, while glucose withdrawal results in elevated transport rates (J. Biol. Chem. 261:16827-16833, 1986). The present study investigates the mechanism of this autoregulatory system. Preincubation of L8 myocytes at 16 mM glucose reduced subsequent 2-deoxy-D-glucose (dGlc) uptake by 40% within 3 h. Cycloheximide (1 microM) mimicked the action of glucose; the effects of glucose and cycloheximide were not additive. At 50 microM, cycloheximide prevented the modulations of glucose transport induced by exposure of muscle cells to high or low glucose concentrations. Inhibition of glycosylation with tunicamycin A1 reduced the basal dGlc uptake, but did not prevent its up-regulation following glucose withdrawal. Inhibition of RNA synthesis by actinomycin D prevented the down-regulatory effect of glucose. These results indicate that continuous protein synthesis and protein glycosylation are required for the maintenance of the steady-state dGlc uptake. We suggest that glucose exerts its autoregulatory effect on hexose transport by modifying the incorporation of active glucose transporters into the plasma membrane rather than changing their rate of degradation. It is hypothesized that this effect is mediated by a non-glycosylated protein involved in the translocation or activation of glucose transporters.  相似文献   

5.
6.
Saccharomyces cerevisiae responds to environ-mental stimuli such as an exposure to pheromone or to hexoses after carbon source limitation with a transient elevation of cytosolic calcium (TECC) response. In this study, we examined whether hexose transport and phosphorylation are necessary for the TECC response. We found that a mutant strain lacking most of the known hexose transporters was unable to carry out the TECC response when exposed to glucose. A mutant strain that lacked the ability to phosphorylate glucose was unable to respond to glucose addition, but displayed a normal TECC response after the addition of galactose. These results indicate that hexose uptake and phosphorylation are required to trigger the hexose-induced TECC response. We also found that the TECC response was significantly smaller than normal when the level of environmental calcium was reduced, and was abolished in a mid1 mutant that lacked a subunit of the high-affinity calcium channel of the yeast plasma membrane. These results indicate that most or all of the TECC response is mediated by an influx of calcium from the extracellular space. Our results indicate that this transient increase in plasma membrane calcium permeability may be linked to the accumulation of Glc-1-P (or a related glucose metabolite) in yeast.  相似文献   

7.
Sugar transporters are necessary to transfer hexose from cell wall spaces into parenchyma cells to boost hexose accumulation to high concentrations in fruit. Here, we have identified an apple hexose transporter (HTs), MdHT2.2, located in the plasma membrane, which is highly expressed in mature fruit. In a yeast system, the MdHT2.2 protein exhibited high 14C‐fructose and 14C‐glucose transport activity. In transgenic tomato heterologously expressing MdHT2.2, the levels of both fructose and glucose increased significantly in mature fruit, with sugar being unloaded via the apoplastic pathway, but the level of sucrose decreased significantly. Analysis of enzyme activity and the expression of genes related to sugar metabolism and transport revealed greatly up‐regulated expression of SlLIN5, a key gene encoding cell wall invertase (CWINV), as well as increased CWINV activity in tomatoes transformed with MdHT2.2. Moreover, the levels of fructose, glucose and sucrose recovered nearly to those of the wild type in the sllin5‐edited mutant of the MdHT2.2‐expressing lines. However, the overexpression of MdHT2.2 decreased hexose levels and increased sucrose levels in mature leaves and young fruit, suggesting that the response pathway for the apoplastic hexose signal differs among tomato tissues. The present study identifies a new HTs in apple that is able to take up fructose and glucose into cells and confirms that the apoplastic hexose levels regulated by HT controls CWINV activity to alter carbohydrate partitioning and sugar content.  相似文献   

8.
The effect of insulin on glucose transport and glucose transporters was studied in perfused rat heart. Glucose transport was measured by the efflux of labelled 3-O-methylglucose from hearts preloaded with this hexose. Insulin stimulated 3-O-methylglucose transport by: (a) doubling the maximal velocity (Vmax); (b) decreasing the Kd from 6.9 to 2.7 mM; (c) increasing the Hill coefficient toward 3-O-methylglucose from 1.9 to 3.1; (d) increasing the efficiency of the transport process (k constant). Glucose transporters in enriched plasma and microsomal membranes from heart were quantified by the [3H]cytochalasin-B-binding assay. When added to normal hearts, insulin produced the following changes in the glucose transporters: (a) it increased the translocation of transporters from an intracellular pool to the plasma membranes; (b) it increased (from 1.6 to 2.7) the Hill coefficient of the transporters translocated into the plasma membranes toward cytochalasin B, suggesting the existence of a positive co-operativity among the transporters appearing in these membranes; (c) it increased the affinity of the transporters (and hence, possibly, of glucose) for cytochalasin B. The data provide evidence that the stimulatory effect of insulin on glucose transport may be due not to the sole translocation of intracellular glucose transporters to the plasma membrane, but to changes in the functional properties thereof.  相似文献   

9.
We have recently demonstrated that two hexose-transport systems are present in undifferentiated rat L6 myoblasts: D-glucose and 2-deoxy-D-glucose are preferentially transported by the high-affinity system, whereas 3-O-methyl-D-glucose is transported primarily by the low-affinity system. Mutant D23 is found to be defective only in the high-affinity hexose-transport system. The low-affinity transport system is much more sensitive to inhibition by cytochalasin B (CB). The present study examines the identity, properties and regulation of the CB-binding sites by measuring CB binding to both whole cells and plasma membrane. Scatchard analysis of the binding data revealed the presence of two CB-binding sites, namely CBH and CBL. These two sites differ not only in their affinity for CB, but their levels can also be differentially altered by various biochemical, physiological and genetic manipulations. CBL resembles the high-affinity hexose-transport system in that it is absent in mutant D23 and is present in larger quantities in glucose-starved cells. Moreover, CB binding to this site is inhibited by D-glucose and 2-deoxy-D-glucose, the preferred substrates of the high-affinity hexose-transport system. On the other hand, CBH is found to be unaltered in mutant D23, which also retains the normal low-affinity hexose-transport system. CBH also resembles the low-affinity transport system in that it is not elevated in glucose-starved cells. Furthermore, binding of CB to this site can be inhibited by 3-O-methyl-D-glucose, the preferred substrate of the low-affinity transport system. It should be noted that 2-deoxy-D-glucose does not have much effect on CBH, and vice versa. Studies with purified membrane preparations indicate that both CB-binding sites are present in similar ratios in the plasma membrane and the low-density microsomal fraction. Plasma-membrane studies also reveal that D-glucose 6-phosphate, but not 2-deoxy-D-glucose 6-phosphate, is very effective in activating CB binding. Data presented suggest that CB binding may be regulated by sugar analogues in an allosteric manner.  相似文献   

10.
This review discusses some of the approaches and general criteria that we have used to examine the properties of the hexose transport system in undifferentiated L6 rat myoblasts. These approaches include studying the kinetics of hexose transport in whole cells and plasma membrane vesicles, the effects of various inhibitors on hexose transport, the isolation and characterization of hexose transport mutants, and the use of cytochalasin B (CB) to identify the transport component(s). Transport kinetics indicated that two transport systems are present in these cells. 2-Deoxy-D-glucose is transported primarily by the high affinity system, whereas 3-O-methyl-D-glucose is transported by the low affinity system. Furthermore, these two transport systems are inactivated to different extents by CB. CB has a higher binding affinity for the low affinity hexose transport system. The inhibitory effect of various hexose analogues also revealed the presence of two hexose transport systems. The effects of various ionophores and energy uncouplers on hexose transport suggest that the high affinity system is an active transport process, whereas the low affinity system is of the facilitated diffusion type. The high affinity system is also sensitive to sulfhydryl reagents, whereas the low affinity system is not. Further evidence for the presence of two transport systems comes from the characterization of hexose transport mutants. Two of the mutants isolated are shown to be defective in the high affinity transport system, but not in the low affinity transport system. These mutants are also defective in the CB low affinity binding site. Based on our results a tentative working model for hexose transport in L6 rat myoblasts is presented.  相似文献   

11.
A method for the selection and isolation of hexose transport mutants in undifferentiated rat myoblast L6 cells is reported; 2-deoxy-D-glucose (2-DOG)-and 2-deoxy-2-fluoro-D-glucose (2FG)-resistant mutants were selected after mutagenization of L6 cells with ethyl methanesulfonate. Of these, D18 and D23 (selected with 0.1 mM 2-DOG) and F72 and F76 (selected with 0.1 mM 2FG) exhibited the lowest hexose transport activity. Uptake of 0.06 mM 2-DOG, 2FG, or 3-O-methyl-D-glucose (3-OMG) by mutants grown in fructose medium supplemented with 0.05 mM 2FG was about four- to five-fold lower than the parental L6 cells. These mutants contain normal levels of ATP and glycolytic enzyme activities. They also exhibit normal transport activities for alpha-aminoisobutyric acid and fructose. Furthermore, hexose transport was observed to be decreased in plasma membrane vesicles prepared from these mutants. Kinetic analysis of 2-DOG and 3-OMG transport in mutant F72 demonstrated that the Vmax for 2-DOG uptake was significantly reduced, whereas the Vmax for 3-OMG transport was not affected. In all cases, the affinity for these hexose analogues was unaffected. In addition mutant F72 was found to be only slightly affected by treatment with various energy inhibitors and sulfhydryl reagents. The results suggest that this mutant is defective in, or has low levels of, a plasma membrane component(s) involved in the high-affinity hexose transport system.  相似文献   

12.
We report here the effects of growth conditions and myogenic differentiation on rat myoblast hexose transport activities. We have previously shown that in undifferentiated myoblasts the preferred substrates for the high (HAHT)- and low (LAHT)-affinity hexose transport systems are 2-deoxyglucose (2-DG) and 3-O-methyl-D-glucose (3-OMG), respectively. The present study shows that at cell density higher than 4.4 x 10(4) cells/cm2, the activities of both transport processes decrease with increasing cell densities of the undifferentiated myoblasts. Since the transport affinities are not altered, the observed decrease is compatible with the notion that the number of functional hexose transporters may be decreased in the plasma membrane. Myogenic differentiation is found to alter the 2-DG, but not the 3-OMG, transport affinity. The Km values of 2-DG uptake are elevated upon the onset of fusion and are directly proportional to the extent of fusion. This relationship between myogenesis and hexose transport is further explored by using cultures impaired in myogenesis. Treatment of cells with 5-bromo-2'-deoxyuridine abolishes not only myogenesis but also the myogenesis-induced change in 2-DG transport affinity. Similarly, alteration in 2-DG transport affinity cannot be observed in a myogenesis-defective mutant, D1. However, under myogenesis-permissive condition, the myogenesis of this mutant is also accompanied by changes in its 2-DG transport affinity. The myotube 2-DG transport system also differs from its myoblast counterpart in its response to sulfhydryl reagents and in its turnover rate. It may be surmised from the above observations that myogenesis results in the alteration of the turnover rate or in the modification of the 2-DG transport system. Although glucose starvation has no effect on myogenesis, it is found to alter the substrate specificity and transport capacity of HAHT. In conclusion, the present study shows that hexose transport in rat myoblasts is very sensitive to the growth conditions and the stages of differentiation of the cultures. This may explain why different hexose transport properties have been observed with myoblasts grown under different conditions.  相似文献   

13.
All 6 tryptophan residues in the human HepG2-type glucose transporter (Glut1) were individually altered by site-directed mutagenesis to investigate the role of these residues in transport function. Tryptophan residues in positions 48, 65, 186, 363, 388, and 412 of Glut1 were changed to either a glycine or leucine residue. Mutant mRNAs were synthesized and injected into Xenopus laevis oocytes. Transporter function as assessed by uptake of 2-deoxy-D-[3H]glucose or transport of 3-O-[3H]methylglucose was decreased in the 388 and 412 mutants but was unaltered in all other mutants. The amount of the mutant transporters expressed in total membrane and plasma membrane fractions was measured using Glut1-specific antibodies. Calculation of the intrinsic transport activity of each of the mutants using these data demonstrated that the reduced transport activity of the 412 mutants was caused entirely by a dramatic decrease in the intrinsic activity of the mutant proteins whereas the reduced activity of the 388 mutants was a result of a decreased level of the protein in oocytes, decreased targeting to the plasma membrane, and a modest decrease in the intrinsic activity. Protease/glycosidase mapping of in vitro translation products indicated that the effects of the 388 and 412 point mutations could not be attributed to a disruption in the ability of the mutant proteins to insert properly into the membrane. The ID50 for cytochalasin B inhibition of 2-deoxyglucose uptake was increased from 5 x 10(-7) M for the wild-type Glut1 to 4 x 10(-6) M in the 388 mutants but was unaltered in the 412 mutants. These observations suggest that 1) Trp-412 may comprise part of a hexose binding site or is involved in maintaining a local tertiary structure critical for transport function; 2) Trp-388 is involved in stabilizing the equilibrium binding of cytochalasin B to the transporter. Trp-388 may therefore lie near a substrate binding site and also appears to participate in stabilization of local tertiary structure important for full catalytic activity and efficient targeting to the Xenopus plasma membrane.  相似文献   

14.
Postmeiotic spermatogenic cells, but not meiotic spermatogenic cells respond differentially with glucose-induced changes in [Ca2+]i indicating a differential transport of glucose via facilitative hexose transporters (GLUTs) specifically distributed in the plasma membrane. Several studies have indicated that plasma membrane in mammalian cells is not homogeneously organized, but contains specific microdomains known as detergent-resistant membrane domains (DRMDs), lipid rafts or caveolae. The association of these domains and GLUTs isoforms has not been characterized in spermatogenic cells. We analyzed the expression and function of GLUT1 and GLUT3 in isolated spermatocytes and spermatids. The results showed that spermatogenic cells express both glucose transporters, with spermatids exhibiting a higher affinity glucose transport system. In addition, spermatogenic cells express caveolin-1, and glucose transporters colocalize with caveolin-1 in caveolin-enriched membrane fractions. Experiments in which the integrity of caveolae was disrupted by pretreatment with methyl-beta-cyclodextrin, indicated that the involvement of cholesterol-enriched plasma membrane microdomains were involved in the localization of GLUTs and uptake of 2-deoxyglucose. We also observed cofractionation of GLUT3 and caveolin-1 in low-buoyant density membranes together with their shift to higher densities after methyl-beta-cyclodextrin treatment. GLUT1 was found in all fractions isolated. Immunofluorescent studies indicated that caveolin-1, GLUT1, and hexokinase I colocalize in spermatocytes while caveolin-1, GLUT3, and hexokinase I colocalize in spermatids. These findings suggest the presence of hexose transporters in DRMDs, and further support a role for intact caveolae or cholesterol-enriched membrane microdomains in relation to glucose uptake and glucose phosphorylation. The results would also explain the different glucose-induced changes in [Ca2+]i in both cells.  相似文献   

15.
Plasma membranes and light microsomes were isolated from fused L6 muscle cells. Pre-treatment of cells with insulin did not affect marker enzyme or protein distribution in isolated membranes. The number of glucose transporters in the isolated membranes was calculated from the D-glucose-protectable binding of [3H]cytochalasin B. Glucose transporter number was higher in plasma membranes and lower in intracellular membranes derived from insulin-treated cells than in the corresponding fractions from untreated cells. The net increase in glucose transporters in plasma membranes was identical to the net decrease in glucose transporters in light microsomes (2 pmol/1.23 x 10(8) cells). The fold increase in glucose transporter number/mg protein in plasma membranes (2-fold) was similar to the fold increase in glucose transport caused by insulin. This suggests that recruitment of glucose transporters from intracellular membranes to the plasma membrane is the major mechanism of stimulation of hexose transport in L6 muscle cells. This is the first report of isolation of the two insulin-sensitive membrane elements from a cell line, and the results indicate that, in contrast to rat adipocytes, there is not change in the intrinsic activity of the transporters in response to insulin.  相似文献   

16.
Summary We have shown previously that the concentration of glucose in the growth medium regulates sodium-coupled hexose transport in epithelia formed by the porcine renal cell line LLC-PK1. Assayed in physiological salt solution, the ratio of the concentration of -methyl glucoside (AMG) accumulated inside the cell at steady state to its concentration outside, and the number of glucose transporters, as measured by phlorizin binding, was inversely related to the glucose concentration in the growth medium. In this study, using a cloned line of LLC-PK1 cells, we provide evidence that the difference in AMG concentrating capacity is the result of a regulatory signal and not simply due to a selection process where the growth of cells with enhanced glucose transport is favored by low glucose medium or vice-versa. By adding glucose to conditioned medium (collected after 48 hr incubation with cells and therefore containing less than 0.1mm glucose), we demonstrate that the signal in the growth medium is indeed the concentration of glucose rather than another factor secreted into or depleted from the medium. Fructose and mannose, two sugars not transported by the sodium-dependent glucose transporter, can substitute for glucose as a carbohydrate source in the growth medium and have a modest glucose-like effect on the transporter. Growth in medium containing AMG does not affect the transporter, indicating that the regulatory signal is not a direct effect of the hexose on its carrier but involves hexose metabolism.  相似文献   

17.
Human skin fibroblasts from 'normal' subjects were found to possess at least two hexose transport systems. One system was responsible for the uptake of 2-deoxy-D-glucose (dGlc), D-glucose and D-galactose, whereas the other was responsible primarily for the uptake of 3-O-methyl-D-glucose (MeGlc). The transport of dGlc was the rate-limiting step in the uptake process; over 97% of the internalized dGlc was phosphorylated and the specific activity of hexokinase was several times higher than that for dGlc transport. The dGlc transport system was activated by glucose starvation, and was very sensitive to inhibition by cytochalasin B and energy uncouplers. Fibroblasts isolated from a patient with symptoms of hypoglycaemia were found to differ from their normal counterparts in the dGlc transport system. They exhibited a much higher transport affinity for dGlc, D-glucose and D-galactose, with no change in the respective transport capacity. Transport was not the rate-limiting step in dGlc uptake by these cells. Moreover, the patient's dGlc transport system was no longer sensitive to inhibition by cytochalasin B and energy uncouplers. This suggested that the intrinsic properties of the patient's dGlc transport system were altered. It should be noted that the patient's dGlc transport system could still be activated by glucose starvation. Despite the changes in the dGlc transport system, the MeGlc transport system in the patient's fibroblasts remained unaltered. The observed difference in the properties of the two hexose transport systems in the 'normal' and the patient's fibroblasts strongly suggests that the two transport systems may be coded or regulated by different genes. The present finding provides the first genetic evidence from naturally occurring fibroblasts indicating the presence of two different hexose transport systems.  相似文献   

18.
We examined the effects of the membrane-impermeant amino-group-modifying agent fluorescein isothiocyanate (FITC) on the basal and insulin-stimulated hexose-transport activity of isolated rat adipocytes. Pre-treatment of cells with FITC causes irreversible inhibition of transport measured in subsequently washed cells. Transport activity was inhibited by approx. 50% with 2 mM-FITC in 8 min. The cells respond to insulin, after FITC treatment and removal, and the fold increase in transport above the basal value caused by maximal concentrations of insulin was independent of the concentration of FITC used for pre-treatment over the range 0-2 mM, where basal activity was progressively inhibited. The ability of FITC to modify selectively hexose transporters accessible only to the external milieu was evaluated by two methods. (1) Free intracellular FITC, and the distribution of FITC bound to cellular components, were assessed after dialysis of the homogenate and subcellular fractionation on sucrose gradients by direct spectroscopic measurement of fluorescein. Most (98%) of the FITC was associated with the non-diffusible fractions. Equilibrium sucrose-density-gradient centrifugation of the homogenate demonstrated that the subcellular distribution of the bound FITC correlated with the density distribution of a plasma-membrane marker, but not markers for Golgi, endoplasmic reticulum, mitochondria or protein. Exposing the cellular homogenate, rather than the intact cell preparation, to 2 mM-FITC resulted in a 4-5-fold increase in total bound FITC, and the density-distribution profile more closely resembled the distribution of total protein. (2) Incubation of hexokinase preparations with FITC rapidly and irreversibly inactivates this protein. However, both intracellular hexokinase total activity and its apparent Michaelis constant for glucose were unaffected in FITC-treated intact cells. Further control experiments demonstrated that FITC pre-treatment of cells had no effect on the intracellular ATP concentration or the dose-response curve of insulin stimulation of hexose transport. Since the fold increase of hexose transport induced by insulin is constant over the range of inhibition of surface-labelled hexose transporters, we suggest that insulin-induced insertion of additional transporters into the plasma membrane may not be the major locus of acceleration of hexose transport by the hormone.  相似文献   

19.
We previously identified Asn331 in transmembrane segment 7 (TM7) as a key residue determining substrate affinity in Hxt2, a moderately high-affinity facilitative glucose transporter of Saccharomyces cerevisiae. To gain further insight into the structural basis of substrate recognition by yeast glucose transporters, we have now studied Hxt7, whose affinity for glucose is the highest among the major hexose transporters. The functional role of Asp340 in Hxt7, the residue corresponding to Asn331 of Hxt2, was examined by replacing it with each of the other 19 amino acids. Such replacement of Asp340 generated transporters with various affinities for glucose, with the affinity of the Cys340 mutant surpassing that of the wild-type Hxt7. To examine the structural role of Asp340 in the substrate translocation pathway, we performed cysteine-scanning mutagenesis of the 21 residues in TM7 of a functional Cys-less Hxt7 mutant in conjunction with exposure to the hydrophilic sulfhydryl reagent p-chloromercuribenzenesulfonate (pCMBS). The transport activity of the D340C mutant of Cys-less Hxt7, in which Asp340 is replaced with Cys, was completely inhibited by pCMBS, indicating that Asp340 is located in a water-accessible position. This D340C mutant showed a sensitivity to pCMBS that was ∼70 times that of the wild-type Hxt7, and it was protected from pCMBS inhibition by the substrates d-glucose and 2-deoxy-d-glucose but not by l-glucose. These results indicate that Asp340 is situated at or close to a substrate recognition site and is a key residue determining high-affinity glucose transport by Hxt7, supporting the notion that yeast glucose transporters share a common mechanism for substrate recognition.  相似文献   

20.
In this study, we tested the hypothesis that hexose transport regulation may involve proteins with relatively rapid turnover rates. 3T3-L1 adipocytes, which exhibit 10-fold increases in hexose transport rates within 30 min of the addition of 100 nM insulin, were utilized. Exposure of these cells to 300 microM anisomycin or 500 microM cycloheximide caused a maximal, 7-fold increase in 2-deoxyglucose transport rate after 4-8 h. The effects due to either insulin (0.5 h) or anisomycin (5 h) on the kinetics of zero-trans 3-O-methyl[14C]glucose transport were similar, resulting in 2.5-3-fold increases in apparent Vmax values (control Vmax = 1.6 +/- 0.3 x 10(-7) mmol/s/10(6) cells) coupled with approximately 2-fold decreases in apparent Km values (control Km = 23 +/- 3.3 mM). Insulin elicited the expected increases in plasma membrane levels of HepG2/erythrocyte (GLUT1) and muscle/adipocyte (GLUT4) transporters (1.6- and 2.8-fold, respectively) as determined by protein immunoblotting. In contrast, neither total cellular contents nor plasma membrane levels of these two transporter isoforms were increased when 3T3-L1 adipocytes were treated with either anisomycin or cycloheximide. 3-[125I]Iodo-4-azidophenethylamido-7-O-succinyldeacetylforskoli n labeling of glucose transporters in plasma membrane fractions of similarly treated cells was also unaffected by these agents. Thus, a striking discrepancy was observed between the marked increase in cellular hexose transport rates due to these protein synthesis inhibitors and the unaltered amounts of glucose transporter proteins in the plasma membrane fraction. These data indicate that short-term protein synthesis inhibition in 3T3-L1 adipocytes leads to large increases in the intrinsic catalytic activity of one or both of the GLUT1 and GLUT4 transporter isoforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号