首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
We tested the hypothesis that a shift to carbohydrate diet after prolonged adaptation to fat diet would lead to decreased glucose uptake and impaired muscle glycogen breakdown during exercise compared with ingestion of a carbohydrate diet all along. We studied 13 untrained men; 7 consumed a high-fat (Fat-CHO; 62% fat, 21% carbohydrate) and 6 a high-carbohydrate diet (CHO; 20% fat, 65% carbohydrate) for 7 wk, and thereafter both groups consumed the carbohydrate diet for an eighth week. Training was performed throughout. After 8 wk, during 60 min of exercise (71 +/- 1% pretraining maximal oxygen uptake) average leg glucose uptake (1.00 +/- 0.07 vs. 1.55 +/- 0.21 mmol/min) was lower (P < 0.05) in Fat-CHO than in CHO. The rate of muscle glycogen breakdown was similar (4.4 +/- 0.5 vs. 4.2 +/- 0.7 mmol. min(-1). kg dry wt(-1)) despite a significantly higher preexercise glycogen concentration (872 +/- 59 vs. 688 +/- 43 mmol/kg dry wt) in Fat-CHO than in CHO. In conclusion, shift to carbohydrate diet after prolonged adaptation to fat diet and training causes increased resting muscle glycogen levels but impaired leg glucose uptake and similar muscle glycogen breakdown, despite higher resting levels, compared with when the carbohydrate diet is consumed throughout training.  相似文献   

2.
Frog skeletal muscle mainly utilizes the substrates glucose and lactate for energy metabolism. The goal of this study was to determine the effect of insulin on the uptake and metabolic fate of lactate and glucose at rest in skeletal muscle of the American bullfrog, Lithobates catesbeiana, under varying temperature regimens. We hypothesize that lactate and glucose metabolic pathways will respond differently to the presence of insulin in cold versus warm acclimated frog tissues, suggesting an interaction between temperature and metabolism under varying environmental conditions. We employed radiolabeled tracer techniques to measure in vitro uptake, oxidation, and incorporation of glucose and lactate into glycogen by isolated muscles from bullfrogs acclimated to 5 °C (cold) or 25 °C (warm). Isolated bundles from Sartorius muscles were incubated at 5 °C, 15 °C, or 25 °C, and in the presence and absence of 0.05 IU/mL bovine insulin. Insulin treatment in the warm acclimated and incubated frogs resulted in an increase in glucose incorporation into glycogen, and an increase in intracellular [glucose] of 0.5 μmol/g (P<0.05). Under the same conditions lactate incorporation into glycogen was reduced (P<0.05) in insulin-treated muscle. When compared to the warm treatment group, cold acclimation and incubation resulted in increased rates of glucose oxidation and glycogen synthesis, and a reduction in free intracellular glucose levels (P<0.05). When muscles from either acclimation group were incubated at an intermediate temperature of 15 °C, insulin's effect on substrate metabolism was attenuated or even reversed. Therefore, a significant interaction between insulin and acclimation condition in controlling skeletal muscle metabolism appears to exist. Our findings further suggest that one of insulin's actions in frog muscle is to increase glucose incorporation into glycogen, and to reduce reliance on lactate as the primary metabolic fuel.  相似文献   

3.
During early lactation, high-yielding dairy cows cannot consume enough feed to meet nutrient requirements. As a consequence, animals drop into negative energy balance and mobilize body reserves including muscle protein and glycogen for milk production, direct oxidation, and hepatic gluconeogenesis. To examine which muscle metabolic processes contribute to the adaptation during early lactation, six German Holstein cows were blood sampled and muscle biopsied throughout the periparturient period. From pregnancy to lactation, the free plasma amino acid pattern imbalanced and plasma glucose decreased. Several muscle amino acids, as well as total muscle protein, fat, and glycogen, and the expression of glucose transporter-4 were reduced within the first 4 weeks of lactation. The 2-DE and MALDI-TOF-MS analysis identified 43 differentially expressed muscle protein spots throughout the periparturient period. In early lactation, expression of cytoskeletal proteins and enzymes involved in glycogen synthesis and in the TCA cycle was decreased, whereas proteins related to glycolysis, fatty acid degradation, lactate, and ATP production were increased. On the basis of these results, we propose a model in which the muscle breakdown in early lactation provides substrates for milk production by a decoupled Cori cycle favoring hepatic gluconeogenesis and by interfering with feed intake signaling.  相似文献   

4.
The influence of supranormal compared with normal hepatic glycogen levels on hepatic glucose production (Ra) during exercise was investigated in chronically catheterized rats. Supranormal hepatic glycogen levels were obtained by a 24-h fast-24-h refeeding regimen. During treadmill running for 35 min at a speed of 21 m/min, Ra and plasma glucose increased more (P less than 0.05) and liver glucogen breakdown was larger in fasted-refed compared with control rats, although the stimuli for Ra were higher in control rats, the plasma concentrations of insulin and glucose being lower (P less than 0.05) in control compared with fasted-refed rats. Also, plasma concentrations of glucagon and both catecholamines tended to be higher and muscle glycogenolysis lower in control compared with fasted-refed rats. Lipid metabolism was similar in the two groups. The results indicate that hepatic glycogenolysis during exercise is directly related to hepatic glycogen content. The smaller endocrine glycogenolytic signal in face of higher plasma glucose concentrations in fasted-refed compared with control rats is indicative of metabolic feedback control of glucose mobilization during exercise. However, the higher exercise-induced increase in Ra, plasma glucose, and liver glycogen breakdown in fasted-refed compared with control rats indicates that metabolic feedback mechanisms are not able to accurately match Ra to the metabolic needs of working muscles.  相似文献   

5.
1. The metabolism of [U-(14)C]glucose in perfused resting and contracting diaphragm muscle from normal rats and rats made diabetic with streptozotocin was studied in the presence and absence of insulin. 2. The incorporation of [U-(14)C]-glucose into glycogen and oligosaccharides was stimulated by insulin under all experimental conditions studied. 3. In the normal perfused resting diaphragm muscle the incorporation of radioactivity from [(14)C]glucose into lactate and CO(2) was not affected by insulin. 4. Periodic contractions, induced by electrical stimulation of the perfused diaphragm muscle in the absence of insulin, caused an increased incorporation of (14)C into glycogen and hexose phosphate esters, whereas incorporation of (14)C into lactate was greatly decreased. Production of (14)CO(2) in the contracting muscle was not significantly different from that in resting muscle. Addition of insulin to the perfusion liquid caused a further increase in formation of [(14)C]-glycogen in contracting muscle to values reached in the resting muscle in the presence of insulin. Formation of [(14)C]lactate was also stimulated by insulin, to values close to those found in the resting muscle in the presence of insulin. 5. In the diabetic resting muscle the rate of glucose metabolism was very low in the absence of insulin. Insulin increased formation of [(14)C]glycogen to the value found in normal muscle in the absence of insulin. Production of (14)CO(2) and formation of [(14)C]hexose phosphate remained unchanged. 6. In the diabetic contracting muscle production of (14)CO(2) was increased to values approaching those found in normal contracting muscle. Formation of [(14)C]lactate and [(14)C]glycogen was also increased by contraction, to normal values. Only traces of [(14)C]hexose phosphate were detectable. Addition of insulin to the perfusion medium stimulated formation of [(14)C]glycogen, to values found in normal contracting muscle. Production of [(14)C]hexose phosphate was stimulated by insulin, to approximately the values found in the normal contracting muscle. Production of (14)CO(2) and [(14)C]lactate, however, was not significantly affected by insulin. 7. These results indicate that the defects of glucose metabolism observed in perfused resting diabetic diaphragm muscle can be partially corrected by contraction, and in the presence of insulin the contracting diabetic muscle has a completely normal pattern of glycogen synthesis and lactate production, but CO(2) production remains impaired.  相似文献   

6.
Breakdown of plasma-membrane sphingomyelin caused by TNF-alpha is known to inhibit glucose metabolism and insulin signalling in muscle and fat cells. In hepatocytes, conversion of glucose to glycogen is strongly activated by amino acid-induced cell swelling. In order to find out whether breakdown of plasma-membrane sphingomyelin also inhibits this insulin-independent process, the effect of addition of sphingomyelinase was studied in rat hepatocytes. Sphingomyelinase (but not ceramide) inhibited glycogen synthesis, caused cell shrinkage, decreased the activity of glycogen synthase a, but had no effect on phosphorylase a. Cell integrity was not affected by sphingomyelinase addition as gluconeogenesis and the intracellular concentration of ATP were unchanged. As a control, glycogen synthesis was studied in HepG2 cells. In these cells, the basal rate of glycogen production was high, could not be stimulated by amino acids, nor be inhibited by sphingomyelinase. Regarding the mechanism responsible for the inhibition of glycogen synthase a, sphingomyelinase did not affect amino acid-induced, PtdIns 3-kinase-dependent, phosphorylation of p70S6 kinase, but caused an increase in intracellular chloride, which is known to inhibit glycogen synthase phosphatase. It is concluded that the decrease in cell volume, following the breakdown of sphingomyelin in the plasma membrane of the hepatocyte, may contribute to the abnormal metabolism of glucose when TNF-alpha levels are high.  相似文献   

7.
Summary Glycogen synthetase (uridine diphosphate glucose-glycogen glucosyl transferase) was studied in different organs by a histoautoradiographic method and by usual staining methods. This activity was found to be present in muscles and liver of different animals. Human skin also showed some activity. Human liver and myocardium showed the highest activity.In the present study, it was found that the glucose-6-phosphate dependent form (D-form) of the glycogen synthetase predominates over the glucose-6-phosphate independent form (I-form) in all the organs except hamster liver where the I-form predominates.Addition of calcium chloride in the incubation medium, to prevent phosphorolytic breakdown of the newly synthesized glycogen, does not improve the reaction. No glucose is incorporated into glycogen from 14C-glucose-6-phosphate of the incubation medium for glycogen synthetase. Fixation in absolute alcohol at –20° is recommended for tissues where cytolysis is caused by the incubation medium.  相似文献   

8.
The levels of glycogen and cyclic AMP, incorporation of glucose into glycogen and activities of glycogen synthetase and phosphorylase were determined in pancreatic islets isolated from genetically obese mice and their lean litter-mates. Islets from obese mice had elevated glycogen levels, increased phosphorylase activity and an increased amount of glycogen synthetase in the physiologically more effective I-form, indicating an increased turnover of glycogen. There was no significant difference in cyclic AMP levels between islets of lean and obese mice, but inhibition of phosphodiesterase or stimulation of adenyl cyclase increased cyclic AMP levels more in obese than in lean mouse islets, indicating a more rapid turnover of cyclic AMP in the former. It is suggested that cyclic AMP stimulated phosphorolytic breakdown of glycogen may be one of the mechanisms responsible for the increased insulin secretory response to glucose observed in islets from genetically obese mice.  相似文献   

9.
A vast amount of information has accumulated which supports the view that sucrose and starch are end-products of two segregated, yet highly interconnected, gluconeogenic pathways taking place in the cytosol and chloroplast, respectively. However, several lines of experimental evidences indicate that, essentially identical to the case of heterotrophic tissues, starch formation in the photosynthetic tissues may involve the direct import to the chloroplast of cytosolic hexose (C6) units derived from the sucrose breakdown. This evidence is consistent with the idea that synthesis of a sizable pool of ADP-glucose takes place in the cytosol by means of sucrose synthase whereas, basically in agreement with recent investigations dealing with glycogen biosynthesis in bacteria and animals, chloroplastic phosphoglucomutase and ADP-glucose pyrophosphorylase are most likely playing a role in channelling of glucose units derived from the starch breakdown in the chloroplast, thus making up a regulatory starch turnover cycle. According to this new view, we propose that starch production in the chloroplast is the result of a flexible and dynamic mechanism wherein both catabolic and anabolic reactions take place simultaneously in a highly interactive manner. Starch is seen as an intermediate component of a cyclic gluconeogenic pathway which, in turn, is connected with other metabolic pathways. The possible importance of metabolic turnover as a way to control starch production is exemplified with the recently discovered ADP-glucose pyrophosphatase, an enzyme likely having a dual role in controlling levels of ADP-glucose linked to starch biosynthesis and diverting carbon flow towards other metabolic pathways.  相似文献   

10.
In the present paper we formulate the hypothesis that brain glycogen is a critical determinant in the modulation of carbohydrate supply at the cellular level. Specifically, we propose that mobilization of astrocytic glycogen after an increase in AMP levels during enhanced neuronal activity controls the concentration of glucose phosphates in astrocytes. This would result in modulation of glucose phosphorylation by hexokinase and upstream cell glucose uptake. This mechanism would favor glucose channeling to activated neurons, supplementing the already rich neuron-astrocyte metabolic and functional partnership with important implications for the energy compounds used to sustain neuronal activity. The hypothesis is based on recent modeling evidence suggesting that rapid glycogen breakdown can profoundly alter the short-term kinetics of glucose delivery to neurons and astrocytes. It is also based on review of the literature relevant to glycogen metabolism during physiological brain activity, with an emphasis on the metabolic pathways identifying both the origin and the fate of this glucose reserve.  相似文献   

11.
In chronically catheterized rats hepatic glycogen was increased by fructose (approximately 10 g/kg) gavage (FF rats) or lowered by overnight food restriction (FR rats). [3-3H]- and [U-14C]glucose were infused before, during, and after treadmill running. During exercise the increase in glucose production (Ra) was always directly related to work intensity and faster than the increase in glucose disappearance, resulting in increased plasma glucose levels. At identical work-loads the increase in Ra and plasma glucose as well as liver glycogen breakdown were higher in FF and control (C) rats than in FR rats. Breakdown of muscle glycogen was less in FF than in C rats. Incorporation of [14C]glucose in glycogen at rest and mobilization of label during exercise partly explained that 14C estimates of carbohydrate metabolism disagreed with chemical measurements. In some muscles glycogen depletion was not accompanied by loss of 14C and 3H, indicating futile cycling of glucose. In FR rats a postexercise increase in liver glycogen was seen with 14C/3H similar to that of plasma glucose, indicating direct synthesis from glucose. In conclusion, in exercising rats the increase in glucose production is subjected to feedforward regulation and depends on the liver glycogen concentration. Endogenous glucose may be incorporated in glycogen in working muscle and may be used directly for liver glycogen synthesis rather than after conversion to trioses. Fructose ingestion may diminish muscular glycogen breakdown. The [14C]glucose infusion technique for determination of muscular glycogenolysis is of doubtful value in rats.  相似文献   

12.
1. The conversion of lactate into glycogen was demonstrated in frog sartorius muscle in oxygen. The rates and amounts are highest when lactate is added to the bathing medium and are dependent on lactate and CO(2) concentration, as well as pH. The glycogen content of a resting muscle can be doubled in 4h at 24 degrees C. 2. Sartorius muscle, recovering aerobically in liquid paraffin from a period of anoxia, converts preformed lactate into glycogen at a lower rate and in smaller amounts than when lactate is added in an aqueous medium. The lower rates are similar to those Meyerhof found under the same conditions, after correction for temperature; they can be attributed partly to low muscle pH and partly to the limited amounts of lactate present. 3. Rabbit psoas muscle also shows the ability to convert added lactate into glycogen under aerobic conditions. The rates are low and similar to those in frog sartorius muscle recovering from anoxia. 4. The present experiments yield a Meyerhof quotient of 6.2, compared with Meyerhof's value of 4-5. However, these values are not significantly different from one another. 5. It is suggested that the glycogen coefficient, i.e. mol of glycogen formed/mol of lactate disappearing, is a more reliable way of assessing the resynthetic mechanism than the original quotient, i.e. mol of lactate disappearing/mol of lactate oxidized. The found coefficient is 0.419+/-0.024.  相似文献   

13.
The conclusion from two in vivo experiments is that a significant proportion of the lactic acid, normally formed by glycolysis from glycogen and held in the muscle cells following exhausting exercise of the anaerobic swimming muscle of the teleost fish Pleuronectes platessa L, is converted by gluconeogenesis to form glycogen in the recovering muscle.
In the first experiment a technique for measurement of [3H]glucose turnover in the plaice was developed and applied to measure turnover in resting and exhausted fish. It is concluded that insufficient glucose was moved through the circulation to account for the rate of glycogen formation observed in the recovering exhausted muscle.
In the second experiment, an intramuscular injection of [14C]lactate to exhausted fish revealed a direct uptake of [14C]lactate by the recovering muscle cells, and the incorporation of substantial proportions of lactate into the restored glycogen. Simultaneous use of [3H]-mannitol allowed measurement of the isotope distribution between extra- and intracellular spaces.  相似文献   

14.
Muscle contents of ATP, ADP, AMP, creatine phosphate and creatine as well as glycogen, some glycolytic intermediates, pyruvate and lactate were compared in the intact, thyroidectomized and triiodothyronine (T3) treated dogs under resting conditions. After thyroidectomy muscle glycogen, glucose 1-phosphate and glucose 6-phosphate contents were significantly elevated while in T3-treated animals these variables were decreased in comparison with control dogs. Muscle free glucose was not altered by thyroidectomy but T3 treatment significantly increased its content. Muscle lactate content was elevated both in hypo- and hyperthyroid animals. Muscle ATP and total adenine nucleotide contents were significantly increased in hyperthyroid dogs while no differences were found between the three groups in the muscle creatine phosphate content. It is assumed that in T3-treated animals carbohydrate catabolism is enhanced in the resting skeletal muscle in spite of high tissue ATP content. Muscle metabolite alterations in hypothyroid dogs seem to reflect the hypometabolism accompanied by a diminished rate of glycogenolysis with inhibited rate of pyruvate oxidation or decreased rate of lactate removal from the cells.  相似文献   

15.
The effects of exogenous oleate on glucose uptake, lactate production and glycogen concentration in resting and contracting skeletal muscle were studied in the perfused rat hindquarter. In preliminary studies with aged erythrocytes at a haemoglobin concentration of 8g/100ml in the perfusion medium, 1.8mm-oleate had no effect on glucose uptake or lactate production. During these studies it became evident that O(2) delivery was inadequate with aged erythrocytes. Perfusion with rejuvenated human erythrocytes at a haemoglobin concentration of 12g/100ml resulted in a 2-fold higher O(2) uptake at rest and a 4-fold higher O(2) uptake during muscle contraction than was obtained with aged erythrocytes. Rejuvenated erythrocytes were therefore used in subsequent experiments. Glucose uptake and lactate production by the well-oxygenated hindquarter were inhibited by one-third, both at rest and during muscle contraction, when 1.8mm-oleate was added to the perfusion medium. Addition of oleate also significantly protected against glycogen depletion in the fast-twitch red and slow-twitch red types of muscle, but not in white muscle, during sciatic-nerve stimulation. In the absence of added oleate, glucose was confined to the extracellular space in resting muscle. Addition of oleate resulted in intracellular glucose accumulation in red muscle. Contractile activity resulted in accumulation of intracellular glucose in all three muscle types, and this effect was significantly augmented in the red types of muscle by perfusion with oleate. The concentrations of citrate and glucose 6-phosphate were also increased in red muscle perfused with oleate. We conclude that, as in the heart, availability of fatty acids has an inhibitory effect on glucose uptake and glycogen utilization in well-oxygenated red skeletal muscle.  相似文献   

16.
BackgroundDiabetes mellitus is a chronic metabolic disease characterized by increased blood glucose levels. In order to lower blood glucose, it is important to stimulate glucose uptake and glycogen synthesis in the muscle. (E)-5-hydroxy-7-methoxy-3-(2′-hydroxybenzyl)-4-chromanone (HM-chromanone), a constituent isolated from Portulaca oleracea L., exhibits anti-diabetic effects; however, its mechanisms are not yet clearly understood on glucose uptake and glycogen synthesis in muscle cells.PurposeIn the present study, we examined the effects of HM-chromanone on glucose uptake into L6 skeletal muscle cells and elucidated the underlying mechanisms.MethodsThe effects of HM-chromanone on glucose uptake into L6 skeletal muscle cells were assessed by 2-Deoxyglucose uptake assay. Western blot analysis was carried out to elucidate the underlying molecular mechanisms.ResultsWe found that HM-chromanone promoted glucose uptake into L6 skeletal muscle cells in a dose-dependent manner. Moreover, HM-chromanone induced the phosphorylation of IRS-1Tyr612 and AKTSer473, and the activation of PI3K. HM-chromanone also stimulated the phosphorylation of AMPKThr172, AS160Thr642, TBC1D1Ser237, and ACC via the CaMKKβ pathway. Furthermore, HM-chromanone increased glycogen synthesis through the inactivation of glycogen synthase kinase 3 α/β.ConclusionThe results of this study indicate that HM-chromanone stimulates glucose uptake through the activation of the PI3K/AKT and CaMKKβ-AMPK pathways and glycogen synthesis via the GSK3 α/β pathway in L6 skeletal muscle cells.  相似文献   

17.
Adenosine (Ado) is a naturally occurring compound that has several important cardiovascular actions, including activation of ATP-sensitive K(+) channels in vascular smooth muscle, vasorelaxation, and an effect to alter glucose metabolism of cardiac muscle. The metabolic effects of Ado on vascular smooth muscle have not been defined and were examined in this study. Porcine carotid artery strips were incubated in the presence and absence of 0.5 mM Ado. Compared with the control, Ado had no effect on glucose uptake, glucose oxidation, or fatty acid (octanoate) oxidation. Ado suppressed glycolysis but enhanced glycogen synthesis. Relative to the rate of glycolysis, Ado increased lactate production. Ado stimulated O(2) consumption by 52 +/- 10%, altered the activities of the tricarboxylic acid cycle and malate-aspartate shuttle, and increased the content of ATP, ADP, AMP, and phosphocreatine. Alteration in the metabolic variables by Ado could not be attributed to diminished energy requirements of reduced resting muscle tone of the arterial strips. Relaxation of the arterial strips in response to Ado were abolished in arteries incubated under hypoxic conditions (95% N(2)-5% CO(2)). Hypoxia was associated with increased ADP content. It is concluded that Ado affected glucose metabolism indirectly. The metabolic and energetic effects of 0.5 mM Ado are mediated by alterations in the concentrations of AMP, ATP, and phosphorylation potential (ATP/ADP).  相似文献   

18.
Glycogen is the storage form of carbohydrate for virtually every organism from yeast to primates. Most mammalian tissues store glucose as glycogen, with the major depots located in muscle and liver. The French physiologist Claude Bernard first identified a starch-like substance in liver and muscle and coined the term glycogen, or "sugar former," in the 1850s. During the 150 years since its identification, researchers in the field of glycogen metabolism have made numerous discoveries that are now recognized as significant milestones in biochemistry and cell signaling. Even so, more questions remain, and studies continue to demonstrate the complexity of the regulation of glycogen metabolism. Under classical definitions, the functions of glycogen seem clear: muscle glycogen is degraded to generate ATP during increased energy demand, whereas hepatic glycogen is broken down for release of glucose into the bloodstream to supply other tissues. However, recent findings demonstrate that the roles of glycogen metabolism in energy sensing, integration of metabolic pathways, and coordination of cellular responses to hormonal stimuli are far more complex.  相似文献   

19.
This study examined the effect of epinephrine on glucose disposal during moderate exercise when glycogenolytic flux was limited by low preexercise skeletal muscle glycogen availability. Six male subjects cycled for 40 min at 59 +/- 1% peak pulmonary O2 uptake on two occasions, either without (CON) or with (EPI) epinephrine infusion starting after 20 min of exercise. On the day before each experimental trial, subjects completed fatiguing exercise and then maintained a low carbohydrate diet to lower muscle glycogen. Muscle samples were obtained after 20 and 40 min of exercise, and glucose kinetics were measured using [6,6-2H]glucose. Exercise increased plasma epinephrine above resting concentrations in both trials, and plasma epinephrine was higher (P < 0.05) during the final 20 min in EPI compared with CON. Muscle glycogen levels were low after 20 min of exercise (CON, 117 +/- 25; EPI, 122 +/- 20 mmol/kg dry matter), and net muscle glycogen breakdown and muscle glucose 6-phosphate levels during the subsequent 20 min of exercise were unaffected by epinephrine infusion. Plasma glucose increased with epinephrine infusion (i.e., 20-40 min), and this was due to a decrease in glucose disposal (R(d)) (40 min: CON, 33.8 +/- 3; EPI, 20.9 +/- 4.9 micromol. kg(-1). min(-1), P < 0.05), because the exercise-induced rise in glucose rate of appearance was similar in the trials. These results show that glucose R(d) during exercise is reduced by elevated plasma epinephrine, even when muscle glycogen availability and utilization are low. This suggests that the effect of epinephrine does not appear to be mediated by increased glucose 6-phosphate, secondary to enhanced muscle glycogenolysis, but may be linked to a direct effect of epinephrine on sarcolemmal glucose transport.  相似文献   

20.
1. By perfusion of rat livers with 3mm-AMP in the perfusion medium we obtain increased intracellular concentrations of AMP. 2. These high intracellular concentrations of AMP lead to an increased output of glucose and urea into the perfusion medium. 3. The increased output of glucose in livers from fed rats is brought about primarily by an AMP-stimulated breakdown of liver glycogen. In livers from starved rats the increase in glucose output is not as great, reflecting the low contents of glycogen in livers from starved rats. 4. AMP inhibits gluconeogenesis from lactate in perfused livers. In the presence of high concentrations of lactate, however, the counteracting effects of AMP to increase glycogenolysis and to inhibit gluconeogenesis result in little change in the net glucose output. 5. The increased urea output is brought about by increased breakdown of amino acids that are present in the perfusion medium. In livers from starved rats the overall urea production is much higher, indicating increased catabolism of amino acids and other nitrogenous substrates in the absence of carbohydrate substrates. 6. AMP causes an inhibition of incorporation of labelled precursors into protein and nucleic acid. This may result from increased catabolism of precursors of proteins and nucleic acids as reflected by the more rapid breakdown of nitrogenous compounds. In support of this hypothesis, cell-free systems for amino acid incorporation isolated from livers perfused with and without AMP are equally capable of supporting protein synthesis. 7. The labelling pattern of RNA in perfused livers corresponds very closely to those found by pulse-labelling in vivo. AMP in no way alters the qualitative nature of the labelling patterns. 8. We consider these results as supporting evidence for the role of the concentration ratio of AMP to ATP in controlling the metabolic pathways that lead to the formation of ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号