首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Binding of formylmethionyl tRNA and ribosomes to double stranded RNA has been obtained under conditions identical to those required for initiation complex formation with single stranded RNA. While natural double stranded RNAs from Penicillium chrysogenum virus and Penicillium stoloniferum virus were efficient in forming initiation complexes, the synthetic polynucleotide poly(I).poly (C) was inactive. This suggests that ribosomes can recognize initiation sequences even if these are present in base-paired form.  相似文献   

2.
3.
Atomic force microscopy imaging of double stranded DNA and RNA.   总被引:12,自引:0,他引:12  
A procedure for imaging long DNA and double stranded RNA (dsRNA) molecules using Atomic Force Microscopy (AFM) is described. Stable binding of double stranded DNA molecules to the flat mica surface is achieved by chemical modification of freshly cleaved mica under mild conditions with 3-aminopropyltriethoxy silane. We have obtained striking images of intact lambda DNA, Hind III restriction fragments of lambda DNA and dsRNA from reovirus. These images are stable under repeated scanning and measured contour lengths are accurate to within a few percent. This procedure leads to strong DNA attachment, allowing imaging under water. The widths of the DNA images lie in the range of 20 to 80nm for data obtained in air with commercially available probes. The work demonstrates that AFM is now a routine tool for simple measurements such as a length distribution. Improvement of substrate and sample preparation methods are needed to achieve yet higher resolution.  相似文献   

4.
5.
The plant alkaloid aristololactam-β-d-glucoside and the anticancer chemotherapy drug daunomycin are two sugar bearing DNA binding antibiotics. The binding of these molecules to three double stranded ribonucleic acids, poly(A)·poly(U), poly(I)·poly(C) and poly(C)·poly(G), was studied using various biophysical techniques. Absorbance and fluorescence studies revealed that these molecules bound non-cooperatively to these ds RNAs with the binding affinities of the order 10(6) for daunomycin and 10(5) M(-1) for aristololactam-β-d-glucoside. Fluorescence quenching and viscosity studies gave evidence for intercalative binding. The binding enhanced the melting temperature of poly(A)·poly(U) and poly(I)·poly(C) and the binding affinity values evaluated from the melting data were in agreement with that obtained from other techniques. Circular dichroism results suggested minor conformational perturbations of the RNA structures. The binding was characterized by negative enthalpy and positive entropy changes and the affinity constants derived from calorimetry were in agreement with that obtained from spectroscopic data. Daunomycin bound all the three RNAs stronger than aristololactam-β-d-glucoside and the binding affinity varied as poly(A)·poly(U) > poly(I)·poly(C) > poly(C)·poly(G). The temperature dependence of the enthalpy changes yielded negative values of heat capacity changes for the complexation suggesting substantial hydrophobic contribution to the binding process. Furthermore, an enthalpy-entropy compensation behavior was also seen in all systems. These results provide new insights into binding of these small molecule drugs to double stranded RNA sequences.  相似文献   

6.

Background

A variety of synthetic carriers, such as cationic polymers and lipids, have been used as nonviral carriers for small interfering RNA (siRNA) delivery. Although siRNA polyplexes and lipoplexes exhibited good gene silencing efficiencies, they often showed serious cytotoxicities, which are not useful for clinical applications. A double‐stranded RNA binding cellular protein with highly specific siRNA binding property and noncytotoxicity was used for siRNA delivery.

Methods

A double‐stranded RNA binding domain (dsRBD) of human double‐stranded RNA activated protein kinase R was genetically produced and utilized to complex siRNA for intracellular delivery. For characterization of the siRNA/dsRBD complexes, decomplexation assay and RNase protection assay were performed. Cytotoxicity and target gene inhibition ability were also examined using human carcinoma cell lines.

Results

The recombinantly produced polypeptide dsRBD exhibited its inherent binding activity for siRNA without sequence specificity, and the siRNA/dsRBD complexes protected siRNA from degradation by ribonucleases. Green fluorescent protein (GFP) siRNA/dsRBD complexes showed prominent down‐regulation of a target GFP gene, when an endosomal escape function was supplemented by addition of a fusogenic peptide, KALA, in the formulation.

Conclusions

The results suggest that dsRBD‐based protein carriers could be successfully applied for a wide range of therapeutic siRNAs for intracellular gene inhibition without showing any cytotoxicity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
The interaction of the protoberberine alkaloid palmatine with single and double stranded structures of poly(A) was studied by various biophysical techniques. Comparative binding studies were also performed with double stranded DNA, t-RNA, poly(C)·poly(G), poly(U) and poly(C). The results of competition dialysis, fluorescence, and absorption spectral studies converge to reveal the molecular aspects of the strong and specific binding of palmatine to single stranded poly(A). The binding affinity of palmatine to natural DNA, t-RNA and double stranded poly(A) was weaker while no binding was apparent with single stranded poly(U), poly(C) and double stranded poly(C)·poly(G). The strong affinity of the alkaloid to single stranded poly(A) in comparison to the double stranded structure was also revealed from circular dichroic and viscometric studies. The effect of [Na+] ion concentration on the binding process revealed the significant role of electrostatic forces in the complexation. The presence of bound alkaloid also remarkably affected denaturation–renaturation of stacked helical poly(A). The energetics of the strong binding to poly(A) was studied from thermodynamic estimation from van Hoff’ analysis of the temperature dependent binding constants and ultra sensitive isothermal titration calorimertry, both suggesting the binding to be exothermic and enthalpy driven. This study provides detailed insight into the binding specificity of the natural alkaloid to single stranded poly(A) over several other single and double stranded nucleic acid structures suggesting its potential as a lead compound for RNA based drug targeting.  相似文献   

8.
Antibodies raised in rabbits against deoxyguanylate and deoxycytidylate bind to 3H-lambda double stranded DNA and the binding is base specific. The concentrations of antibody populations that bind to double stranded DNA are much less than those binding to denatured DNA. Due to their low concentrations, these antibodies were not detected in earlier studies. These antibodies are expected to be useful to probe the conformational flexibilities of double stranded DNAs.  相似文献   

9.
A northwestern screen of a CHO-K1 cell line cDNA library with radiolabelled HIV-1 TAR RNA identified a novel TAR RNA interacting protein, TRIP. The human trip cDNA was also cloned and its expression is induced by phorbol esters. The N-terminus of TRIP shows high homology to the coiled coil domain of FLAP, a protein which binds the leucine-rich repeat (LRR) of Flightless I (FLI) and the interaction of TRIP with the FLI LRR has been confirmed in vitro . TRIP does not bind single stranded DNA or RNA significantly and binds double stranded DNA weakly. In contrast, TRIP binds double stranded RNA with high affinity and two molecules of TRIP bind the TAR stem. The RNA binding domain has been identified and encompasses a lysine-rich motif. A TRIP-GFP fusion is localised in the cytoplasm and excluded from the nucleus. FLI has a C-terminal gelsolin-like domain which binds actin and therefore the association of TRIP with the FLI LRR may provide a link between the actin cytoskeleton and RNA in mammalian cells.  相似文献   

10.
11.
12.
Recognition of double stranded ribonucleic acid is a critical event in many biological pathways such as trafficking, editing and maturation of mRNA, interferon antiviral response and RNA interference. In the context of probing double stranded RNA binding small molecules, the interaction of the antitumor protoberberine alkaloid coralyne with double stranded poly(A) has been studied by various biophysical techniques. Typical hypochromic and bathochromic shifts in the absorption spectrum and appreciable quenching of the intrinsic fluorescence of coralyne indicated the strong affinity of coralyne to poly(A). The corresponding intrinsic binding constant evaluated from Scatchard analysis was in the order of 10(5) M(-1). The strong binding was further characterized by significant polarization of the alkaloid fluorescence and stabilization of poly(A) helix against thermal strand separation. The binding process was manifested by remarkable perturbation of the intrinsic circular dichroic spectrum of poly(A) with concomitant generation of optical activity in the bound alkaloid molecules that are otherwise achiral. Job plot analysis showed the binding stoichiometry of the interaction process to be two base pairs per alkaloid molecule. The energetics of the strong interaction was studied by isothermal titration and differential scanning calorimetric techniques that suggested the binding to be exothermic and favoured by both negative enthalpy and positive entropy changes. All these results, together with the Stern-Volmer quenching experiment in fluorescence, revealed the molecular details of the intercalation of coralyne into poly(A) duplex leading to its potential use as an agent in gene regulation in eukaryotic cells.  相似文献   

13.
Large enhancement in the luminescence intensity of the Delta- and Lambda-Ru(phenanthroline)(2)dipyrido[3,2-a:2',3'-c]phenazine](2+) ([Ru(phen)(2)DPPZ](2+)) complexes upon their association with single stranded poly(dA) and poly(dT) is reported in this work. As the mixing ratio ([[Ru(phen)(2)DPPZ](2+)]/[DNA base]) increases, the luminescence intensity increase in a sigmoidal manner, indicating that the enhancement involves some cooperativity. At a high mixing ratio, the luminescence properties are affected by the nature of the DNA bases and not by the absolute configuration of the [Ru(phen)(2)DPPZ](2+) complex, indicating that the single stranded poly(dA) and poly(dT) do not recognize the configuration of the metal complex. In the case of the Lambda-[Ru(phen)(2)DPPZ](2+)-poly(dT) complex, the manner of the enhancement is somewhat different from the other Ru(II) complex-polynucelotide combinations: the luminescence intensity reached a maximum at an intermediate mixing ratio of 0.32, and gradually decreased as the mixing ratio increased. In contrast to other complexes at high mixing ratios, an upward bending curve was found in the Stern-Volmer plot, which indicates that the micro-environment of the Lambda-[Ru(phen)(2)DPPZ](2+) is heterogeneous. In the Delta-[Ru(phen)(2)DPPZ](2+)-poly(dT) complex case, formation of this highly luminescent species at an intermediate mixing ratio is far less effective.  相似文献   

14.
A Aharoni  N Baran    H Manor 《Nucleic acids research》1993,21(22):5221-5228
A protein which selectively binds d(GA)n and d(GT)n sequence repeats in single stranded DNA has been identified in human fibroblasts. This protein, designated PGB, has been purified at least 500-fold by ammonium sulfate precipitation followed by DEAE-Sepharose column chromatography and affinity chromatography in a column of d(GA)-Sepharose. Electrophoretic mobility shift assays revealed that the PGB protein bound most avidly d(GA)n and d(GT)n tracts of n > 5. It also bound other G-rich DNA sequence repeats, including dGn tracts, with lower affinities. It did not manifest significant binding affinities to single stranded M13 DNA, or to the homopolynucleotides poly dA, poly dC and poly dT, or to various DNA sequence repeats which do not contain G residues, such as d(A-C)n and d(TC)n. It did not bind double stranded d(T-C)n.d(GA)n tracts or other double stranded DNA sequences. In glycerol gradient centrifugation assays the d(GA)n- and the d(GT)n-binding activities cosedimented as a homogeneous protein species having an S20,w = 9.4 +/- 0.7 and an estimated native molecular weight of 190,000 +/- 7,000. UV crosslinking assays revealed that the protein contains 33.6 +/- 2.1 kd subunits which bind d(GA)n and d(GT)n sequences. However, SDS-polyacrylamide gel electrophoresis of the purified protein followed by silver staining indicated that it may also contain other subunits that do not contact the DNA. It is proposed that binding of the PGB protein to single stranded d(GA)n or d(GT)n tracts in double stranded topologically restricted DNA may stimulate strand separation and formation of triple helices or other unusual DNA structures.  相似文献   

15.
Alkaline titrations of different samples of poly(dG).poly(dC) and of the constituent homopolymers poly(dG) and poly(dC) have been performed in 0.15 M NaCl and their CD spectra followed. Sample I contained a slight excess of poly(dC) (52% C: 48% G) and showed a single reversible transition (pK = 11.9) due to the dissociation of double stranded poly(dG).poly(dC). Sample II, containing an excess of poly(dG) (43% C: 57% G), showed two transitions (pK1 = 11.4, PK2 = 11.9) the first one being only partially reversible. Examination of the CD spectra along the alkaline titrations indicated the presence of another hydrogen-bonded complex of higher G content. Mixing curves performed at pH 8 have confirmed the presence of a 2G: 1C complex, besides the double stranded complex. It can be formed in amounts up to 30% by mixing the two homopolymers, alkali treatment and heating. The CD spectra of the two complexes have been computed from the CD data of the mixing curves. This permitted the determination of the concentrations of both complexes and homopolymers in all samples. The ratio of triple to double stranded complex is not only dependent on the G/C ratio of the sample, but also a function of the previous physico-chemical conditions. These results explain the variability of many properties of different poly(dG).poly(dC) samples observed by other workers.  相似文献   

16.
Rehman MT  Dey P  Hassan MI  Ahmad F  Batra JK 《PloS one》2011,6(3):e17159
Human pancreatic ribonuclease (HPR), a member of RNase A superfamily, has a high activity on double stranded (ds) RNA. By virtue of this activity HPR appears to be involved in the host-defense against pathogenic viruses. To delineate the mechanism of dsRNA cleavage by HPR, we have investigated the role of glutamine 28 and arginine 39 of HPR in its activity on dsRNA. A non-basic residue glycine 38, earlier shown to be important for dsRNA cleavage by HPR was also included in the study in the context of glutamine 28 and arginine 39. Nine variants of HPR respectively containing Q28A, Q28L, R39A, G38D, Q28A/R39A, Q28L/R39A, Q28A/G38D, R39A/G38D and Q28A/G38D/R39A mutations were generated and functionally characterized. The far-UV CD-spectral analysis revealed all variants, except R39A, to have structures similar to that of HPR. The catalytic activity of all HPR variants on single stranded RNA substrate was similar to that of HPR, whereas on dsRNA, the catalytic efficiency of all single residue variants, except for the Q28L, was significantly reduced. The dsRNA cleavage activity of R39A/G38D and Q28A/G38D/R39A variants was most drastically reduced to 4% of that of HPR. The variants having reduced dsRNA cleavage activity also had reduction in their dsDNA melting activity and thermal stability. Our results indicate that in HPR both glutamine 28 and arginine 39 are important for the cleavage of dsRNA. Although these residues are not directly involved in catalysis, both arginine 39 and glutamine 28 appear to be facilitating a productive substrate-enzyme interaction during the dsRNA cleavage by HPR.  相似文献   

17.
Interaction of histone H 1 and models simulating histone chains was followed by monitoring the melting curves of supernatants after the sedimentation of aggregated complexes. In a mixture of two DNAs the histones reacted selectively with (A+T)-rich and non-methylated DNA, respectively. H 1 and (Ala-Lys-Pro)n also interacted preferentially with DNA in a mixture with double stranded RNA whereas (Lys30,Ala70)n did not show any selectivity. (G+C)-rich DNA in complexes showed CD spectra the intensity of which decreased with increasing DNA methylation to values comparable with these of complexes of (A+T)-rich DNA. In complexed with double stranded RNA only the polymer (Lys30,Ala70) displayed CD pattern similar to spectra of complexes with DNA. It was concluded that formation and structure of complexes depend selectively on the DNA conformation and base composition.  相似文献   

18.
A detailed investigation on the interaction of two benzophenanthridine alkaloids, sanguinarine (SGR) and chelerythrine (CHL), with the double-stranded (ds), heat-denatured (hd), and single-stranded (ss) DNA was performed by spectroscopy and calorimetry techniques. Binding to the three DNA conformations leads to quenching of fluorescence of SGR and enhancement in the fluorescence of CHL. The binding was cooperative for both of the alkaloids with all the three DNA conformations. The binding constant values of both alkaloids with the ds DNA were in the order of 106 M?1; binding was weak with hd and much weaker to the ss DNA. The fluorescence emission of the alkaloid molecules bound to the ds and hd DNAs was quenched much less compared to those bound to the ss DNA based on competition with the anionic quencher KI. For both double stranded and heat denatured structures the emission of the bound alkaloid molecules was polarized significantly and strong energy transfer from the DNA bases to the alkaloid molecules occurred. Intercalation of SGR and CHL to ds, hd, and ss DNA was proved from these fluorescence results. Calorimetric studies suggested that the binding to all DNA conformations was both enthalpy and entropy favored. Both the alkaloids preferred double-helical regions for binding, but SGR was a stronger binder than CHL to all the three DNA structures.  相似文献   

19.
Abstract

A procedure for imaging long DNA and double stranded RNA (dsRNA) molecules using Atomic Force Microscopy (AFM) is described. Stable binding of double stranded DNA molecules to the flat mica surface is achieved by chemical modification of freshly cleaved mica under mild conditions with 3-aminopropyltriethoxy silane. We have obtained striking images of intact lambda DNA, Hind III restriction fragments of lambda DNA and dsRNA from reovirus. These images are stable under repeated scanning and measured contour lengths are accurate to within a few percent. This procedure leads to strong DNA attachment, allowing imaging under water. The widths of the DNA images lie in the range of 20 to 80nm for data obtained in air with commercially available probes. The work demonstrates that AFM is now a routine tool for simple measurements such as a length distribution. Improvement of substrate and sample preparation methods are needed to achieve yet higher resolution.  相似文献   

20.
The interactions of five bis(bipyridyl) Ru(II) complexes of pteridinyl-phenanthroline ligands with calf thymus DNA have been studied. The pteridinyl extensions were selected to provide hydrogen-bonding patterns complementary to the purine and pyrimidine bases of DNA and RNA. The study includes three new complexes [Ru(bpy)(2)(L-pterin)](2+), [Ru(bpy)(2)(L-amino)](2+), and [Ru(bpy)(2)(L-diamino)](2+) (bpy is 2,2'-bipyridine and L-pterin, L-amino, and L-diamino are phenanthroline fused to pterin, 4-aminopteridine, and 2,4-diaminopteridine), two previously reported complexes [Ru(bpy)(2)(L-allox)](2+) and [Ru(bpy)(2)(L-Me(2)allox)](2+) (L-allox and L-Me(2)allox are phenanthroline fused to alloxazine and 1,3-dimethyalloxazine), the well-known DNA intercalator [Ru(bpy)(2)(dppz)](2+) (dppz is dipyridophenazine), and the negative control [Ru(bpy)(3)](2+). Reported are the syntheses of the three new Ru-pteridinyl complexes and the results of calf thymus DNA binding experiments as probed by absorption and fluorescence spectroscopy, viscometry, and thermal denaturation titrations. All Ru-pteridine complexes bind to DNA via an intercalative mode of comparable strength. Two of these four complexes-[Ru(bpy)(2)(L-pterin)](2+) and [Ru(bpy)(2)(L-allox)](2+)-exhibit biphasic DNA melting curves interpreted as reflecting exceptionally stable surface binding. Three new complexes-[Ru(bpy)(2)(L-diamino)](2+), [Ru(bpy)(2)(L-amino)](2) and [Ru(bpy)(2)(L-pterin)](2+)-behave as DNA molecular "light switches."  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号