首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rapid, sensitive and selective LC-MS/MS method was developed and validated for the quantification of aniracetam in human plasma using estazolam as internal standard (IS). Following liquid-liquid extraction, the analytes were separated using a mobile phase of methanol-water (60:40, v/v) on a reverse phase C18 column and analyzed by a triple-quadrupole mass spectrometer in the selected reaction monitoring (SRM) mode using the respective [M+H]+ ions, m/z 220-->135 for aniracetam and m/z 295-->205 for the IS. The assay exhibited a linear dynamic range of 0.2-100 ng/mL for aniracetam in human plasma. The lower limit of quantification (LLOQ) was 0.2 ng/mL with a relative standard deviation of less than 15%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The validated LC-MS/MS method has been successfully applied to study the pharmacokinetics of aniracetam in healthy male Chinese volunteers.  相似文献   

2.
Rimonabant is the first therapeutically relevant cannabinoid antagonist, licensed in Europe for treatment of obesity when a risk factor is associated. The objective of this study was to develop and validate a method for measurement of rimonabant in human plasma and hair using liquid chromatography coupled to mass spectrometry (LC-MS/MS). Rimonabant and AM-251 (internal standard) were extracted from 50muL of plasma or 10mg of hair using diethylether. Chromatography was performed on a 150mmx2.1mm C18 column using a mobile phase constituted of formate buffer/acetonitrile. Rimonabant was ionized by electrospray in positive mode, followed by detection with mass spectrometry. Data were collected either in full-scan MS or in full-scan MS/MS mode, selecting the ion m/z 463.1 for rimonabant and m/z 555.1 for IS. The most intense product ion of rimonabant (m/z 380.9) and IS (m/z 472.8) were used for quantification. Calibration curves covered a range from 2.5 (lower limit of quantification) to 1000.0ng/mL (upper limit of quantification) in plasma and from 2.5 to 1000.0pg/mg in hair. Validation results demonstrated that rimonabant could be accurately and precisely quantified in both matrixes: accuracy and precision were within 85-115% and within 15% of standard deviation, respectively. Stability studies in plasma showed that rimonabant was stable during the assay procedure, but a 30% decrease was observed for one concentration after 3 weeks at -20 degrees C. This simple and robust LC-MS/MS method can be used for measuring rimonabant concentrations in human plasma and hair either in clinical or in forensic toxicology.  相似文献   

3.
The method describes quantification and confirmation of flunixin in equine plasma by liquid chromatography-quadrupole time-of-flight mass spectrometry (LC/Q-TOF/MS/MS). Samples were screened by enzyme-linked immunosorbent assay (ELISA) and only those samples presumptively declared positive were subjected to quantification and confirmation for the presence of flunixin by this method. The method is also readily adaptable to instrumental screening for the analyte. Flunixin was recovered from plasma by liquid-liquid extraction (LLE). The sample was diluted with 2 ml saturated phosphate buffer (pH 3.10) prior to LLE. The dried extract was reconstituted in acetonitrile:water:formic acid (50:50:0.1, v/v/v) and subsequently analyzed on a Q-TOF tandem mass spectrometer (Micromass) operated under electrospray ionization positive ion mode. The concentration of flunixin was determined by the internal standard (IS) calibration method using the peak area ratio with clonixin as the IS. The limits of detection (LOD) and quantification (LOQ) for flunixin in equine plasma were 0.1 and 1 ng/ml, respectively, whereas the limit of confirmation (LOC) was 2.5 ng/ml. The qualifying ions for the identification of flunixin were m/z 297 [M+H](+), 279 (BP), 264, 259, 239 and those for clonixin (IS) were m/z 263 [M+H](+), 245 (BP) and 210. The measurement uncertainty about the result was 8.7%. The method is simple, sensitive, robust and reliably fast in the quantification and confirmation of flunixin in equine plasma. Application of this method will assist racing authorities in the enforcement of tolerance plasma concentration of flunixin in the racehorse on race day.  相似文献   

4.
A rapid, simple and sensitive liquid chromatography/tandem mass spectrometry (LC-MS/MS) assay was developed for the determination of dexamethasone (Dex) and dexamethasone sodium phosphate (Dex SP) in plasma and human cochlear perilymph. After proteins were precipitated with a mixture of acetonitrile and methanol, Dex, Dex SP and flumethasone, the internal standard, were resolved on a C18 column using gradient elution of 5 mM ammonium acetate and methanol. The three compounds were detected using electrospray ionisation in the positive mode. Standard curves were linear over the concentration range 0.5-500 μg/L (r>0.99), bias was <±10%, intra- and inter-day coefficients of variation (imprecision) were <10%, and the limit of quantification was 0.5 μg/L for both Dex and Dex SP. The assay has been used successfully in a clinical pharmacokinetics study of Dex and Dex SP in cochlear perilymph and plasma.  相似文献   

5.
A sensitive and selective method is described for the determination of artemether and its active dihydroartemisinin metabolite in human plasma using artemisinin as internal standard. The method consists of a liquid-liquid extraction with subsequent evaporation of the supernatant to dryness followed by the analysis of the reconstituted sample by liquid chromatography-mass spectrometry (LC-MS) in single ion monitoring mode using atmospheric pressure chemical ionization (APCI) as an interface. Chromatography was performed on a C(18) reversed-phase column using acetonitrile-glacial acetic acid 0.1% (66:34) as a mobile phase. The method was fully validated over a concentration range of 5-200 ng/ml using 0.5 ml of human plasma per assay. Stability assessment was also included. The method was applied to the quantification of artemether and its metabolite in human plasma of healthy volunteers participating in pharmacokinetic drug-drug interaction studies.  相似文献   

6.
A highly sensitive and ultra-fast high performance liquid chromatography- tandem mass spectrometry (LC–MS/MS) assay is developed and validated for the quantification of Lenalidomide in human plasma. Lenalidomide is extracted from human plasma by Liquid- Liquid Extraction by Ethyl Acetate and analyzed using a reversed phase isocratic elution on a XTerra RP18, (4.6 × 50 mM, 5 µm) column. A 0.1% Formic acid: Methanol (10:90% v/v), is used as mobile phase and detection was performed by Triple quadrupole mass spectrometry LC-MS/MS using electrospray ionization in positive mode. Fluconazole is used as the internal standard. The lower limit of quantification is 9.999 ng/mL for Lenalidomide. The calibration curves are consistently accurate and precise over the concentration range of 9.999 to 1010.011 ng/mL in plasma for Lenalidomide. This novel LC–MS/MS method competes with all the regulatory requirements and shows satisfactory accuracy and precision and is sufficiently sensitive for the performance of pharmacokinetic and bioequivalence studies in humans.  相似文献   

7.
A rapid and simple liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay was developed and validated for quantification of cyclizine and its main metabolite norcyclizine in human plasma. Samples were prepared by protein precipitation with acetonitrile and cinnarizine was used as internal standard (recovery >87%). The analytes were eluted from a C8 50 mm×2.0 mm analytical column using a linear gradient of methanol and 0.05% formic acid with a total analysis time of 4 min. Analytes were detected by MS/MS using electrospray ionisation in the positive mode with multiple reactions monitoring (MRM) of the precursor ion/product ion transitions 267.2/167.2 for cyclizine and 253.2/167.2 for norcyclizine. Matrix effects were negligible. Standard curves for cyclizine and norcyclizine were linear (r(2)≥0.996) over the range 2-200 ng/mL, with 2 ng/mL representing the lower limit of quantification. Relative standard deviations were <14% for intra- and inter-day precision and the accuracy was within ±8%. The assay was successfully applied to a clinical study.  相似文献   

8.
A sensitive and rapid LC-MS/MS method was developed and validated for the determination of levamisole in human plasma. The assay was based on liquid-liquid extraction of analytes from human plasma with ethyl ether. Chromatographic separation was carried on an Agilent HC-C(8) column (150 mm × 4.6 mm, 5 μm) at 40°C, with a mobile phase consisting of acetonitrile-10 mM ammonium acetate (70:30, v/v), a flow rate of 0.5 mL/min and a total run time of 6 min. Detection and quantification were performed by mass spectrometry in the multiple reaction monitoring mode with positive electrospray ionization m/z at 205.1→178.2 for levamisole, and m/z 296.1→264.1 for mebendazole (internal standard). The assay was linear over a concentration range of 0.1-30 ng/mL with a lower limit of quantification of 0.1 ng/mL. The coefficient of variation of the assay precision was less than 8.5%. The assay was successfully used to analyze human plasma samples in a pharmacokinetic study where levamisole was administered as a liniment.  相似文献   

9.
A highly sensitive and specific LC-MS method was developed and validated for the quantification of digoxin in human plasma and urine using d5-dihydrodigoxin as internal standard (IS). The assay procedure involved extraction of digoxin and IS from human plasma with chloroform-isopropanol (95:5, v/v). Chromatogrphic separation was achieved on a Spherisorb ODS2 column using a gradient mobile phase with 5 mmol/L ammonium acetate in water with 1% acetic acid and acetonitrile. The mass spectrometer was operated in the selected ion monitoring mode using the respective [M+K](+) ions, m/z 819.4 for digoxin and m/z 826.4 for IS. The method was proved to be accurate and precise at linearity range of 0.12-19.60 ng/mL in plasma with a correlation coefficient (r(2)) of >or=0.9968 and 1.2-196.0 ng/mL in urine. The limit of quantification achieved with this method was 0.12 ng/mL in plasma and 1.2 ng/mL in urine. The intra- and inter-assay precision and accuracy values were found to be within the assay variability limits as per the FDA guidelines. The developed assay method was successfully applied to a pharmacokinetic study in human volunteers following intravenous administration of digoxin.  相似文献   

10.
A multi-residues method using pressurized liquid extraction (PLE) and liquid chromatography combined with mass spectrometry (LC-MS/MS) has been developed for determination of eight glucocorticoids (prednisone, prednisolone, hydrocortisone, methylprednisolone, dexamethasone, betamethasone, beclomethasone, fludrocortisone) in muscle of swine, cattle, and sheep. Parameters affecting PLE extraction including extraction solvent, extraction temperature, extraction pressure and extraction cycles were optimized. The optimized method employed 11 ml extraction cells, hexane-ethyl acetate (50:50, v/v) as extraction solvent, 1500 psi of extraction pressure and 50°C of extraction temperature. The samples were detected by LC-ESI-MS/MS in negative mode with selected reaction monitoring (SRM) mode. The recovery of glucocorticoids spiked at levels of 0.5-6 μg kg(-1) ranged from 70.1% to 103.1%; the between-day relative standard deviations were no more than 9.6%. The limits of quantification were 0.5-2 μg kg(-1) in muscle. The results demonstrated that the method is simple, fast, robust, and suitable for identification and quantification of glucocorticoids residues in foods of animal origin.  相似文献   

11.
A liquid chromatography-mass spectrometry (LC/MS) assay method was developed for the quantification of PSC 833 in rat plasma, using amiodarone as internal standard (IS). Separation was achieved using a C(8) 3.5 microm (2.1 mm x 50 mm) column heated to 60 degrees C with a mobile phase consisting of acetonitrile-ammonium hydroxide 0.2% (90:10 v/v) pumped at a rate of 0.2 mL/min. Detection was accomplished by mass spectrometer using selected ion monitoring (SIM) in positive mode. An excellent linear relationship was present between peak height ratios and rat plasma concentrations of PSC 833 ranging from 10 to 5000 ng/mL (R(2)>0.99). Intra-day and inter-day coefficients of variation (CV%) were less than 15%, and mean error was less than 10% for the concentrations above the limit of quantification. The validated limit of quantification of the assay was 10 ng/mL based on 0.1 mL rat plasma. The method limit of detection, based on an average signal-to-noise (S/N) ratio of 3, was found to be 2.5 ng/mL. The assay was capable of measuring the plasma concentrations of PSC 833 in rats injected with a single dose of 5 mg/kg of the drug. PSC 833 and IS eluted within 4 min, free of interfering peaks. The method was found to be fast, sensitive, and specific for the quantification of PSC 833 in rat plasma.  相似文献   

12.
Direct plasma injection technology coupled with a LC-MS/MS assay provides fast and straightforward method development and greatly reduces the time for the tedious sample preparation procedures. In this work, a simple and sensitive bioanalytical method based on direct plasma injection using a single column high-performance liquid chromatography (HPLC) and tandem mass spectrometry (MS/MS) was developed for direct cocktail analysis of double-pooled mouse plasma samples for the quantitative determination of small molecules. The overall goal was to improve the throughput of the rapid pharmacokinetic (PK) screening process for early drug discovery candidates. Each pooled plasma sample was diluted with working solution containing internal standard and then directly injected into a polymer-coated mixed-function column for sample clean-up, enrichment and chromatographic separation. The apparent on-column recovery of six drug candidates in mouse plasma samples was greater than 90%. The single HPLC column was linked to either an atmospheric pressure chemical ionization (APCI) or electrospray ionization (ESI) source as a part of MS/MS system. The total run cycle time using single column direct injection methods can be achieved within 4 min per sample. The analytical results obtained by the described direct injection methods were comparable with those obtained by semi-automated protein precipitation methods within +/- 15%. The advantages and challenges of using direct single column LC-MS/MS methods with two ionization sources in combination of sample pooling technique are discussed.  相似文献   

13.
To support toxicokinetic assessments, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantification of BMS-790052 in rat, dog, monkey, rabbit and mouse K(2)EDTA plasma. The drug was isolated from buffered samples using ISOLUTE C8 96-well solid phase extraction (SPE) plates. Chromatographic separation was achieved on a Waters Atlantis dC18 analytical column (2.1 mm × 50 mm, 5 μm) with detection accomplished using an API 4000 tandem mass spectrometer in positive ion electrospray and multiple reaction monitoring (MRM) mode. The standard curves, which ranged from 5.00 to 2000 ng/mL for BMS-790052, were fitted to a 1/x(2) weighted linear regression model. The intra-assay precision (%CV) and inter-assay precision (%CV) were within 8.5%, and the assay accuracy (%Dev) was within ±7.1 for rat, dog, monkey, rabbit and mouse K(2)EDTA plasma. This accurate, precise, and selective SPE/LC-MS/MS method has been successfully applied to analyze several thousands of non-clinical study samples.  相似文献   

14.
A simple, sensitive and rapid liquid chromatography/tandem mass spectrometric (LC-MS/MS) method was developed and validated for quantification of chloroquine, an antimalarial drug, in plasma using its structural analogue, piperazine bis chloroquinoline as internal standard (IS). The method is based on simple protein precipitation with methanol followed by a rapid isocratic elution with 10 mM ammonium acetate buffer/methanol (25/75, v/v, pH 4.6) on Chromolith SpeedROD RP-18e reversed phase chromatographic column and subsequent analysis by mass spectrometry in the multiple reaction monitoring mode (MRM). The precursor to product ion transitions of m/z 320.3-->247.2 and m/z 409.1-->205.2 were used to measure the analyte and the IS, respectively. The assay exhibited a linear dynamic range of 2.0-489.1 ng/mL for chloroquine in dog plasma. The limit of detection (LOD) and lower limit of quantification (LLOQ) were 0.4 and 2.0 ng/mL, respectively in 0.05 mL plasma. Acceptable precision and accuracy were obtained for concentrations over the standard curve range of 2.0-489.1 ng/mL. A run time of 2.0 min for a sample made it possible to achieve a throughput of more than 400 plasma samples analyzed per day. The validated method was successfully used to analyze samples of dog plasma during non-clinical study of chloroquine.  相似文献   

15.
Xia YQ  Liu DQ  Bakhtiar R 《Chirality》2002,14(9):742-749
An online sample extraction chiral bioanalytical method was developed and validated for the quantification of terbutaline, a beta2-selective adrenoceptor agonist, spiked into human plasma by using two extraction columns and a chiral stationary phase (CSP) in conjunction with liquid chromatography tandem mass spectrometry (LC-MS/MS). In this method, two Oasis HLB extraction columns were used in parallel for plasma sample purification and a Chirobiotic T CSP was used for enantiomeric separation. Atmospheric pressure chemical ionization MS/MS was employed in multiple reaction monitoring mode for the detection and quantification. Subsequent to the addition of an internal standard solution, the plasma samples were directly injected onto the system for extraction and analysis. This method allowed the use of one of the extraction columns for purification while the other was being equilibrated. Hence, the time required for reconditioning the extraction columns did not contribute to the total analysis time per sample, which resulted in a shorter run time and higher throughput. A lower limit of quantification of 1.0 ng/mL was achieved using only 50 microliter of human plasma. The method was validated with a dynamic range of 1.0-200 ng/mL. The intra- and interday precision was no more than 11% CV and the assay accuracy was between 94-106%.  相似文献   

16.
A simple, reliable and sensitive liquid chromatography-tandem mass spectrometry method (LC-MS/MS) was developed and validated for quantification of N-acetylglucosamine in human plasma. Plasma samples were pretreated with acetonitrile for protein precipitation. The chromatographic separation was performed on Hypersil Silica column (150mmx2mm, 5microm). The deprotonated analyte ion was detected in negative ionization mode by multiple reaction monitoring mode. The mass transition pairs of m/z 220.3-->118.9 and m/z 226.4-->123.2 were used to detect N-acetylglucosamine and internal standard 13C6-N-acetylglucosamine, respectively. The assay exhibited a linear range from 20 to 1280ng/ml for N-acetylglucosamine in human plasma. Acceptable precision and accuracy were obtained for concentrations of the calibration standard and quality control. The validated method was successfully applied to analyze human plasma samples in a pharmacokinetic study.  相似文献   

17.
The clinical development of a sensitizer for photodynamic therapy (PDT) requires the structural identification of the photoproducts and their quantification in biological fluids and tissues. We describe the LC-MS identification of the most important photoproducts of a cationic phthalocyanine sensitizer (RLP068/Cl) and a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the determination of the main photoproduct (the cationic phthalimide derivative 3-[(1,3-dioxo-2,3-dihydro-1H-isoindol-4-yl)oxy]-N,N,N-trimethylbenzenaminium chloride) in rabbit plasma. The tri-deuterated product was used as co-eluting internal standard. The cationic photoproduct was isolated from plasma samples by protein precipitation with perchloric acid in methanol (7%, v/v). HPLC step was performed on a Phenomenex Synergi Hydro-RP column (20 mm x 2.0 mm, 2 microm particles) with a mobile phase of 0.5% (v/v) aqueous TFA/methanol (85:15, v/v). Flow rate was 0.2 mL/min and 40 microL injection were performed. Run time was 10 min. Detection was achieved by means of a Bruker Esquire 3000+ ion trap mass spectrometer equipped with an ESI source working in positive mode. A multiple reaction monitoring method following the transitions 297.1 --> 282.1 for the analyte and 300.1 --> 282.1+285.1 for the internal standard was used. The analytical method was validated over the concentration range 0.46-91.2 ng/mL and lower limits of detection (LLOD) and quantification (LLOQ) respectively of 0.2 and 0.5 ng/mL were found.  相似文献   

18.
A sensitive and specific liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for the quantification of miltefosine is presented. A 250 microL human EDTA plasma aliquot was spiked with miltefosine and extracted by a solid-phase extraction method. Separation was performed on a Gemini C18 column (150 mm x 2.0 mm I.D., 5 microm) using an alkaline eluent. Detection was performed by positive ion electrospray ionization followed by triple-quadrupole mass spectrometry. The assay has been validated for miltefosine from 4 to 2000 ng/mL using 250 microL human EDTA plasma samples. Results from the validation demonstrate that miltefosine can be accurately and precisely quantified in human plasma. At the lowest level, the intra-assay precision was lower than 10.7%, the inter-assay precision was 10.6% and accuracies were between 95.1 and 109%. This assay is successfully used in a clinical pharmacokinetic study with miltefosine.  相似文献   

19.
A confirmatory and quantitative method of liquid chromatography-tandem mass spectrometry (LC-MS/MS) combined with a pressure liquid extraction (PLE) was developed for the determination of 11 benzimidazole and 10 metabolites of albendazole, fenbendazole and mebendazole in the muscles and livers of swine, cattle, sheep and chicken. For sample preparation, we used an automated technique of PLE method. The optimum extraction conditions were obtained using an 11 ml Accelerated Solvent Extraction (ASE) cells, acetonitrile/hexane as the extraction solvent. HPLC analysis was performed on a C18 column with gradient elution using acetonitrile and 5 mmol l(-1) formic ammonium as mobile phase. The analytes were detected in the positive ion multiple reaction monitoring (MRM) mode by the LC-ESI-MS/MS analysis. The recoveries of benzimidazole (BZDs) spiked at the levels of 0.5 μg kg(-1) ranged from 70.1% to 92.7%; the between-day relative standard deviations were no more than 10%. The limits of quantification were 0.02-0.5 μg kg(-1). The optimized method was successfully applied to monitor real samples containing BZDs, demonstrating the method to be simple, fast, robust and suitable for identification and quantification of BZDs residues in animal products.  相似文献   

20.
A sensitive and selective liquid chromatographic-tandem mass spectrometric (LC-MS/MS) method was developed for the determination of serial chiral novel anticholinergic compounds of phencynonate in rat plasma. After a simple protein-precipitation using methanol, the post-treatment samples were separated on a CAPCELL UG120 column with a mobile phase of a mixture of methanol and water (35:65) containing 0.1% formic acid. The serial chiral analytes and internal standard (IS) were all detected by the use of selected reaction monitoring mode (SRM). The method of all serial chiral analytes developed was validated in rat plasma with a daily working range of 0.5-100 ng/ml with correlation coefficient, R(2) > or = 0.99 and a sensitivity of 0.5 ng/ml as lower limit of quantification, respectively. This method was fully validated for the accuracy, precision and stability studies for all serial chiral analytes. The method proved to be accurate and specific, and was applied to the pharmacokinetic study of serial chiral novel anticholinergic compounds of phencynonate in rat plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号