首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R Singh  M K Ticku 《Life sciences》1987,40(10):1017-1026
This study was conducted to investigate the effects of centrally administered baclofen on blood pressure and heart rate in conscious spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats. Administration of baclofen (1.0 microgram/kg) into the lateral cerebral ventricle (icv) produced an increase in mean arterial pressure (MAP) in both SHR and WKY rats. The increase in MAP was significantly lower in SHR (13 +/- 3 mmHg) when compared with WKY (27 +/- 5 mmHg). The changes in heart rate (HR) were variable, from no change to a very small increase and did not differ significantly between SHR and WKY rats. The ability of baclofen to interfere with baroreceptor reflexes was also tested in separate experiments. In SHR, icv injection of baclofen (1.0 microgram/kg) significantly suppressed the pressor response and bradycardia evoked by phenylephrine 3.0 micrograms/kg iv, whereas in WKY, the pressor and HR responses to similar injections of phenylephrine were not affected by icv baclofen. Similarly, baclofen treatment modified hypotensive response and reflex tachycardia induced by nitroprusside (10.0 micrograms/kg) iv in SHR but not in WKY rats. Administration of sympathetic ganglionic blocker hexamethonium (HEX; 25 mg/kg) iv produced an equivalent decrease in MAP between SHR and WKY following icv injection of baclofen (1.0 microgram/kg). These results suggest that the effects of baclofen on the baroreceptor reflexes in SHR may not be mediated by a change in peripheral sympathetic tone.  相似文献   

2.
Bilateral occlusion of the common carotid arteries of urethane-anesthetized rats evoked a pressor response of 14 ± 1 mm Hg. Injection into the lateral cerebral ventricle of neostigmine (0.2–1.0 μg) or physostigmine (10–15 μg) caused a dose-dependent increase in basal blood pressure and in the magnitude of the carotid artery occlusion (CAO) pressor reflex. Neostigmine (1 μg) and physostigmine (15 μg) caused nearly maximal and approximately equal degrees of cholinesterase inhibition in several brain regions. The recovery of the cardiovascular parameters and of brain cholinesterase activity was significantly faster following physostigmine compared to neostigmine. Prior intracerebroventricular injection of atropine (0.3 μg) or hemicholinium-3 (20 μg) prevented the increases in basal pressure and the CAO pressor response. Potentiation of the CAO reflex also followed injection of physostigmine or neostigmine into the posterior hypothalamic nucleus and of injection of physostigmine intravenously. Injection of atropine bilaterally into the posterior hypothalamic nucleus prior to intravenous injection of physostigmine prevented the potentiation of the CAO reflex but not the increase in basal blood pressure. These results indicate that acetylcholine in the posterior hypothalamic nucleus serves as a neurotransmitter in a pathway which can potentiate the pressor response to carotid artery occlusion and thus modulate baroreceptor reflexes.  相似文献   

3.
The effect of gamma-aminobutyric acid-receptor agonists, GABA and muscimol on the pituitary-adrenocortical activity, measured indirectly through corticosterone secretion, and the receptors involved were investigated in conscious rats. GABA given ip induced a dual effect, in lower dose (10 mg/kg) it significantly decreased the resting serum corticosterone levels while in higher doses (100-500 mg/kg) it considerably raised that level. Muscimol (0.5 mg/kg ip) also increased the corticosterone concentration. Both GABA and muscimol given intracerebroventricularly (icv) induced a significant, dose-related increase in serum corticosterone levels. Bicuculline, a GABAA-receptor antagonist, totally abolished the corticosterone response to GABA but did not influence the response to muscimol. Pretreatment with atropine did not affect the corticosterone response to GABA but significantly diminished the response to muscimol. These results suggest that GABA moderately inhibits the pituitary-adrenal axis at the pituitary level but significantly stimulates it at the hypothalamic level. The stimulatory effect of GABA, but not muscimol, is mediated by hypothalamic GABAA-receptors, and in the effect of muscimol hypothalamic cholinergic, muscarinic receptors are involved to a significant extent.  相似文献   

4.
Lee TY  Pan JT 《Life sciences》2001,68(17):1965-1975
Central administration of gamma-aminobutyric acid (GABA) has been shown to stimulate the secretion of prolactin (PRL). Whether GABA acts via dopamine, the major PRL-inhibiting hormone, and which GABA receptor type(s) is involved have not been ascertained. Both GABA(A) and GABA(B) receptor agonists and/or antagonists were administered centrally in this study and their effects on both basal and diurnal changes of tuberoinfundibular dopaminergic (TIDA) neuronal activity were determined by measuring the concentration of 3,4-dihydroxyphenylacetic acid (DOPAC) in the median eminence (ME). Serum PRL level was determined by RIA. Ovariectomized, estrogen-primed Sprague-Dawley rats implanted with intracerebroventricular (icv) cannulae were used. Muscimol (1 ng/3 microl/rat, icv), a GABA(A) receptor agonist, but not baclofen (1-100 ng/3 microl/rat, icv), a GABA(B) receptor agonist, injected in the morning significantly lowered and elevated ME DOPAC and serum PRL levels, respectively at 15 and 30 min. Lower and higher doses of muscimol were not effective. The effects of muscimol could also be prevented by co-administration of bicuculline (0.1-10 ng/3 microl, icv), a GABA(A) receptor antagonist. When bicuculline (10-500 ng/3 microl, icv) was given in the afternoon (at 1500 h), it significantly reversed the lowered ME DOPAC level in the afternoon and prevented the concurrent PRL surge. We conclude that endogenous GABA acting through GABA(A) receptors may play a significant role in the control of basal and diurnal changes of TIDA neuronal activity, and in turn, PRL secretion.  相似文献   

5.
It has been suggested that the midbrain periaqueductal gray (PAG) is a neural integrating site for the interaction between the muscle pressor reflex and the arterial baroreceptor reflex. The underlying mechanisms are poorly understood. The purpose of this study was to examine the roles of GABA and nitric oxide (NO) in modulating the PAG integration of both reflexes. To activate muscle afferents, static contraction of the triceps surae muscle was evoked by electrical stimulation of the L7 and S1 ventral roots of 18 anesthetized cats. In the first group of experiments (n = 6), the pressor response to muscle contraction was attenuated by bilateral microinjection of muscimol (a GABA receptor agonist) into the lateral PAG [change in mean arterial pressure (DeltaMAP) = 24 +/- 5 vs. 46 +/- 8 mmHg in control]. Conversely, the pressor response was significantly augmented by 0.1 mM bicuculline, a GABAA receptor antagonist (DeltaMAP = 65 +/- 10 mmHg). In addition, the effect of GABAA receptor blockade on the reflex response was significantly blunted after sinoaortic denervation and vagotomy (n = 4). In the second group of experiments (n = 8), the pressor response to contraction was significantly attenuated by microinjection of L-arginine into the lateral PAG (DeltaMAP = 26 +/- 4 mmHg after L-arginine injection vs. 45 +/- 7 mmHg in control). The effect of NO attenuation was antagonized by bicuculline and was reduced after denervation. These data demonstrate that GABA and NO within the PAG modulate the pressor response to muscle contraction and that NO attenuation of the muscle pressor reflex is mediated via arterial baroreflex-engaged GABA increase. The results suggest that the PAG plays an important role in modulating cardiovascular responses when muscle afferents are activated.  相似文献   

6.
L Qu  S L Stuesse 《Peptides》1990,11(5):955-961
Substance P (SP) is abundant in the carotid sinus nerve (CSN) and has been implicated in baro- and chemoreceptor reflexes. We examined the effect of SP on blood pressure, heart rate, phrenic nerve activity, hindlimb perfusion pressure, and cardiac contractile strength in urethane-anesthetized rabbits with bilaterally cut cervical sympathetic, vagus, and aortic depressor nerves. Retrograde simultaneous injection of SP (0.5-2.7 micrograms/kg in 0.2-0.3 ml saline) into both carotid sinus areas via the internal carotid arteries decreased blood pressure (by 56%), heart rate (by 13%), cardiac contractility (by 25%) and phrenic nerve activity (by 77%). The effect on hindlimb perfusion pressure was variable. There was both a reflex effect and direct hindlimb vasodilation. In another group of rabbits, the carotid sinus areas were vascularly isolated and perfused with SP (0.19 micrograms/min dissolved in Locke's solution) or Locke's solution alone for 5 min. While carotid sinus perfusion pressure was maintained in the range of 80-120 mmHg, mean arterial blood pressure, heart rate, and unit activity from the CSN were recorded. SP increased the activity of 11 of 18 baroreceptor fibers and inhibited all of 20 chemoreceptor fibers. SP decreased mean arterial blood pressure and heart rate, but the changes were less than those obtained with injection of SP into nonisolated carotid sinus arteries because systemic effects of SP, which in some cases counteracted the reflex effects, were eliminated.  相似文献   

7.
Neurons containing arginine vasopressin (AVP) have been shown to project from the paraventricular nucleus of the hypothalamus to the nucleus tractus solitarius (NTS) in the medulla. We investigated whether AVP acts in brain stem regions to influence sympathoadrenal outflow. Cannulae were implanted into the fourth ventricle of rats 7 days prior to the experiment. The effects of intracerebroventricular (icv) injections of AVP, the vehicle, and AVP antagonist, d(CH2)5Tyr(Me)AVP, on mean arterial pressure (MAP) and plasma noradrenaline (NA) and adrenaline (A) levels were determined in conscious unrestrained rats. Injections of AVP (icv, 23 and 73 ng/kg) but not the vehicle increased MAP and plasma NA and A levels. In contrast, iv injection of AVP increased MAP but decreased plasma concentrations of A and NA. The pressor response to icv injection of AVP was abolished by prior icv injection of AVP antagonist. Injection of AVP antagonist (icv, 0.5 and 1.5 microgram/kg) had no effect on MAP or plasma NA or A levels. These results show that centrally injected AVP activates sympathoadrenal outflow, possibly via an inhibition of baroreceptor reflexes. Since centrally administered AVP antagonist did not influence MAP or plasma NA or A levels, it appears that endogenously released AVP does not have a tonic influence on central cardiovascular reflex system in conscious, unrestrained rats.  相似文献   

8.
The central nervous system (CNS) plays an important role in the reflex control of bronchomotor tone, but the relevant neurotransmitters and neuromodulators have not been identified. In this study we have investigated the effect of histamine. Anesthetized male guinea pigs were prepared with a chronically implanted intracerebroventricular (icv) cannula and instrumented for the measurement of pulmonary resistance (RL), dynamic lung compliance (Cdyn), tidal volume (VT), respiratory rate (f), blood pressure (BP), and heart rate (HR). Administration of histamine (2-30 micrograms) icv caused a significant (P less than 0.05) reduction of Cdyn with no change in RL, VT, and f. At a dose of 100 micrograms icv, histamine caused an increase in RL (202 +/- 78%), a reduction of Cdyn (77 +/- 9%), an increase in f (181 +/- 64%), and a reduction of VT (53 +/- 18%). There were no changes in BP and HR after 100 micrograms of icv histamine. In contrast, intravenous administration of histamine (0.1-2 micrograms/kg) caused a dose-dependent decrease in Cdyn and increase in RL that was associated with tachypnea at each bronchoconstrictor dose. Intravenous histamine (2 micrograms/kg) produced a fall in BP and an increase in HR. The bronchoconstrictor responses to icv histamine were completely blocked by vagotomy and significantly reduced by atropine (0.1 mg/kg iv), whereas vagotomy and atropine did not block the bronchospasm due to intravenous histamine. Additional studies indicated that the pulmonary responses due to icv histamine (100 micrograms) were blocked by pretreatment with the H1-antagonist chlorpheniramine (1 and 10 micrograms, icv). These data indicate that histamine may serve a CNS neurotransmitter function in reflex bronchoconstriction in guinea pigs.  相似文献   

9.
The purpose of this study was to determine the effect of blocking synaptic transmission in the dorsal horn on the cardiovascular responses produced by activation of muscle afferent neurons. Synaptic transmission was blocked by applying the GABA(A) agonist muscimol to the dorsal surface of the spinal cord. Cats were anesthetized with alpha-chloralose and urethane, and a laminectomy was performed. With the exception of the L(7) dorsal root, the dorsal and ventral roots from L(5) to S(2) were sectioned on one side, and static contraction of the ipsilateral triceps surae muscle was evoked by electrically stimulating the peripheral ends of the L(7) and S(1) ventral roots. The dorsal surface of the L(4)--S(3) segments of the spinal cord were enclosed within a "well" created by applying layers of vinyl polysiloxane. Administration of a 1 mM solution of muscimol (based on dose-response data) into this well abolished the reflex pressor response to contraction (change in mean arterial blood pressure before was 47 +/- 7 mmHg and after muscimol was 3 +/- 2 mmHg). Muscle stretch increased mean arterial blood pressure by 30 +/- 8 mmHg before muscimol, but after drug application stretch increased MAP by only 3 +/- 2 mmHg. Limiting muscimol to the L(7) segment attenuated the pressor responses to contraction (37 +/- 7 to 24 +/- 11 mmHg) and stretch (28 +/- 2 to 16 +/- 8 mmHg). These data suggest that the dorsal horn of the spinal cord contains an obligatory synapse for the pressor reflex. Furthermore, these data support the hypothesis that branches of primary afferent neurons, not intraspinal pathways, are responsible for the multisegmental integration of the pressor reflex.  相似文献   

10.
Muscimol has been used to increase our knowledge of central GABAergic systems, CNS physiology, and behavior. Some studies concerning the neurophysiological and behavioral effects of muscimol and its analogs have been reviewed and analyzed. In vivo iontophoretic studies have greatly increased our knowledge of the active conformation(s) adopted by GABA during its interaction with neuronal synaptic (or extrasynaptic) receptors, and behaviors. studies have supported the notion that central GABAergic systems might be involved in convulsions, extrapyramidal functions, and other behaviors. However, behavioral studies with muscimol remain difficult to interpret in terms of central GABAergic systems, especially since muscimol is extensively metabolized and since it appears to interact with membrane sites other than GABA receptors. Muscimol does not appear to be useful for reversing human neurologic-psychiatric disorders.  相似文献   

11.
To elucidate the role of the central gamma-aminobutyric acid (GABA) system in the maintenance of deoxycorticosterone (DOCA)NaCl hypertension, the responses of mean arterial pressure (MAP), plasma norepinephrine (NE), and epinephrine (EP) to intracerebroventricular (ICV) administration of muscimol, a GABA agonist, and the responses of MAP to bicuculline, a GABA antagonist, and to clonidine, an alpha 2-adrenoceptor agonist known to lower blood pressure by inhibiting sympathetic tone, were examined in conscious, unrestrained 4 week DOCA/NaCl hypertensive rats and age-matched uninephrectomized control rats. Muscimol (50-1000 ng/300 g, ICV) caused dose-dependent decreases in MAP which were greater in DOCA/NaCl rats than in controls. Basal plasma NE and EP were significantly higher in DOCA/NaCl rats than in controls. Muscimol (1000 ng/300 g, ICV) induced decreases in plasma EP which were greater in DOCA/NaCl rats than in controls without changing NE levels in either group. Bicuculline (3 micrograms/300 g, ICV) caused increases in MAP which were the same in both groups. The depressor response to clonidine (5 micrograms/300 g) was greater in DOCA/NaCl rats than in controls. These results suggest that the activity of the central GABAergic system is altered in the rat with established DOCA/NaCl hypertension and that the alteration in central GABAergic function may be related to the increased sympathoadrenal activity and the maintenance of hypertension in this model.  相似文献   

12.
Satiated rats received intracerebroventricular (icv.) injections of several doses of neuropeptide Y (NPY) and the food intake was measured in the following 4 h. The peptide exerted a dose-dependent biphasic effect; the 100 dose significantly suppressed the food intake, but doses of 1 microgram and 5 micrograms stimulated feeding. After the injection of 2 microliters NPY-antiserum (icv., 1:50 dilution), the cumulative food intake decreased significantly in the first 24 h. From the drugs tested the alpha-1-antagonist prazosine (4 micrograms icv.) and the opiate antagonist naloxone (NX, 0.5 micrograms, icv.) selectively inhibited the feeding-stimulatory effect a high icv. dose of NPY. The alpha-2-antagonist yohimbine (4 micrograms icv.) and the non-selective beta-antagonist propranolol (5 micrograms icv.) did not influence either effect of NPY on feeding. The results suggest the involvement of alpha-1-adrenergic and opiate receptors in the food intake-stimulatory effect of a large icv. dose of NPY. The food intake-inhibitory effect of a low icv. peptide dose was not selectively antagonized by the receptor blocking agents used.  相似文献   

13.
In the present study, the effect of intracerebroventricular (icv) injection of GABA, its agonist--muscimol, and antagonist--picrotoxin, has been studied on histoenzymological alterations of acetylcholinesterase (AChE). butyrylcholinesterase (BuChE), monoamine oxidase (MAO), and succinic dehydrogenase (SDH) by cytophotometric technique. This study was conducted on medial preoptic area (mPOA), nucleus paraventricularis hypothalami (PVH), area lateralis hypothalami (LHA), nucleus dorsomedialis hypothalami (DMH), and nucleus ventromedialis hypothalami (VMH). Results showed that GABA and muscimol inhibited AChE, BuChE, MAO, and SDH in all the areas while picrotoxin stimulated these enzymes. These changes in enzyme activity by GABA, muscimol, and picrotoxin and their possible mode of action are discussed.  相似文献   

14.
Muscimol, a rigid analogue of GABA has been injected in the CNS of urethane anesthetized, normotensive cats. Injected either intracisternally (1 or 2 microgram/kg, 0.05 ml) or directly by microinjection in a restricted ventrolateral region of the brain stem (0.5 or 1 microgram/kg, 0.5 microliter), muscimol induced hypotension and bradycardia. These central cardiovascular effects of muscimol were antagonized by bicuculline, a "specific" GABA antagonist agent. These data emphasize the involvement of gabergic mechanisms in the central cardiovascular control, at least in the ventrolateral part of the medulla oblongata.  相似文献   

15.
A stretch of the walls of the thoracic aorta, performed in vagotomized cats without obstructing aortic flow, induces increases in heart rate, myocardial contractility, and arterial pressure. These reflex responses are still present after high spinal section. Cats under chloralose-urethane anesthesia were vagotomized and one carotid sinus was isolated and perfused with arterial blood at constant flow. The contralateral carotid sinus nerve and both aortic nerves were sectioned. A stretch of the walls of the thoracic aorta between the 7th and 10th intercostal arteries induced a reflex increase in mean arterial pressure 29 +/- 2 mmHg (mean +/- SE). Stepwise increases of carotid sinus pressure (CSP) or electrical stimulation of the carotid sinus nerve induced stepwise decreases of this reflex response. At maximal baroreceptor stimulation (CSP 212 +/- 9 mmHg) the reflex response to aortic stretch was reduced by 42%. These experiments show that this spinal cardiovascular reflex is at least partially under the inhibitory control of the baroreceptor input.  相似文献   

16.
The effects of intracerebroventricular injection of gamma-Aminobutyric acid, muscimol, or picrotoxin have been studied on butyrylcholinesterase (BuChE) activities in the serum and several hypothalamic nuclei using biochemical, histochemical, and cytophotometric techniques, respectively. The blood samples were withdrawn from indwelling catheters in jugular vein 1, 15, 30, 45, 60, 90, and 120 min after injection of the drugs. Biochemical estimations demonstrated a significant inhibition of BuChE after GABA and muscimol injections, whereas a pronounced stimulation of BuChE was observed after injection of picrotoxin. The peak changes were observed within 30 min of drug injection. Cytophotometric studies have appeared to dovetail the biochemical findings. Only a marginal decrease was observed after injection of GABA in all nuclei, while muscimol induced a very conspicuous decrease of BuChE. On the contrary, intracerebroventricularly administered picrotoxin markedly increased the levels of BuChE activity. Thus it could be concluded that probably GABA and muscimol along with picrotoxin appear to alter BuChE.  相似文献   

17.
为在闭环条件下测得正常人的动脉压力感受器反射的开环增益(G),利用三个不同特点的血压调节模型,导出了G的计算表达式及G与血液动力学变量间的关系。用所导出的公式,通过适当的实验设计,便可近似地分别计算出颈动脉窦和主动脉弓压力感受器反射的开环增益。文中给出了计算的例子。此外,还利用导出的关系式分析了心率、外周阻力的调节变化对系统开环增益的相对贡献及输入压力水平对增益效果的影响。  相似文献   

18.
Ascending pathways mediating somatoautonomic reflexes in exercising dogs   总被引:1,自引:0,他引:1  
The ascending spinal pathways mediating somatocardiovascular reflexes during exercise were studied in unanesthetized dogs by placing lesions in the lumbar spinal cord. After training to run on a treadmill with hindlimbs only, 20 dogs were anesthetized and instrumented using sterile surgical techniques. To chronically record heart rate and arterial blood pressure, the aorta was cannulated via the omocervical artery. To test the intactness of descending spinal sympathetic pathways, reflex pressor responses to baroreceptor hypotension were produced by bilateral carotid arterial occlusion using pneumatic vessel occluders placed around the common carotid arteries. To generate transient ischemic exercise (120 s), a pneumatic occluder was placed around the left iliac artery. Eight to 10 days after instrumentation, blood pressure and heart rate were monitored at rest and during hindlimb running with and without simultaneous iliac arterial occlusion. The modest pressor response and tachycardia elicited by hindlimb exercise were markedly augmented by simultaneous hindlimb ischemia (i.e., iliac arterial occlusion). Lesion placement in the dorsolateral sulcus area and the dorsolateral funiculus at L2 significantly reduced the blood pressure and heart rate responses to simultaneous exercise occlusion. The cardiovascular responses to nonischemic exercise and bilateral carotid arterial occlusion were not altered by such spinal sections. It is concluded that in the dog the ascending spinal pathways mediating cardiovascular responses to ischemic exercise are located in the lateral funiculus, including the dorsolateral sulcus area and dorsolateral funiculus.  相似文献   

19.
This study tested the hypothesis that ventilatory responses to chemoreceptor stimulation are affected by the level of arterial pressure and degree of baroreceptor activation. Carotid chemoreceptors were stimulated by injection of nicotine into the common carotid artery of anesthetized dogs. Arterial pressure was reduced by bleeding the animals and raised by transient occlusion of the abdominal aorta. The results indicate that ventilatory responses to chemoreceptor stimulation were augmented by hypotension and depressed by hypertension. In additional studies we excluded the possibility that the findings were produced by a direct effect of changes in arterial pressure on chemoreceptors. Both carotid bifurcations were perfused at constant flow. In one carotid bifurcation, perfusion pressure was raised to stimulate carotid sinus baroreceptors. In the other carotid bifurcation, pressure was constant and nicotine was injected to stimulate carotid chemoreceptors. Stimulation of baroreceptors on one side attenuated the ventilatory response to stimulation of contralateral chemoreceptors. This inhibition was observed before and after bilateral cervical vagotomy. We conclude that there is a major central interaction between baroreceptor and chemoreceptor reflexes so that changes in baroreceptor activity modulate ventilatory responses to chemoreceptor stimulation.  相似文献   

20.
The role of the 5-hydroxytryptamine (5-HT1A) receptors in the rostral ventrolateral medulla (RVLM) on somatosympathetic, baroreceptor, and chemoreceptor reflexes was examined in anesthetized rats. Microinjection of the selective 5-HT1A agonist 8-hydroxy-di-n-propylamino tetralin (8-OH-DPAT) decreased arterial blood pressure and splanchnic sympathetic nerve activity (SNA). Electrical stimulation of the hindlimb evoked early and late excitatory sympathetic responses. Bilateral microinjection in the RVLM of 8-OH-DPAT markedly attenuated both the early and late responses. This potent inhibition of the somatosympathetic reflex persisted even after SNA and arterial blood pressure returned to preinjection levels. Preinjection of the selective 5-HT1A antagonist NAN-190 in the RVLM blocked the sympathoinhibitory effect of 8-OH-DPAT and attenuated the inhibitory effect on the somatosympathetic reflex. 8-OH-DPAT injected in the RVLM did not affect baroreceptor or chemoreceptor reflexes. Our findings suggest that activation of 5-HT1A receptors in the RVLM exerts a potent, selective inhibition on the somatosympathetic reflex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号