首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
E J Stewart  F Katzen    J Beckwith 《The EMBO journal》1999,18(21):5963-5971
The active-site cysteines of the Escherichia coli periplasmic protein disulfide bond isomerase (DsbC) are kept reduced by the cytoplasmic membrane protein, DsbD. DsbD, in turn, is reduced by cytoplasmic thioredoxin, indicating that DsbD transfers disulfidereducing potential from the cytoplasm to the periplasm. To understand the mechanism of this unusual mode of electron transfer, we have undertaken a genetic analysis of DsbD. In the process, we discovered that the previously suggested start site for the DsbD protein is incorrect. Our results permit the formulation of a model of DsbD membrane topology. Also, we show that six cysteines of DsbD conserved among DsbD homologs are essential for the reduction of DsbC, DsbG and for a reductive pathway leading to c-type cytochrome assembly in the periplasm. Our findings suggest a testable model for the DsbD-dependent transfer of electrons across the membrane, involving a cascade of disulfide bond reduction steps.  相似文献   

2.
Escherichia coli flavorubredoxin (FlRd) belongs to the family of flavodiiron proteins (FDPs), microbial enzymes that are expressed to scavenge nitric oxide (NO) under anaerobic conditions. To degrade NO, FlRd has to be reduced by NADH via the FAD-binding protein flavorubredoxin reductase, thus the kinetics of electron transfer along this pathway was investigated by stopped-flow absorption spectroscopy. We found that NADH, but not NADPH, quickly reduces the FlRd-reductase (k = 5.5 +/- 2.2 x 10(6) M(-1).s(-1) at 5 degrees C), with a limiting rate of 255 +/- 17 s(-1). The reductase in turn quickly reduces the rubredoxin (Rd) center of FlRd, as assessed at 5 degrees C working with the native FlRd enzyme (k = 2.4 +/- 0.1 x 10(6) m(-1).s(-1)) and with its isolated Rd-domain (k approximately 1 x 10(7) M(-1).s(-1)); in both cases the reaction was found to be dependent on pH and ionic strength. In FlRd the fast reduction of the Rd center occurs synchronously with the formation of flavin mononucleotide semiquinone. Our data provide evidence that (a) FlRd-reductase rapidly shuttles electrons between NADH and FlRd, a prerequisite for NO reduction in this detoxification pathway, and (b) the electron accepting site in FlRd, the Rd center, is in very fast redox equilibrium with the flavin mononucleotide.  相似文献   

3.
Disulfide bond formation is a catalyzed process in vivo. In prokaryotes, the oxidation of cysteine pairs is achieved by the transfer of disulfides from the highly oxidizing DsbA/DsbB catalytic machinery to substrate proteins. The oxidizing power utilized by this system comes from the membrane-embedded electron transport system, which utilizes molecular oxygen as a final oxidant. Proofreading of disulfide bond formation is performed by the DsbC/DsbD system, which has the ability to rearrange non-native disulfides to their native configuration. These disulfide isomerization reactions are sustained by a constant supply of reducing power provided by the cytoplasmic thioredoxin system, utilizing NADPH as the ultimate electron source.  相似文献   

4.
Abstract The subcellular distribution of the soluble flavohaemoglobin (HMP) of Escherichia coli has been determined. Cells over-expressing HMP from the cloned hmp gene on a multicopy plasmid were fractionated by osmotic shock and lysozyme treatment. Spectral analysis of subcellular fractions showed the CO-binding haemoprotein to be cytoplasmic. However, Western blotting using antibody raised to purified HMP revealed approximately 30% of the protein to be periplasmic in the over-expressing strain. Western analysis also revealed substantial levels of periplasmic HMP in a strain expressing only chromosomally encoded protein but none in an hmp mutant. The results are discussed in relation to protein function and the similar distribution reported for Vitreoscilla globin.  相似文献   

5.
Katzen F  Beckwith J 《Cell》2000,103(5):769-779
The cytoplasmic membrane protein DsbD transfers electrons from the cytoplasm to the periplasm of E. coli, where its reducing power is used to maintain cysteines in certain proteins in the reduced state. We split DsbD into three structural domains, each containing two essential cysteines. Remarkably, when coexpressed, these truncated proteins restore DsbD function. Utilizing this three piece system, we were able to determine a pathway of the electrons through DsbD. Our findings strongly suggest that the pathway is based on a series of multistep redox reactions that include direct interactions between thioredoxin and DsbD, and between DsbD and its periplasmic substrates. A thioredoxin-fold domain in DsbD appears to have the novel role of intramolecular electron shuttle.  相似文献   

6.
To visualize the latter stages of cell division in live Escherichia coli, we have carried out fluorescence recovery after photobleaching (FRAP) on 121 cells expressing cytoplasmic green fluorescent protein and periplasmic mCherry. Our data show conclusively that the cytoplasm is sealed prior to the periplasm during the division event.  相似文献   

7.
Sacchromyces cerevisiae protein disulfide isomerase (yPDI) was expressed in the E. coli periplasm by using plasmids encoding the OmpA-yPDI-(His)(6) fusion gene under the control of the araBAD, trc, or T7 promoter. The expression levels of yeast PDI under these promoters were compared. Our results showed that yeast PDI expressed into the periplasm could catalyze the formation of disulfide bonds in alkaline phosphatase, restoring the phoA(+) phenotype in dsbA(-) mutants. The yeast PDI was purified from the Escherichia coli periplasm and shown to exhibit catalytic properties comparable to those of the rat enzyme with reduced RNase as substrate. In vivo, coexpression of the yeast PDI increased the yield of bovine pancreatic trypsin inhibitor (BPTI) in E. coli by 2-fold, similar to the effect seen previously with the coexpression of the rat enzyme. However yeast PDI was more effective than rat PDI in facilitating the expression of active tissue plasminogen activator (tPA). These results point to differences in the substrate specificity of various PDI enzymes, at least in the context of the E. coli periplasm.  相似文献   

8.
To understand better the mechanisms of resistance-nodulation-division (RND)-type multidrug efflux pumps, we examined the Escherichia coli AcrD pump, whose typical substrates, aminoglycosides, are not expected to diffuse spontaneously across the lipid bilayer. The hexahistidine-tagged AcrD protein was purified and reconstituted into unilamellar proteoliposomes. Its activity was measured by the proton flux accompanying substrate transport. When the interior of the proteoliposomes was acidified, the addition of aminoglycosides to the external medium stimulated proton efflux and the intravesicular accumulation of radiolabeled gentamicin, suggesting that aminoglycosides can be captured and transported from the external medium in this system (corresponding to cytosol). This activity required the presence of AcrA within the proteoliposomes. Interestingly, the increase in proton efflux also occurred when aminoglycosides were present only in the intravesicular space. This result suggested that AcrD can also capture aminoglycosides from the periplasm to extrude them into the medium in intact cells, acting as a "periplasmic vacuum cleaner."  相似文献   

9.
Anaerobically grown cells of Escherichia coli harboring the plasmid pFRD63 over-produce fumarate reductase, a membrane-bound complex localized in the inner membrane of the cell, where this enzyme represents at least 90% of the total membrane proteins (B. D. Lemire, J. J. Robinson, and J. H. Weiner (1982) J. Bacteriol. 152, 1126-1131). Preparations of inner membrane fractions suspended in 40% sucrose are optically clear, allowing optical spectroscopic measurements. Circular dichroism spectra showed that between pH 6 and 11 the secondary structure of the enzyme is at least 55% in alpha helix and that above pH 11 the structure abruptly changes to a beta-like conformation. The same phenomenon is observed in samples solubilized in the nonionic detergent C12E9. Absorption spectra of the enzyme either membrane bound or solubilized in detergents or exposed to alkaline pH showed that the accessibility of the active site to solvent components is modulated by the interaction of the protein with the membrane. Solubilization of the membrane-bound enzyme with 1% Triton X-100 or C12E9 produced a decrease in ellipticity and in enzymatic activity.  相似文献   

10.
Mutations in Escherichia coli that effect sensitivity to oxygen   总被引:7,自引:2,他引:5       下载免费PDF全文
Fifteen oxygen-sensitive (Oxys) mutants of Escherichia coli were isolated after exposure to UV light. The mutants did not form macroscopic colonies when plated aerobically. They did form macroscopic colonies anaerobically. Oxygen, introduced during log phase, inhibited the growth of liquid cultures. The degree of inhibition was used to separate the mutants into three classes. Class I mutants did not grow after exposure to oxygen. Class II mutants were able to grow, but at a reduced rate and to a reduced final titer, when compared with the wild-type parent. Class III mutants formed filaments in response to oxygen. Genetic experiments indicated that the mutations map to six different chromosomal regions. The results of enzymatic assays indicated that 7 of the 10 class I mutants have low levels of catalase, peroxidase, superoxide dismutase, and respiratory enzymes when compared with the wild-type parent. Mutations in five of the seven class I mutants which have the low enzyme activities mapped within the region 8 to 13.5 min. P1 transduction data indicated that mutations in three of these five mutants, Oxys-6, Oxys-14, and Oxys-17, mapped to 8.4 min. The correlation of low enzyme levels and mapping data suggests that a single gene may regulate several enzymes in response to oxygen. The remaining three class I mutants had wild-type levels of catalase, peroxidase, and superoxide dismutase, but decreased respiratory activity. The class II and III mutants had enzyme activities similar to those of the wild-type parent. Our results demonstrate that mutations in at least six genes can be expressed as oxygen sensitivity. Some of these genes may be involved in respiration or cell division or may regulate the expression of several enzymes.  相似文献   

11.
Hydrogenobacter thermophilus cytochrome c(552) ( Ht cyt c(552)) is a small monoheme protein in the cytochrome c(551) family. Ht cyt c(552) is unique because it is hypothesized to undergo spontaneous cytoplasmic maturation (covalent heme attachment) when expressed in Escherichia coli. This is in contrast to the usual maturation route for bacterial cytochromes c that occurs in the cellular periplasm, where maturation factors direct heme attachment. Here, the expression of Ht cyts c(552) in the periplasm as well as the cytoplasm of E. coli is reported. The products are characterized by absorption, circular dichroism, and NMR spectroscopy as well as mass spectrometry, proteolysis, and denaturation studies. The periplasmic product's properties are found to be indistinguishable from those reported for protein isolated from Ht cells, while the major cytoplasmic product exhibits structural anomalies in the region of the N-terminal helix. These anomalies are shown to result from the retention of the N-terminal methionine in the cytoplasmic product, and not from heme attachment errors. The (1)H NMR chemical shifts of the heme methyls of the oxidized ( S=1/2) expression products display a unique pattern not previously reported for a cytochrome c with histidine-methionine axial ligation, although they are consistent with native-like heme ligation. These results support the hypothesis that proper heme attachment can occur spontaneously in the E. coli cytoplasm for Ht cyt c(552).  相似文献   

12.
The DNA sequence of the Escherichia coli gene encoding thioredoxin reductase has been determined. The predicted protein sequence agrees with an earlier determination of the 17 amino-terminal amino acids and with a fragment of the protein containing the redox-active half-cystines. Similarity between E. coli thioredoxin reductase and other flavoprotein disulfide oxidoreductases is quite limited, but three short segments, two of which are probably involved in FAD and NADPH binding, are highly conserved between thioredoxin reductase, glutathione reductase, dihydrolipoamide dehydrogenase, and mercuric reductase.  相似文献   

13.
The cysteines of the Escherichia coli periplasmic enzyme alkaline phosphatase, which are involved in disulfide bonds in the native enzyme, were found to be fully reduced when the protein was retained in the cytoplasm. Under these circumstances the cysteines remained reduced for at least several minutes after the synthesis of the protein was completed. This contrasted with the normally exported protein, wherein disulfide bonds formed rapidly. Disulfide bond formation accompanied export and processing. The implications of these findings for the inactivity of the enzyme in the cytoplasm are discussed.  相似文献   

14.
Time-resolved polarized flavin fluorescence was used to study the active site dynamics of Escherichia coli glutathione reductase (GR). Special consideration was given to the role of Tyr177, which blocks the access to the NADPH binding-site in the crystal structure of the enzyme. By comparing wild-type GR with the mutant enzymes Y177F and Y177G, a fluorescence lifetime of 7 ps that accounts for approximately 90% of the fluorescence decay could be attributed to quenching by Y177. Based on the temperature invariance for this lifetime, and the very high quenching rate, electron transfer from Y177 to the light-excited isoalloxazine part of flavin adenine dinucleotide (FAD) is proposed as the mechanism of flavin fluorescence quenching. Contrary to the mutant enzymes, wild-type GR shows a rapid fluorescence depolarization. This depolarization process is likely to originate from a transient charge transfer interaction between Y177 and the light-excited FAD, and not from internal mobility of the flavin, as has previously been proposed. Based on the fluorescence lifetime distributions, the mutants Y177F and Y177G have a more flexible protein structure than wild-type GR: in the range of 223 K to 277 K in 80% glycerol, both tyrosine mutants mimic the closely related enzyme dihydrolipoyl dehydrogenase. The fluorescence intensity decays of the GR enzymes can only be explained by the existence of multiple quenching sites in the protein. Although structural fluctuations are likely to contribute to the nonexponential decay and the probability of quenching by a specific site, the concept of conformational substates need not be invoked to explain the heterogeneous fluorescence dynamics.  相似文献   

15.
D Missiakas  F Schwager    S Raina 《The EMBO journal》1995,14(14):3415-3424
Previous studies have established that DsbA and DsbC, periplasmic proteins of Escherichia coli, are two key players involved in disulfide bond formation. A search for extragenic mutations able to compensate for the lack of dsbA function in vivo led us to the identification of a new gene, designated dsbD. Lack of DsbD protein leads to some, but not all, of the phenotypic defects observed with other dsb mutations, such as hypersensitivity to dithiothreitol and to benzylpenicillin. In addition, unlike the rest of the dsb genes, dsbD is essential for bacterial growth at temperatures above 42 degrees C. Cloning of the wild-type gene and sequencing and overexpression of the protein show that dsbD is part of an operon and encodes an inner membrane protein. A 138 amino acid subdomain of the protein was purified and shown to possess an oxido-reductase activity in vitro. Expressing this subdomain in the periplasmic space helped restore the phenotypic defects associated with a dsbD null mutation. Interestingly, this domain shares 45% identity with the portion of the eukaryotic protein disulfide isomerase carrying the active site. We further show that in dsbD mutant bacteria the dithiol active sites of DsbA and DsbC proteins are mostly oxidized, as compared with wild-type bacteria. Our results argue that DsbD generates a reducing source in the periplasm, which is required for maintaining proper redox conditions. The finding that overexpression of DsbD leads to a Dsb- phenotype, very similar to that exhibited by dsbA null mutants, is in good agreement with such a model.  相似文献   

16.
17.
Quinol-fumarate reductase (QFR) from Escherichia coli is a membrane-bound four-subunit respiratory protein that shares many physical and catalytic properties with succinate-quinone oxidoreductase (EC 1.3.99.1) commonly referred to as Complex II. The E. coli QFR has been overexpressed using plasmid vectors so that more than 50% of the cytoplasmic membrane fraction is composed of the four-subunit enzyme complex. The growth characteristics required for optimal levels of expression with minimal degradation by host cell proteases and oxidation factors were determined for the strains harboring the recombinant plasmid. The enzyme is extracted from the enriched membrane fraction using the nonionic detergent Thesit (polyoxyethylene(9)dodecyl ether) in a monodisperse form and then purified by a combination of anion-exchange, perfusion, and gel filtration chromatography. The purified enzyme is highly active and contains all types of redox cofactors expected to be associated with the enzyme. Crystallization screening of the purified QFR by vapor diffusion resulted in the formation of crystals within 24 h using a sodium citrate buffer and polyethylene glycol precipitant. The crystals contain the complete four-subunit QFR complex, diffract to 3.3 A resolution, and were found to be in space group P2(1)2(1)2(1) with unit cell dimensions a = 96.6 A, b = 138.1 A, and c = 275.3 A. The purification and crystallization procedures are highly reproducible and the general procedure may prove useful for Complex IIs from other sources.  相似文献   

18.
Fumarate reductase has been purified 100-fold to 95% homogeneity from the cytoplasmic membrane of Escherichia coli, grown anaerobically on a defined medium containing glycerol plus fumarate. Optimal solubilization of total membrane protein and fumarate reductase activity occurred with nonionic detergents having a hydrophobic-lipophilic balance (HLB) number near 13 and we routinely solubilized the enzyme with Triton X-100 (HLB number = 13.5). Membrane enzyme extracts were fractionated by hydrophobic-exchange chromatography on phenyl Sepharose CL-4B to yield purified enzyme. The enzyme whether membrane bound, in Triton extracts, or purified, had an apparent Km near 0.42 mM. Two peptides with molecular weights of 70 000 and 24 000, predent in 1:1 molar ratios, were identified by sodium dodecyl sulfate polyacrylamide slab-gel electrophoresis to coincide with enzyme activity. A minimal native molecular weight of 100 000 was calculated for fumarate reductase by Stephacryl S-200 gel filtration in the presence of sodium cholate. This would indicate that the enzyme is a dimer. The purified enzyme has low, but measurable, succinate dehydrogenase activity.  相似文献   

19.
This is the first report of a poly-3-hydroxybutyrate (PHB) synthase in Escherichiacoli. The enzyme was isolated from the periplasm using ammonium sulfate fractionation, hydrophobic, and size-exclusion chromatography and identified by LC/MS/MS as YdcS, a component of a putative ABC transporter. Green Fluorescent Protein-tagged ydcS, purified by 2D native gel electrophoresis, also exhibited PHB synthase activity. Optimal conditions for enzyme activity were 37 °C, pH 6.8-7.5, 100 mM KCl. Km was 0.14 mM and Vmax was 18.7 nmol/mg protein/min. The periplasms of deletion mutants displayed <25% of the activity of the parent strain. Deletion mutants exhibited ∼25% less growth in M9 medium, glucose, and contained ∼30% less PHB complexed to proteins (cPHB) in the outer membranes, but the same concentration of chloroform-extractable PHB as wild-type cells. The primary sequence of YdcS suggests it may belong to the α-/β-hydrolase superfamily which includes polyhydroxybutyrate (PHB) synthases, lipases, and esterases.  相似文献   

20.
The membrane protein DsbB from Escherichia coli is essential for disulfide bond formation and catalyses the oxidation of the periplasmic dithiol oxidase DsbA by ubiquinone. DsbB contains two catalytic disulfide bonds, Cys41-Cys44 and Cys104-Cys130. We show that DsbB directly oxidizes one molar equivalent of DsbA in the absence of ubiquinone via disulfide exchange with the 104-130 disulfide bond, with a rate constant of 2.7 x 10 M(-1) x s(-1). This reaction occurs although the 104-130 disulfide is less oxidizing than the catalytic disulfide bond of DsbA (E(o)' = -186 and -122 mV, respectively). This is because the 41-44 disulfide, which is only accessible to ubiquinone but not to DsbA, is the most oxidizing disulfide bond in a protein described so far, with a redox potential of -69 mV. Rapid intramolecular disulfide exchange in partially reduced DsbB converts the enzyme into a state in which Cys41 and Cys44 are reduced and thus accessible for reoxidation by ubiquinone. This demonstrates that the high catalytic efficiency of DsbB results from the extreme intrinsic oxidative force of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号