首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In yeast and other fungi, cell division, cell shape, and growth depend on the coordinated synthesis and degradation of cell wall polymers. We have developed a reliable and efficient micro method to determine Saccharomyces cerevisiae cell wall composition that distinguishes between beta1,3- and beta1,6-glucan. The method is based on the sequential treatment of cell walls with specific hydrolytic enzymes followed by dialysis. The low molecular weight (MW) products thus separated account for each particular cell wall polymer. The method can be applied to as little as 50-100 mg (wet wt) of radioactively labeled cells. A combination of chitinase and recombinant beta-1,3-glucanase is initially used, releasing all of the chitin and 60-65% of the beta1,3-glucan from the cell walls. Next, recombinant endo-beta-1,6-glucanase from Trichoderma harzianum is utilized to release all the beta-1,6-glucan present in the wall. The chromatographic pattern of endoglucanase digested beta-1,6-glucan provides a characteristic "fingerprint" of beta-1,6-glucan and the fine structure of the oligosaccharides in this pattern was determined by 1H NMR and electrospray ionization mass spectroscopy. The final enzymatic step uses laminarinase and beta-glucosidase to release the remaining beta-1,3-glucan. The cell wall mannan remains as a high MW fraction at the end of the fractionation procedure. Good sensitivity and correlation with cell wall composition determined by traditional methods were observed for wild-type and several cell wall mutants.  相似文献   

2.
Innate immunity depends upon recognition of surface features common to broad groups of pathogens. The glucose polymer beta-glucan has been implicated in fungal immune recognition. Fungal walls have two kinds of beta-glucan: beta-1,3-glucan and beta-1,6-glucan. Predominance of beta-1,3-glucan has led to the presumption that it is the key immunological determinant for neutrophils. Examining various beta-glucans for their ability to stimulate human neutrophils, we find that the minor cell wall component beta-1,6-glucan mediates neutrophil activity more efficiently than beta-1,3-glucan, as measured by engulfment, production of reactive oxygen species, and expression of heat shock proteins. Neutrophils rapidly ingest beads coated with beta-1,6-glucan while ignoring those coated with beta-1,3-glucan. Complement factors C3b/C3d are deposited on beta-1,6-glucan more readily than on beta-1,3-glucan. Beta-1,6-glucan is also important for efficient engulfment of the human pathogen Candida albicans. These unique stimulatory effects offer potential for directed stimulation of neutrophils in a therapeutic context.  相似文献   

3.
A beta-1,6-glucanase was purified to apparent homogeneity from a commercial yeast digestive enzyme prepared from Streptomyces rochei by a series of column chromatographies. The molecular mass of the purified enzyme was 60 kDa by SDS-PAGE. The purified enzyme had an optimum pH range from 4.0 to 6.0 and was stable in the same pH range. The enzyme was stable under 50 degrees C but lost almost all activity at 60 degrees C. The enzyme was specific to beta-1,6-glucan and had little activity towards beta-1,3-glucan and beta-1,4-glucan. When the beta-1,6-glucan was hydrolyzed with the purified enzyme for 5 h, the reaction products contained 20% glucose, 36% gentiobiose, and 44% other oligosaccharides, suggesting that the enzyme is an endo-type glucanase. When the purified enzyme was used for the digestion of the cell wall of Saccharomyces cerevisiae, cell-wall proteins covalently bound to the cell-wall glucan were recovered as soluble forms, suggesting that this enzyme is useful for analysis of yeast-cell wall proteins.  相似文献   

4.
Invertebrates, like vertebrates, utilize pattern recognition proteins for detection of microbes and subsequent activation of innate immune responses. We report structural and functional properties of two domains from a beta-1,3-glucan recognition protein present in the hemolymph of a pyralid moth, Plodia interpunctella. A recombinant protein corresponding to the first 181 amino-terminal residues bound to beta-1,3-glucan, lipopolysaccharide, and lipoteichoic acid, polysaccharides found on cell surfaces of microorganisms, and also activated the prophenoloxidase-activating system, an immune response pathway in insects. The amino-terminal domain consists primarily of an alpha-helical secondary structure with a minor beta-structure. This domain was thermally stable and resisted proteolytic degradation. The 290 residue carboxyl-terminal domain, which is similar in sequence to glucanases, had less affinity for the polysaccharides, did not activate the prophenoloxidase cascade, had a more complicated CD spectrum, and was heat-labile and susceptible to proteinase digestion. The carboxyl-terminal domain bound to laminarin, a beta-1,3-glucan with beta-1,6 branches, but not to curdlan, a beta-1,3-glucan that lacks branching. These results indicate that the two domains of Plodia beta-1,3-glucan recognition protein, separated by a putative linker region, bind microbial polysaccharides with differing specificities and that the amino-terminal domain, which is unique to this class of pattern recognition receptors from invertebrates, is responsible for stimulating prophenoloxidase activation.  相似文献   

5.
beta-1,6-Glucan is an essential fungal-specific component of the Saccharomyces cerevisiae cell wall that interconnects all other wall components into a lattice. Considerable biochemical and genetic effort has been directed at the identification and characterization of the steps involved in its biosynthesis. Structural studies show that the polymer plays a central role in wall structure, attaching mannoproteins via their glycosylphosphatidylinositol (GPI) glycan remnant to beta-1,3-glucan and chitin. Genetic approaches have identified genes that upon disruption result in beta-1,6-glucan defects of varying severity, often with reduced growth or lethality. These gene products have been localized throughout the secretory pathway and at the cell surface, suggesting a possible biosynthetic route. Current structural and genetic data have therefore allowed the development of models to predict biosynthetic events. Based on knowledge of beta-1,3-glucan and chitin synthesis, it is likely that the bulk of beta-1,6-glucan polymer synthesis occurs at the cell surface, but requires key prior intracellular events. However, the activity of most of the identified gene products remain unknown, making it unclear to what extent and how directly they contribute to the synthesis of this polymer. With the recent availability of new tools, reagents and methods (including genomics), the field is poised for a convergence of biochemical and genetic methods to identify and characterize the biochemical steps in the synthesis of this polymer.  相似文献   

6.
An exo-beta-1,3-galactanase gene from Phanerochaete chrysosporium has been cloned, sequenced, and expressed in Pichia pastoris. The complete amino acid sequence of the exo-beta-1,3-galactanase indicated that the enzyme consists of an N-terminal catalytic module with similarity to glycoside hydrolase family 43 and an additional unknown functional domain similar to carbohydrate-binding module family 6 (CBM6) in the C-terminal region. The molecular mass of the recombinant enzyme was estimated as 55 kDa based on SDS-PAGE. The enzyme showed reactivity only toward beta-1,3-linked galactosyl oligosaccharides and polysaccharide as substrates but did not hydrolyze beta-1,4-linked galacto-oligosaccharides, beta-1,6-linked galacto-oligosaccharides, pectic galactan, larch arabinogalactan, arabinan, gum arabic, debranched arabinan, laminarin, soluble birchwood xylan, or soluble oat spelled xylan. The enzyme also did not hydrolyze beta-1,3-galactosyl galactosaminide, beta-1,3-galactosyl glucosaminide, or beta-1,3-galactosyl arabinofuranoside, suggesting that it specifically cleaves the internal beta-1,3-linkage of two galactosyl residues. High performance liquid chromatographic analysis of the hydrolysis products showed that the enzyme produced galactose from beta-1,3-galactan in an exo-acting manner. However, no activity toward p-nitrophenyl beta-galactopyranoside was detected. When incubated with arabinogalactan proteins, the enzyme produced oligosaccharides together with galactose, suggesting that it is able to bypass beta-1,6-linked galactosyl side chains. The C-terminal CBM6 did not show any affinity for known substrates of CBM6 such as xylan, cellulose, and beta-1,3-glucan, although it bound beta-1,3-galactan when analyzed by affinity electrophoresis. Frontal affinity chromatography for the CBM6 moiety using several kinds of terminal galactose-containing oligosaccharides as the analytes clearly indicated that the CBM6 specifically interacted with oligosaccharides containing a beta-1,3-galactobiose moiety. When the degree of polymerization of galactose oligomers was increased, the binding affinity of the CBM6 showed no marked change.  相似文献   

7.
Antitumor mAb bind to tumors and activate complement, coating tumors with iC3b. Intravenously administered yeast beta-1,3;1,6-glucan functions as an adjuvant for antitumor mAb by priming the inactivated C3b (iC3b) receptors (CR3; CD11b/CD18) of circulating granulocytes, enabling CR3 to trigger cytotoxicity of iC3b-coated tumors. Recent data indicated that barley beta-1,3;1,4-glucan given orally similarly potentiated the activity of antitumor mAb, leading to enhanced tumor regression and survival. This investigation showed that orally administered yeast beta-1,3;1,6-glucan functioned similarly to barley beta-1,3;1,4-glucan with antitumor mAb. With both oral beta-1,3-glucans, a requirement for iC3b on tumors and CR3 on granulocytes was confirmed by demonstrating therapeutic failures in mice deficient in C3 or CR3. Barley and yeast beta-1,3-glucan were labeled with fluorescein to track their oral uptake and processing in vivo. Orally administered beta-1,3-glucans were taken up by macrophages that transported them to spleen, lymph nodes, and bone marrow. Within the bone marrow, the macrophages degraded the large beta-1,3-glucans into smaller soluble beta-1,3-glucan fragments that were taken up by the CR3 of marginated granulocytes. These granulocytes with CR3-bound beta-1,3-glucan-fluorescein were shown to kill iC3b-opsonized tumor cells following their recruitment to a site of complement activation resembling a tumor coated with mAb.  相似文献   

8.
The yeast cell wall contains beta1,3-glucanase-extractable and beta1,3-glucanase-resistant mannoproteins. The beta1,3-glucanase-extractable proteins are retained in the cell wall by attachment to a beta1,6-glucan moiety, which in its turn is linked to beta1,3-glucan (J. C. Kapteyn, R. C. Montijn, E. Vink, J. De La Cruz, A. Llobell, J. E. Douwes, H. Shimoi, P. N. Lipke, and F. M. Klis, Glycobiology 6:337-345, 1996). The beta1,3-glucanase-resistant protein fraction could be largely released by exochitinase treatment and contained the same set of beta1,6-glucosylated proteins, including Cwp1p, as the B1,3-glucanase-extractable fraction. Chitin was linked to the proteins in the beta1,3-glucanase-resistant fraction through a beta1,6-glucan moiety. In wild-type cell walls, the beta1,3-glucanase-resistant protein fraction represented only 1 to 2% of the covalently linked cell wall proteins, whereas in cell walls of fks1 and gas1 deletion strains, which contain much less beta1,3-glucan but more chitin, beta1,3-glucanase-resistant proteins represented about 40% of the total. We propose that the increased cross-linking of cell wall proteins via beta1,6-glucan to chitin represents a cell wall repair mechanism in yeast, which is activated in response to cell wall weakening.  相似文献   

9.
An antimicrobial peptide termed BCP-2 was purified from barley grain by chitin-affinity treatment and HPLC. The results of amino acid analysis and mass spectrometry of BCP-2 indicate that the peptide is very similar to barley alpha-thionin. BCP-2 and wheat alpha1-thionin were also bound to beta-glucan but not to starch. The binding of BCP-2 to laminarin (beta-1,3-1,6-glucan) and laminarioligosaccharides was supported by fluorescence polarization data. This is the first report on the binding of alpha-thionins to polysaccharide containing chitin and beta-1,3-glucan, which construct fungal cell walls.  相似文献   

10.
Physical and biological properties of the fungal cell wall are determined by the composition and arrangement of the structural polysaccharides. Cell wall polymers of fungi are classically divided into two groups depending on their solubility in hot alkali. We have analyzed the alkali-insoluble fraction of the Aspergillus fumigatus cell wall, which is the fraction believed to be responsible for fungal cell wall rigidity. Using enzymatic digestions with recombinant endo-beta-1,3-glucanase and chitinase, fractionation by gel filtration, affinity chromatography with immobilized lectins, and high performance liquid chromatography, several fractions that contained specific interpolysaccharide covalent linkages were isolated. Unique features of the A. fumigatus cell wall are (i) the absence of beta-1,6-glucan and (ii) the presence of a linear beta-1, 3/1,4-glucan, never previously described in fungi. Galactomannan, chitin, and beta-1,3-glucan were also found in the alkali-insoluble fraction. The beta-1,3-glucan is a branched polymer with 4% of beta-1,6 branch points. Chitin, galactomannan, and the linear beta-1, 3/1,4-glucan were covalently linked to the nonreducing end of beta-1, 3-glucan side chains. As in Saccharomyces cerevisiae, chitin was linked via a beta-1,4 linkage to beta-1,3-glucan. The data obtained suggested that the branching of beta-1,3-glucan is an early event in the construction of the cell wall, resulting in an increase of potential acceptor sites for chitin, galactomannan, and the linear beta-1,3/1,4-glucan.  相似文献   

11.
The plasma of the crayfish Pacifastacus leniusculus contains a protein which is able to bind to laminarin (a soluble beta-1,3-glucan) and which has been isolated by two independent methods, affinity precipitation with a beta-1,3-glucan or immunoaffinity chromatography. The purified beta-1,3-glucan binding protein was homogenous as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It is a monomeric glycoprotein with a molecular mass of approximately 100,000 Da and an isoelectric point of approximately 5.0. Amino acid analysis showed a very high similarity with the amino acid composition of beta-1,3-glucan binding proteins recently purified from two insects, the cockroach Blaberus craniifer and the silkworm Bombyx mori. The N-terminal amino acid sequence was determined to be: H2N-Asp-Ala-Gly-X-Ala-Ser-Leu-Val-Thr-Asn-Phe-Asn-Ser-Ala-Lys-Leu-X-X-Ly s--- Using monospecific rabbit polyclonal antibodies, the presence of this protein has also been shown within the blood cells. The purified beta-1,3-glucan binding protein did not show any peptidase or phenoloxidase activity but was able to enhance the activation of hemocyte-derived peptidase and prophenoloxidase only in the presence of the beta-1,3-glucan, laminarin, whereas mannan, dextran (alpha-glucan), or cellulose (beta-1,4-glucan) incubated with the beta-1,3-glucan binding protein had no effect on these enzyme activities. The beta-1,3-glucan binding protein could only be affinity-precipitated from crayfish plasma by the beta-1,3-glucans laminarin or curdlan (an insoluble beta-1,3-glucan), while mannan or dextran did not bind to the beta-1,3-glucan binding protein. No hemagglutinating activity of the purified beta-1,3-glucan binding protein could be detected.  相似文献   

12.
Linear beta-1,3 glucans are elicitors of defense responses in tobacco   总被引:2,自引:0,他引:2  
Laminarin, a linear beta-1,3 glucan (mean degree of polymerization of 33) was extracted and purified from the brown alga Laminaria digitata. Its elicitor activity on tobacco (Nicotiana tabacum) was compared to that of oligogalacturonides with a mean degree of polymerization of 10. The two oligosaccharides were perceived by suspension-cultured cells as distinct chemical stimuli but triggered a similar and broad spectrum of defense responses. A dose of 200 microg mL(-1) laminarin or oligogalacturonides induced within a few minutes a 1.9-pH-units alkalinization of the extracellular medium and a transient release of H(2)O(2). After a few hours, a strong stimulation of Phe ammonia-lyase, caffeic acid O-methyltransferase, and lipoxygenase activities occurred, as well as accumulation of salicylic acid. Neither of the two oligosaccharides induced tissue damage or cell death nor did they induce accumulation of the typical tobacco phytoalexin capsidiol, in contrast with the effects of the proteinaceous elicitor beta-megaspermin. Structure activity studies with laminarin, laminarin oligomers, high molecular weight beta-1, 3-1,6 glucans from fungal cell walls, and the beta-1,6-1,3 heptaglucan showed that the elicitor effects observed in tobacco with beta-glucans are specific to linear beta-1,3 linkages, with laminaripentaose being the smallest elicitor-active structure. In accordance with its strong stimulating effect on defense responses in tobacco cells, infiltration of 200 microg mL(-1) laminarin in tobacco leaves triggered accumulation within 48 h of the four families of antimicrobial pathogenesis-related proteins investigated. Challenge of the laminarin-infiltrated leaves 5 d after treatment with the soft rot pathogen Erwinia carotovora subsp. carotovora resulted in a strong reduction of the infection when compared with water-treated leaves.  相似文献   

13.
Montero M  Sanz L  Rey M  Monte E  Llobell A 《The FEBS journal》2005,272(13):3441-3448
A new component of the beta-1,6-glucanase (EC 3.2.1.75) multienzymatic complex secreted by Trichoderma harzianum has been identified and fully characterized. The protein, namely BGN16.3, is the third isozyme displaying endo-beta-1,6-glucanase activity described up to now in T. harzianum CECT 2413. BGN16.3 is an acidic beta-1,6-glucanase that is specifically induced by the presence of fungal cell walls in T. harzianum growth media. The protein was purified to electrophoretical homogenity using its affinity to beta-1,6-glucan as first purification step, followed by chomatofocusing and gel filtration. BGN16.3 has a molecular mass of 46 kDa in SDS/PAGE and a pI of 4.5. The enzyme only showed activity against substrates with beta-1,6-glycosidic linkages, and it has an endohydrolytic mode of action as shown by HPLC analysis of the products of pustulan hydrolysis. The expression profile analysis of BGN16.3 showed a carbon source control of the accumulation of the enzyme, which is fast and strongly induced by fungal cell walls, a condition often regarded as mycoparasitic simulation. The likely involvement beta-1,6-glucanases in this process is discussed.  相似文献   

14.
A novel elicitor that induces chitinases in tobacco BY-2 cells was isolated from Alternaria alternata 102. Six other fungi, including A. alternata IFO 6587, could not induce, or weakly induce chitinase activity. The purified elicitor was soluble in 75% methanol and showed the chitinase-inducing activity when applied at concentrations of as low as 25 ng x mL(-1). Structural determination by methylation analysis, reducing-end analysis, MALDI-TOF/MS, and NMR spectroscopy indicated that the elicitor was a mixture of beta-1,3-, 1,6-oligoglucans mostly with a degree of polymerization of between 8 and 17. Periodate oxidation of the elicitor suggested that the 1,6-linked and nonreducing terminal residues are essential for the elicitor activity. Further analysis of the elicitor responses in BY-2 cells indicated that the activity of this beta-1,3-, 1,6-glucan elicitor was about 1000 times more potent than that of laminarin, which is a known elicitor of defense responses in tobacco. Analyzing the expression of defense-related genes indicated that a phenylalanine ammonia-lyase gene and a coumaroyl-CoA O-methyltransferase gene were transiently expressed by this beta-1,3-, 1,6-glucan elicitor. The elicitor induced a weak oxidative burst but did not induce cell death in the BY-2 cells. In the tissue of tobacco plants, this beta-1,3-, 1,6-glucan elicitor induced the expression of basic PR-3 genes, the phenylpropanoid pathway genes, and the sesquiterpenoid pathway genes. In comparison with laminarin and laminarin sulfate, which are reported to be potent elicitors of defense responses in tobacco, the expression pattern of genes induced by the purified beta-1,3-, 1,6-glucan elicitor was more similar to that induced by laminarin than to that induced by laminarin sulfate.  相似文献   

15.
16.
In our previous in vivo 31P study of intact nitrogen-fixing nodules (Rolin, D.B., Boswell, R.T., Sloger, C., Tu, S.I. and Pfeffer, P.E., 1989 Plant Physiol. 89, 1238-1246), we observed an unknown phosphodiester. The compound was also observed in the spectra of isolated bacteroids as well as extracts of the colonizing Bradyrhizobium japonicum USDA 110. In order to characterize the phosphodiester in the present study, we took advantage of the relatively hydrophobic nature of the material and purified it by elution from a C-18 silica reverse-phase chromatography column followed by final separation on an aminopropyl silica HPLC column. Structural characterization of this compound with a molecular weight of 2271 (FAB mass spectrometry), using 13C-1H and 31P-1H heteronuclear 2D COSY and double quantum 2D phase sensitive homonuclear 1H COSY NMR spectra, demonstrated that the molecule contained beta-(1,3); beta-(1,6); beta-(1,3,6) and beta-linked non-reducing terminal glucose units in the ratio of 5:6:1:1, respectively, as well as one C-6 substituted phosphocholine (PC) moiety associated with one group of (1,3) beta-glucose residues. Carbohydrate degradation analysis indicated that this material was a macrocyclic glucan, (absence of a reducing end group) with two separated units containing three consecutively linked beta-(1,3) glucose residues and 6 beta-(1,6) glucose residues. The sequences of beta-(1,3)-linked glucose units contained a single non-reducing, terminal, unsubstituted glucose linked at the C-6 position and a PC group attached primarily to an unsubstituted C-6 position of a beta-(1,3)-linked glucose.  相似文献   

17.
K S Dhugga  P M Ray 《FEBS letters》1991,278(2):283-286
By glycerol gradient centrifugation of a detergent-solubilized plasma membrane fraction from pea tissue, we find a polypeptide of 55 kDa that copurifies with beta-1,3-glucan synthase activity. An antiserum against this polypeptide adsorbs glucan synthase activity and the 55 kDa polypeptide from digitonin-solubilized plasma membrane. These results indicate that the 55 kDa polypeptide is involved in pea beta-1,3-glucan synthase activity.  相似文献   

18.
Beta-1,3-glucans enhance immune reactions such as antitumor, antibacterial, antiviral, anticoagulatory, and wound healing activities. beta-1,3-Glucans have various functions depending on the molecular weight, degree of branching, conformation, water solubility, and intermolecular association. The molecular weight of the soluble glucan was about 15,000 as determined by a high-performance size exclusion chromatography. From the infrared (IR) and 13C NMR analytical data, the purified soluble glucan was found to exclusively consist of beta-D-glucopyranose with 1,3 linkage. We tested the immunestimulating activities of the soluble beta-1,3-glucan extracted from Agrobacterium sp. R259 KCTC 1019 and confirmed the following activities. IFN-gamma and each cytokines were induced in the spleens and thymus of mice treated with soluble beta-1,3-glucan. Adjuvant effect was observed on antibody production. Nitric oxide was synthesized in monocytic cell lines treated with beta-1,3-glucan. The cytotoxic and antitumor effects were observed on various cancer cell lines and ICR mice. These results strongly suggested that this soluble beta-1,3-glucan could be a good candidate for an immune-modulating agent.  相似文献   

19.
Fonzi WA 《Journal of bacteriology》1999,181(22):7070-7079
PHR1 and PHR2 encode putative glycosylphosphatidylinositol-anchored cell surface proteins of the opportunistic fungal pathogen Candida albicans. These proteins are functionally related, and their expression is modulated in relation to the pH of the ambient environment in vitro and in vivo. Deletion of either gene results in a pH-conditional defect in cell morphology and virulence. Multiple sequence alignments demonstrated a distant relationship between the Phr proteins and beta-galactosidases. Based on this alignment, site-directed mutagenesis of the putative active-site residues of Phr1p and Phr2p was conducted and two conserved glutamate residues were shown to be essential for activity. By taking advantage of the pH-conditional expression of the genes, a temporal analysis of cell wall changes was performed following a shift of the mutants from permissive to nonpermissive pH. The mutations did not grossly affect the amount of polysaccharides in the wall but did alter their distribution. The most immediate alteration to occur was a fivefold increase in the rate of cross-linking between beta-1,6-glycosylated mannoproteins and chitin. This increase was followed shortly thereafter by a decline in beta-1,3-glucan-associated beta-1, 6-glucans and, within several generations, a fivefold increase in the chitin content of the walls. The increased accumulation of chitin-linked glucans was not due to a block in subsequent processing as determined by pulse-chase analysis. Rather, the results suggest that the glucans are diverted to chitin linkage due to the inability of the mutants to establish cross-links between beta-1,6- and beta-1,3-glucans. Based on these and previously published results, it is suggested that the Phr proteins process beta-1,3-glucans and make available acceptor sites for the attachment of beta-1,6-glucans.  相似文献   

20.
The role of the lytic enzyme beta-(1,3)-glucanase in cell wall synthesis and its distribution in the mycelium of the fungus Sclerotium rolfsii were studied. Enzyme activity was determined after enzyme extraction with Triton X-100 from a cell wall preparation. Specific zones of immunofluorescence appeared in the hyphal tips, clamp connections, new septa, and lateral branching when a specific antiserum was used with the indirect method of the fluorescent antibody staining. Enzymatic activity in the cell wall preparation was inactivated by diethylpyrocarbonate. However, 69% of the total enzymatic activity was present in a latent form which was not affected by the ester. This result suggests that most of the beta-(1,3)-glucanase was present along the hyphal cell walls in a "masked" form. An active enzyme appeared only in those regions which showed immunofluorescence. The activity of glucan synthetase, an enzyme essential for wall formation, was higher in the branching funus grown on L-threonine-supplemented synthetic medium than in the synthetic medium-grown fungus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号