首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Voltage-gated sodium channel function from neonatal and adult rat cardiomyocytes was measured and compared. Channels from neonatal ventricles required an approximately 10 mV greater depolarization for voltage-dependent gating events than did channels from neonatal atria and adult atria and ventricles. We questioned whether such gating shifts were due to developmental and/or chamber-dependent changes in channel-associated functional sialic acids. Thus, all gating characteristics for channels from neonatal atria and adult atria and ventricles shifted significantly to more depolarized potentials after removal of surface sialic acids. Desialylation of channels from neonatal ventricles did not affect channel gating. After removal of the complete surface N-glycosylation structures, gating of channels from neonatal atria and adult atria and ventricles shifted to depolarized potentials nearly identical to those measured for channels from neonatal ventricles. Gating of channels from neonatal ventricles were unaffected by such deglycosylation. Immunoblot gel shift analyses indicated that voltage-gated sodium channel alpha subunits from neonatal atria and adult atria and ventricles are more heavily sialylated than alpha subunits from neonatal ventricles. The data are consistent with approximately 15 more sialic acid residues attached to each alpha subunit from neonatal atria and adult atria and ventricles. The data indicate that differential sialylation of myocyte voltage-gated sodium channel alpha subunits is responsible for much of the developmental and chamber-specific remodeling of channel gating observed here. Further, cardiac excitability is likely impacted by these sialic acid-dependent gating effects, such as modulation of the rate of recovery from inactivation. A novel mechanism is described by which cardiac voltage-gated sodium channel gating and subsequently cardiac rhythms are modulated by changes in channel-associated sialic acids.  相似文献   

2.
The voltage-sensitive sodium channel from eel electroplax is formed of a polypeptide of 208,321 Da, to which is attached ca. 85 kDa of carbohydrate. Sialic acid is a prominent constituent, contributing ca. 113 negative charges to the protein surface. We here demonstrate that antibodies raised against the bacterial antigen alpha-(2----8)-polysialic acid, specific for polymers of ten or more consecutive sialic acid residues, react specifically and with high affinity to the electroplax sodium channel. In extracts of electroplax membranes, the sodium channel is the only protein that demonstrates this immunoreactivity, suggesting the presence of a polysialosyl-sialyltransferase specifically committed to this unique post-translational modification of the sodium channel. Polysialic acid is rare in vertebrates, having previously been found only associated with neural-cell adhesion molecules, present in the developing neuromuscular system. The other prominent source is the capsular polysaccharide of highly pathogenic meningitis bacteria. Antibodies to the bacterial antigen thus provide highly specific affinity markers for the sodium channel. The high avidity of these antibodies and the ratio of sialic acid residues to consensus glycosylation sites suggest that the terminal chains are well over ten sialosyl residues in length, potentially extending 10-30 nm into the extracellular environment.  相似文献   

3.
Voltage-gated sodium channels (Nav) are responsible for initiation and propagation of nerve, skeletal muscle, and cardiac action potentials. Nav are composed of a pore-forming alpha subunit and often one to several modulating beta subunits. Previous work showed that terminal sialic acid residues attached to alpha subunits affect channel gating. Here we show that the fully sialylated beta1 subunit induces a uniform, hyperpolarizing shift in steady state and kinetic gating of the cardiac and two neuronal alpha subunit isoforms. Under conditions of reduced sialylation, the beta1-induced gating effect was eliminated. Consistent with this, mutation of beta1 N-glycosylation sites abolished all effects of beta1 on channel gating. Data also suggest an interaction between the cis effect of alpha sialic acids and the trans effect of beta1 sialic acids on channel gating. Thus, beta1 sialic acids had no effect gating on the of the heavily glycosylated skeletal muscle alpha subunit. However, when glycosylation of the skeletal muscle alpha subunit was reduced through chimeragenesis such that alpha sialic acids did not impact gating, beta1 sialic acids caused a significant hyperpolarizing shift in channel gating. Together, the data indicate that beta1 N-linked sialic acids can modulate Nav gating through an apparent saturating electrostatic mechanism. A model is proposed in which a spectrum of differentially sialylated Nav can directly modulate channel gating, thereby impacting cardiac, skeletal muscle, and neuronal excitability.  相似文献   

4.
Antibodies to the alpha and beta 2 subunits and site-directed antibodies that distinguish alpha subunits of the RI and RII subtypes have been used to study the biosynthesis and assembly of sodium channels. The RII sodium channel subtype is preferentially expressed in rat brain neurons in primary cell culture. Post-translational processing of alpha subunits includes incorporation of palmityl residues in thioester linkage and sulfate residues attached to oligosaccharides. The incorporation of [3H] palmitate into alpha subunits is inhibited by tunicamycin, indicating that it occurs in the early stages of biosynthesis but after co-translational glycosylation. Mature alpha subunits are attached to beta 2 subunits through disulfide bonds within 1 h after synthesis and up to 30% can be specifically immunoprecipitated from the cell surface with antibodies against the beta 2 subunits by 4 h after synthesis. The remaining alpha subunits remain in an intracellular pool. The alpha subunits synthesized in the presence of castanospermine and swainsonine have reduced apparent size. Castanospermine prevents incorporation of approximately 81% of the sialic acid of the alpha subunit and inhibits sulfation but not palmitylation. Although inhibition of glycosylation with tunicamycin blocks assembly of functional sodium channels, castanospermine and swainsonine do not prevent the covalent assembly of alpha and beta 2 subunits or the transport of alpha beta 2 complexes to the cell surface, and sodium channels synthesized under these conditions have normal affinity for saxitoxin. Thus, the extensive processing and terminal sialylation of oligosaccharide chains during maturation of the alpha subunit is not essential. A kinetic model for biosynthesis, processing, and assembly of sodium channel subunits is presented.  相似文献   

5.
6.
T-type (Cav3) channels are categorized as calcium channels, but invertebrate ones can be highly sodium-selective channels. We illustrate that the snail LCav3 T-type channel becomes highly sodium-permeable through exon splicing of an extracellular turret and descending helix in domain II of the four-domain Cav3 channel. Highly sodium-permeable T-type channels are generated without altering the invariant ring of charged residues in the selectivity filter that governs calcium selectivity in calcium channels. The highly sodium-permeant T-type channel expresses in the brain and is the only splice isoform expressed in the snail heart. This unique splicing of turret residues offers T-type channels a capacity to serve as a pacemaking sodium current in the primitive heart and brain in lieu of Nav1-type sodium channels and to substitute for voltage-gated sodium channels lacking in many invertebrates. T-type channels would also contribute substantially to sodium leak conductances at rest in invertebrates because of their large window currents.  相似文献   

7.
Neuronal, cardiac, and skeletal muscle action potentials are produced and conducted through the highly regulated activity of several types of voltage-gated ion channels. Voltage-gated potassium (K(v)) channels are responsible for action potential repolarization. Glycans can be attached to glycoproteins through N- and O-linkages. Previous reports described the impact of N-glycans on voltage-gated ion channel function. Here, we show that sialic acids attached through O-linkages modulate gating of K(v)2.1, K(v)4.2, and K(v)4.3. The conductance-voltage (G-V) relationships for each isoform were shifted uniquely by a depolarizing 8-16 mV under conditions of reduced sialylation. The data indicate that sialic acids modulate K(v) channel activation through apparent electrostatic mechanisms that promote channel activity. Voltage-dependent steady-state inactivation was unaffected by changes in sialylation. N-Linked sialic acids cannot be responsible for the G-V shifts because K(v)4.2 and K(v)4.3 cannot be N-glycosylated, and immunoblot analysis confirmed K(v)2.1 is not N-glycosylated. Glycosidase gel shift analysis suggested that K(v)2.1, K(v)4.2, and K(v)4.3 were O-glycosylated and sialylated. To confirm this, azide-modified sugar residues involved specifically in O-glycan and sialic acid biosynthesis were shown to incorporate into all three K(v) channel isoforms using Cu(I)-catalyzed cycloaddition chemistry. Together, the data indicate that sialic acids attached to O-glycans uniquely modulate gating of three K(v) channel isoforms that are not N-glycosylated. These data provide the first evidence that external O-glycans, with core structures distinct from N-glycans in type and number of sugar residues, can modulate K(v) channel function and thereby contribute to changes in electrical signaling that result from regulated ion channel expression and/or O-glycosylation.  相似文献   

8.
The saxitoxin-binding component of the excitable membrane sodium channel exhibits glycoprotein characteristics as evidenced by its specific interaction with various agarose-immobilized lectins. The detergent-solubilized saxitoxin-binding component interacts quantitatively with immobilized wheat germ agglutinin and concanavalin A and fractionally with immobilized Lens culinaris hemagglutinin and Ricinus communis agglutinin. These lectins preferentially bind N-acetylglucosamine and sialic acid (wheat germ agglutinin), mannose (concanavalin A and Lens cunilaris and galactose (Ricinus communis). Removal of terminal sialic acid residues by neuraminidase markedly decreases binding to immobilized wheat germ agglutinin but uncovers sites capable of interacting with lectins specific for galactose and N-acetylgalactosamine. β-N-acetylglucosaminidase, an exoglycosidase has no effect on the binding of the channel protein to wheat germ agglutinin. Similarly, phospholipase C has no effect on binding of the solubilized toxin binding component to this lectin. Neither wheat germ agglutinin nor concanavalin A free in solution alters the number of toxin binding sites or their affinity for toxin. The sodium channel saxitoxin-binding component appears to be a glycoprotein containing terminal sialic acid residues and internal mannose, galactose, N-acetylglucosamine, and N-acetylgalactosamine residues. The toxin binding site is spatially separated from the binding sites for the lectins studied. The effect of these sugar moieties must be considered when evaluating the biophysical parameters of the sodium channel.  相似文献   

9.
The alpha-peptide of the rat brain sodium channel of apparent molecular weight 260K has been purified to homogeneity in order to determine its structural and chemical properties. By negative-stain electron microscopy, the molecule morphology of the solubilized channel protein appears as a stack of disks or rouleaux whose dimensions are 40 A X 200 A. Measurement of the secondary structure by circular dichroism shows that the alpha-peptide is a conformationally flexible polypeptide that contains mostly beta-sheet and random-coil in mixed detergent-phospholipid micelles and folds into a conformation that has approximately 65% alpha-helix after reconstitution into phosphatidylcholine vesicles. Preparative polyacrylamide gel electrophoresis was used to obtain a chemically homogeneous peptide to analyze the amino acid and carbohydrate composition. The amino acid composition shows a reasonably high content of acidic amino acids with no striking excess of hydrophobic amino acids, while carbohydrate analyses show that carbohydrate is 31% by weight of the protein with sialic acid representing over 50% of the total carbohydrates. The high alpha-helical content, the amino acid composition, and the large carbohydrate mass are similar to those of the eel electroplax sodium channel and appear to be general features of the sodium channels which have been analyzed structurally and chemically to date.  相似文献   

10.
Voltage-sensitive sodium channels and calcium channels are homologous proteins with distinctly different selectivity for permeation of inorganic cations. This difference in function is specified by amino acid residues located within P-region segments that link presumed transmembrane elements S5 and S6 in each of four repetitive Domains I, II, III, and IV. By analyzing the selective permeability of Na+, K+, and Ca2+ in various mutants of the mu 1 rat muscle sodium channel, the results in this paper support the concept that a conserved motif of four residues contributed by each of the Domains I-IV, termed the DEKA locus in sodium channels and the EEEE locus in calcium channels, determines the ionic selectivity of these channels. Furthermore, the results indicate that the Lys residue in Domain III of the sodium channel is the critical determinant that specifies both the impermeability of Ca2+ and the selective permeability of Na+ over K+. We propose that the alkylammonium ion of the Lys(III) residue acts as an endogenous cation within the ion binding site/selectivity filter of the sodium channel to tune the kinetics and affinity of inorganic cation binding within the pore in a manner analogous to ion-ion interactions that occur in the process of multi-ion channel conduction.  相似文献   

11.
Structure-function studies have shown that it is possible to convert a sodium channel to a calcium-selective channel by a single amino acid substitution in the selectivity filter locus. Ion permeation through the "model selectivity filter" was modeled with a reduced set of functional groups representative of the constituent amino acid side chains. Force-field minimizations were conducted to obtain the energy profile of the cations as they get desolvated and bind to the "model selectivity filter." The calculations suggest that the ion selectivity in the calcium channel is due to preferential binding, whereas in the sodium channel it is due to exclusion. Energetics of displacement of a bound cation from the calcium "model selectivity filter" by another cation suggest that "multi-ion mechanism" reduces the activation barrier for ion permeation. Thus, the simple model captures qualitatively most of the conduction characteristics of sodium and calcium channels. However, the computed barriers for permeation are fairly large, suggesting that ion interaction with additional residues along the transport path may be essential to effect desolvation.  相似文献   

12.
通过阳离子交换和反相HPLC柱层析从海南捕鸟蛛(Ornithoconus hainana)粗毒中分离到一种新型的神经毒素,海南捕鸟蛛毒素-Ⅵ(HNTX-Ⅵ), 由34个氨基酸残基组成,含有6个保守的半胱氨酸残基. 运用全细胞膜片钳技术,研究了HNTX-Ⅵ对电压门控钠通道的影响.先前从海南捕鸟蛛粗毒中分离到的几种毒素,具有抑制哺乳动物钠通道激活的特性.本文研究结果表明,HNTX-Ⅵ能以类似于δ-atractoxins作用方式延缓蜚蠊背侧不成对中间(dorsal unpaired median,DUM)神经细胞的钠通道的失活,且导致钠通道稳态失活变得不完全,在预钳制电压大于-55 mV时形成不完全失活结构. HNTX-Ⅵ的这种新的功能不仅为探索钠通道的门控机制提供了有用的工具,也为开发新的安全的杀虫剂提供理论基础.  相似文献   

13.
FMRFamide (Phe-Met-Arg-Phe-amide, FMRFa) and similar neuropeptides are important physiological modulators in most invertebrates, but the molecular basis of FMRFa activity at its receptors is unknown. We therefore sought to identify the molecular determinants of FMRFa potency against one of its native targets, the excitatory FMRFa-gated sodium channel (FaNaC) from gastropod mollusks. Using molecular phylogenetics and electrophysiological measurement of neuropeptide activity, we identified a broad FaNaC family that includes mollusk and annelid channels gated by FMRFa, FVRIamides, and/or Wamides (or myoinhibitory peptides). A comparative analysis of this broader FaNaC family and other channels from the overarching degenerin (DEG)/epithelial sodium channel (ENaC) superfamily, incorporating mutagenesis and experimental dissection of channel function, identified a pocket of amino acid residues that determines activation of FaNaCs by neuropeptides. Although this pocket has diverged in distantly related DEG/ENaC channels that are activated by other ligands but enhanced by FMRFa, such as mammalian acid-sensing ion channels, we show that it nonetheless contains residues that determine enhancement of those channels by similar peptides. This study thus identifies amino acid residues that determine FMRFa neuropeptide activity at FaNaC receptor channels and illuminates the evolution of ligand recognition in one branch of the DEG/ENaC superfamily of ion channels.  相似文献   

14.
Voltage-gated sodium channels are important membrane proteins underlying electrical signaling in the nervous and muscular systems. They undergo rapid conformational changes between closed resting, activated, and inactivated states. Approximately 30% of the mass of the sodium channel is carbohydrate, present as glycoconjugate chains, mostly composed of N-acetylhexosamines and sialic acid. In this study, the effects of removing the carbohydrate on the functional and structural properties of highly purified sodium channels from Electrophorus electricus were investigated. After enzymatic deglycosylation, channels were reconstituted into planar lipid bilayers. In the presence of batrachotoxin, substates became evident and the single-channel conductance of the deglycosylated channels was slightly reduced relative to that of native channels, consistent with electrostatic effects due to the reduction in negative charge at the extracellular vestibule of the channel. The previously reported state-dependent changes in the circular dichroism spectra that are associated with the binding of the anticonvulsant drug Lamotrigine and batrachotoxin are also seen in the modified channels. Synchrotron radiation circular dichroism (SRCD) spectroscopy on the type of sugars found in the sodium channel showed that unlike most carbohydrates, these sugars produce a significant dichroic signal in the far-ultraviolet region. This can account for all of the measured SRCD-detected spectral differences between the native and deglycosylated channels, thereby indicating that no net change in protein secondary structure results from the deglycosylation procedure. Furthermore, thermal denaturation studies detected no significant differences in stability between native and deglycosylated channels. In summary, while the sugars of the voltage-gated sodium channels from electroplax are not essential for functional or structural integrity, they do appear to have a modulating effect on the conductance properties of these channels.  相似文献   

15.
Ion permeation through voltage-gated sodium channels is modulated by various drugs and toxins. The atomistic mechanisms of action of many toxins are poorly understood. A steroidal alkaloid batrachotoxin (BTX) causes persistent channel activation by inhibiting inactivation and shifting the voltage dependence of activation to more negative potentials. Traditionally, BTX is considered to bind at the channel-lipid interface and allosterically modulate the ion permeation. However, amino acid residues critical for BTX action are found in the inner helices of all four repeats, suggesting that BTX binds in the pore. In the octapeptide segment IFGSFFTL in IIIS6 of a cockroach sodium channel BgNa(V), besides Ser_3i15 and Leu_3i19, which correspond to known BTX-sensing residues of mammalian sodium channels, we found that Gly_3i14 and Phe_3i16 are critical for BTX action. Using these data along with published data as distance constraints, we docked BTX in the Kv1.2-based homology model of the open BgNa(V) channel. We arrived at a model in which BTX adopts a horseshoe conformation with the horseshoe plane normal to the pore axis. The BTX ammonium group is engaged in cation-π interactions with Phe_3i16 and BTX moieties interact with known BTX-sensing residues in all four repeats. Oxygen atoms at the horseshoe inner surface constitute a transient binding site for permeating cations, whereas the bulky BTX molecule would resist the pore closure, thus causing persistent channel activation. Our study reinforces the concept that steroidal sodium channel agonists bind in the inner pore of sodium channels and elaborates the atomistic mechanism of BTX action.  相似文献   

16.
The circular dichroic spectra of the acid and sodium salt forms of several sialic acid-containing homo- and hetero-polysaccharides have been measured. The spectra are shown to be influenced by the state of ionization of the carboxyl groups contained in the sialic acid, the location within the individual sialic acid residues of the inter-saccharide linkages, and changes in the configuration of hydroxyl groups remote to the carboxyl group of the sialic acid.  相似文献   

17.
A new class of sodium channel blocker insecticides (SCBIs), which include indoxacarb, its active metabolite, DCJW, and metaflumizone, preferably block inactivated states of both insect and mammalian sodium channels in a manner similar to that by which local anesthetic (LA) drugs block mammalian sodium channels. A recent study showed that two residues in the cockroach sodium channel, F1817 and Y1824, corresponding to two key LA-interacting residues identified in mammalian sodium channels are not important for the action of SCBIs on insect sodium channels, suggesting unique interactions of SCBIs with insect sodium channels. However, the mechanism of action of LAs on insect sodium channels has not been investigated. In this study, we examined the effects of lidocaine on a cockroach sodium channel variant, BgNa(v)1-1a, and determined whether F1817 and Y1824 are also critical for the action of LAs on insect sodium channels. Lidocaine blocked BgNa(v)1-1a channels in the resting state with potency similar to that observed in mammalian sodium channels. Lidocaine also stabilized both fast-inactivated and slow-inactivated states of BgNa(v)1-1a channels, and caused a limited degree of use- and frequency-dependent block, major characteristics of LA action on mammalian sodium channels. Alanine substitutions of F1817 and Y1824 reduced the sensitivity of the BgNa(v)1-1a channel to the use-dependent block by lidocaine, but not to tonic blocking and inactivation stabilizing effects of lidocaine. Thus, similar to those on mammalian sodium channels, F1817 and Y1824 are important for the action of lidocaine on cockroach sodium channels. Our results suggest that the receptor sites for lidocaine and SCBIs are different on insect sodium channels.  相似文献   

18.
Tetrodotoxin (TTX) is a potent blocker of voltage-gated sodium channels, but not all sodium channels are equally sensitive to inhibition by TTX. The molecular basis of differential TTX sensitivity of mammalian sodium channels has been largely elucidated. In contrast, our knowledge about the sensitivity of invertebrate sodium channels to TTX remains poor, in part because of limited success in functional expression of these channels. In this study, we report the functional characterization in Xenopus oocytes of the first non-insect, invertebrate voltage-gated sodium channel from the varroa mite (Varroa destructor), an ecto-parasite of the honeybee. This arachnid sodium channel activates and inactivates rapidly with half-maximal activation at −18 mV and half-maximal fast inactivation at −29 mV. Interestingly, this arachnid channel showed surprising TTX resistance. TTX blocked this channel with an IC50 of 1 μm. Subsequent site-directed mutagenesis revealed two residues, Thr-1674 and Ser-1967, in the pore-forming region of domains III and IV, respectively, which were responsible for the observed resistance to inhibition by TTX. Furthermore, sequence comparison and additional amino acid substitutions suggested that sequence polymorphisms at these two positions could be a widespread mechanism for modulating TTX sensitivity of sodium channels in diverse invertebrates.  相似文献   

19.
Voltage-gated sodium channels (Nav) are complex glycoproteins comprised of an alpha subunit and often one to several beta subunits. We have shown that sialic acid residues linked to Nav alpha and beta1 subunits alter channel gating. To determine whether beta2-linked sialic acids similarly impact Nav gating, we co-expressed beta2 with Nav1.5 or Nav1.2 in Pro5 (complete sialylation) and in Lec2 (essentially no sialylation) cells. Beta2 sialic acids caused a significant hyperpolarizing shift in Nav1.5 voltage-dependent gating, thus describing for the first time an effect of beta2 on Nav1.5 gating. In contrast, beta2 caused a sialic acid-independent depolarizing shift in Nav1.2 gating. A deglycosylated mutant, beta(2-DeltaN), had no effect on Nav1.5 gating, indicating further the impact of beta2 N-linked sialic acids on Nav1.5 gating. Conversely, beta(2-DeltaN) modulated Nav1.2 gating virtually identically to beta2, confirming that beta2 N-linked sugars have no impact on Nav1.2 gating. Thus, beta2 modulates Nav gating through multiple mechanisms possibly determined by the associated alpha subunit. Beta1 and beta2 were expressed together with Nav1.5 or Nav1.2 in Pro5 and Lec2 cells. Together beta1 and beta2 produced a significantly larger sialic acid-dependent hyperpolarizing shift in Nav1.5 gating. Under fully sialylating conditions, the Nav1.2.beta1.beta2 complex behaved like Nav1.2 alone. When sialylation was reduced, only the sialic acid-independent depolarizing effects of beta2 on Nav1.2 gating were apparent. Thus, the varied effects of beta1 and beta2 on Nav1.5 and Nav1.2 gating are apparently synergistic and highlight the complex manner, through subunit- and sugar-dependent mechanisms, by which Nav activity is modulated.  相似文献   

20.
Local anesthetics (LAs) are compounds that inhibit the propagation of action potentials in excitable tissues by blocking voltage-gated Na+ channels. Mutagenesis studies have demonstrated that several amino acid residues are important sites of LA interaction with the channel, but these studies provide little information regarding the molecular forces that govern drug-binding interactions, including the binding orientation of drugs. We used computational methods to construct a simple model of benzocaine analog binding with the D4S6 segment of rat skeletal muscle (NaV4.1) sodium channels. The model revealed that four hydrophobic residues form a binding cavity for neutral LAs, and docking studies indicated that increasing hydrophobicity among the benzocaine analogs allowed a better fit within the binding cavity. The similarities between our simple model and published experimental data suggested that modeling of LA interactions with sodium channels, along with experimental approaches, could further enhance our understanding of LA interactions with sodium channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号