首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dielectric dispersion measurements were made on aqueous solutions of a triple-helical polysaccharide schizophyllan over a wide concentration range 10-50 wt % at -45 to +30 degrees C. In the solution state, three different water structures with the different relaxation times tau were found, namely, bound water (taul), structured water (taus), and loosely structured water (tauls) in addition to free water (tauP). Structured water is less mobile and loosely structured water is nearly as mobile as free water, but bound water with taul is much less mobile, thus taul > taus > tauls greater, similar tauP. The order-disorder transition accompanies the conversion between structured water and loosely structured water. However, the species with taus remains even in the disordered state and constitutes part of bound water in the entire temperature range. In the frozen state, in addition to bulk water formed by partial melting, two mobile species existed, which were assigned to liquidlike bound water and found to be a continuation of bound water in the solution state. These relaxation time data are discussed in connection with the entropy levels of the four structures deduced from heat capacity data (cf. Yoshiba, K.; et al. Biomacromolecules 2003, 4, 1348-1356).  相似文献   

2.
Deuterium oxide solutions of schizophyllan, a triple-helical polysaccharide, undergoing an order-disorder transition centered at 17 degrees C, were studied by optical rotation (OR) and heat capacity (C(p)) to elucidate the molecular mechanism of the transition and water structure in the solution and frozen states. The ordered structure at low temperature consisted of the side chains and water in the vicinity forming an ordered hydrogen-bonded network surrounding the helix core and was disordered at higher temperature. In the solution state appeared clearly defined transition curves in both the OR and C(p) data. The results for three samples of different molecular weights were analyzed theoretically, treating this transition as a typical linear cooperative transition from the ordered to disordered states and explained quantitatively if the molecular weight polydispersity of the sample was considered. The excess heat capacity C(EX)(p) defined as the C(p) minus the contributions from schizophyllan and D(2)O was estimated. In the frozen state it increased with raising temperature above 150 K until the mixture melted. This was compared with the dielectric increment observed in this temperature range and ascribed to unfreezable water. From the heat capacity and dielectric data, unfreezable water is mobile but more ordered than free water. In the solution state, the excess heat capacity originates from the interactions of D(2)O molecules as bound water and structured water, and so forth. Thus the schizophyllan triple helix molds water into various structures of differing orders in solution and in the solid state.  相似文献   

3.
Schizophyllan exists in aqueous solution as a triple helix, which is intact at room temperature. Its aqueous solution forms some ordered structure at low temperatures but undergoes a sharp transition to a disordered structure as the temperature is raised. The transition temperature Tc is about 7 and 18°C for H2O and D2O solutions, respectively. This transition was followed by time-domain reflectometry to investigate dynamic aspects of the transition. In addition to a major peak around 10 GHz, the dielectric dispersion curve of a 20 wt % schizophyllan in D2O exhibited a small peak around 100 MHz below Tc and around 10 MHz above Tc. The major peak is due to bulk water, whereas the 100 MHz peak is assigned to “bound” or “structured” water, and that around 10 MHz to side-chain glucose residues. However, unlike usual bound water reported for biopolymer solutions, this “structured” water disappears abruptly when the temperature becomes close to Tc without accompanying a conformational transition of the main chain. The above assignment is consistent with the structure of the ordered phase derived from previous static data that it consists of side-chain glucose residues along with nearby water molecules surrounding the helix core that are interacting with each other loosely through hydrogen bonds, and spreads radially only a layer of one or two water molecules but a long distance along the helix axis. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
Deuterium oxide solutions of a triple-helical polysaccharide schizophyllan, undergoing an order-disorder transition centered around 17 degrees C, were studied by the time-domain reflectometry (TDR) to obtain dielectric dispersions in the solution and frozen states. In the solution state, the dispersion below the transition temperature is resolved in three dispersions (relaxation times at 0 degrees C) ascribed to side chain glucose residue (1; 102 ns), structured water (s; 2.0 ns) and bulk water (h), respectively, from low to high frequencies. Bulk water is divided into slow water (h2; 0.04 ns) and free or pure water (h1; 0.02 ns). Above the transition temperature structured water almost disappears and is compensated by slow water. Structured water is similar to bound water for proteins but different from it because of this transition behavior. Another dispersion (l) seen at the lowest frequency is assigned to the rotation of side-chain glucose residue coupled with hydrated water. Parts of this dispersion and structured water are suggested to constitute bound water. In the frozen state were observed a major dispersion (h; 0.14 ns) and a minor one (m; 28 ns), which were ascribed to considerably mobile and less mobile waters. They are similar to but not exactly the same as that for unfreezable water in bovine serum albumin solutions argued by Miura et al. (Biopolymers, 1995, Vol. 36, p. 9). Water is molded into different structures by the triple helix.  相似文献   

5.
The cell wall of the gram-negative marine pseudomonad (American Type Culture Collection 19855) consists of three layers: the loosely bound outer layer, the outer double-track layer, and the underlying layer. These three layers constitute 4.7, 7.9, and 6.1%, respectively, of the dry weight of the whole cells. All three layers contained protein, lipid, and carbohydrate. The loosely bound outer layer and underlying layer were lower in protein and lipid and higher in amino and nonamino carbohydrate than the outer double-track layer. All three layers contained proteins with similar amino acid compositions. Minicell-like forms attached to the ends of cells were separated with and fractionated from the units of loosely bound outer layer. Examination of negatively stained preparations by electron microscopy revealed the loosely bound outer layer to be composed largely of units ranging from 400 to 1000 nm in diameter. The outer double-track layer, by the same technique, appeared as large, usually rounded sheets, each with a distinct rim. Washing this layer changed the gross chemical composition but did not affect the bimolecular leaflet appearance in thin sections. The underlying layer, when negatively stained, appeared to be composed of a heterogeneous mixture of particles differing in size and shape. It was separated by gel filtration into a large fraction with a molecular weight range in excess of 20 × 106 to 40 × 106 and a small fraction with a lower range of molecular weight. The larger fraction contained both protein and hexosamine, whereas the smaller one contained protein and only traces of hexosamine. A cytochrome-like pigment separated with this latter fraction.  相似文献   

6.
Recently established standardized protocols for collection, handling, and storage of CSF for measurement of gamma-aminobutyric acid (GABA) have proven valuable in the characterization of various CNS disorders. In response to two recent reports which may have an impact on certain widely used protocols, we have, using the confirmed ion-exchange/fluorometric procedure, systematically evaluated the effects of deproteinization with various concentrations of sulfosalicylic acid (SSA) ranging from 0 to 10% (100 mg/ml), as well as the effects of freeze/thaw (F/T) on CSF GABA levels. Results of F/T studies documented that levels are stable to freezing and thawing. Acid deproteinization studies revealed the presence of an equilibrium between strictly free GABA, demonstrable only in acid-free CSF, and a very loosely bound form of GABA, fully demonstrable only in CSF deproteinized with concentrations of SSA above 1% (10 mg/ml). The relationship between GABA concentrations in undeproteinized and acid-deproteinized CSF revealed a highly significant (p less than .001) correlation, suggesting that alterations of central GABAergic activity would be reflected by either the level of strictly free GABA or free plus loosely bound GABA. This hypothesis was upheld in studies of patients with Parkinson's disease (PD) and Huntington's disease (HD), two neurologic disorders in which dysfunctions of the GABA system have been implicated. Results indicated that CSF GABA levels are significantly reduced in both PD and HD patients compared with neurologically normal controls, whether the measurement is of free GABA or free plus loosely bound GABA. Thus, we conclude that the level of strictly free GABA is stable to freezing and thawing and can only be accurately determined in nonacidified CSF; however, existing protocols employing deproteinization in 5% SSA yield data that provide an equally good reflection of central GABAergic transmission.  相似文献   

7.
Multinuclear NMR study of enzyme hydration in an organic solvent   总被引:2,自引:0,他引:2  
Multinuclear NMR spectroscopy has been used to study water bound to subtilisin Carlsberg suspended in tetrahydrofuran (THF), with the water itself employed as a probe of the hydration layer's physicochemical and dynamic characteristics. The presence of the enzyme did not affect the intensity, chemical shift or linewidth of water (up to 8% v/v) added to THF, as measured by 17O- and 2H-NMR. This finding suggests that hydration of subtilisin can be described by a three-state model that includes tightly bound, loosely bound, and free water. Solid-state 2H-NMR spectra of enzyme-bound D2O support the existence of a non-exchanging population of tightly bound water. An important implication is that the loosely-bound water is the same as free water from an NMR viewpoint. This loosely bound water must also be the water responsible for the large increase in catalytic activity observed in previous hydration studies.  相似文献   

8.
In an attempt to understand the initial stage of seed imbibition—the wetting stage—we have examined water binding in dry soybean cotyledon tissue using water sorption isotherm curves. The sorption isotherms show three levels of water affinity: a region of strongly bound water at moisture contents below 8%, a region of weakly bound water at moisture contents between 8 and 24%, and a region of very loosely bound water at contents greater than 24%. The enthalpies of the water binding for the three sectors were −6 to −12.5, about −2.5, and about −0.5 kilocalories per mole water, respectively.

The degree of physiological activity in the tissue reflects the level of water binding. O2 consumption is first detectable in the second region of water affinity (8-24% water), and increases dramatically with increasing water content above about 24%. Damage due to imbibing water is greatest when initial seed moisure contents are in the region of strongest water binding. Damage is lessened and finally absent when seed moisture contents are increased to the second and then to the third level of water affinity.

  相似文献   

9.
Initial stages of lichen hydration observed by proton magnetic relaxation   总被引:1,自引:0,他引:1  
The hydration of selected lichens ( Cladonia mitis , Cladonia bellidiflora , Cetraria islandica , Parmelia saxatilis , and Xanthoria parietina ) was investigated using gravimetry and proton magnetic free induction decays (FIDs).
The hydration from gaseous phase and dehydration to gaseous phase showed first-order kinetics. The amount of water which was non-removable in the air-dry state (relative humidity p / p 0=9%) did not depend significantly on the lichen species and was found to be 5·6±1·0% of the d. wt.
The proton FID Gaussian component from the solid matrix of thallus structure, and two (or, depending on lichen species, one averaged) liquid signals coming from water tightly bound on the surface of thallus solid matrix and from loosely bound or free water, were recorded. The bound-water component was distinguished by its motional properties and by its proximity to endogenous paramagnetic centres present in solid matrix (presumably PS II reaction centres of the photobiont). Mild dehydration (from gaseous phase) could completely remove the loosely bound water fraction, leaving the system below the water percolation threshold and below the water clustering point, emphasizing the passivity of lichen response to desiccation shock. In the species in which the one average liquid component was recorded, bound water behaved similarly.
The hydration at which free water pool vanishes (Δ M / m 0) and the relative (scaled to water) proton densities of solid matrix of lichen (β) were evaluated for all lichens investigated.  相似文献   

10.
Shi Z J  Wang Y H  Yu P T  Xu L H  Xiong W  Guo H 《农业工程》2008,28(12):6090-6098
The water-retaining capacity, percolation and evaporation of stony soil in Liupan Mountains, China, were measured in order to understand the effect of rock fragments on soil hydrological processes. The results indicated that the effective water-retaining capacity of soil is positively related with the volumetric content of rock fragments, but there is no relation between saturated water-retaining capacity and rock fragment content. For the soil layers within 0–40 cm, the steady infiltration rate increases with increasing volumetric content of rock fragments until it reaches the range of 15%–20%, and then it decreases when the rock fragment content further increases. For the soil layers below 40 cm, the steady infiltration rate always increases with increasing rock fragment content. The soil evaporation rate decreases with increasing volumetric content of rock fragments when it varies in the range of 0–20%, while the soil evaporation rate keeps basically stable when the rock fragment content is higher than 20%. The soil evaporation rate shows a rising tendency with increasing size of rock fragments.  相似文献   

11.
半干旱黄土丘陵区沙棘的水分生理生态及群落特性研究   总被引:20,自引:1,他引:19  
1977~1998年在陕西吴旗、安塞半干旱黄土丘陵区对沙棘的水分生理生态及群落学特性进行了分析研究。试验结果表明:(1)沙棘有一定的耐旱能力,为广生态幅植物;(2)沙棘生长迅速,竞争力强,第3~4年即可形成茂密的单优群落,以后随着自然稀蔬,能形成良好的藻木一草本群落;(3)消棘适应半干旱黄土丘陵区陵区生境的水分生理生态特性是:棘缚水含量随灌木--草本群落;(3)沙棘适应半干旱黄土丘陵区生境的水分生  相似文献   

12.
Kesimer M  Sheehan JK 《Glycobiology》2008,18(6):463-472
Glyconjugates such as mucins, proteoglycans, and polysaccharides form the structural basis of protective cell-surface layers. In particular gel-forming mucins define a zone between the epithelial cell layer and the environment. Such molecules are of extreme molecular weight 5-100 x 10(6) and size (Rg 20-300 nm). On this account their biochemistry is inseparable from their physical biochemistry. Combining laser light scattering and quartz crystal mass balance with dissipation methods (QCM-D) we have investigated the properties of the MUC5B mucin and its cognate fragments when bound to a hydrophobic surface. MUC5B forms the basis of gels responsible for the protection of the oral cavity, lung, and cervical canal surfaces. Here we show, by analyzing dissipative interactions of hydrophobic, gold, and polystyrene surfaces, with the intact MUC5B molecule, its reduced subunits, and glycosylated tryptic fragments (obtained after reduction), the formation of 40- to 100-nm-thick highly structured, hydrated interfaces. These interfaces are dominated in their geometry and dissipative properties by the negatively charged carbohydrate-rich domains of the molecule, the naked protein domains being responsible for attachment. These carbohydrate-rich surfaces have well-defined absorptive properties and permit the entry and entrapment of albumin-coated micro-beads into the absorbed layer at and below a size of 60 nm. However beads larger than 100 nm are completely excluded from the surfaces. These absorptive phenomena correlate with large changes in film dissipation and thus may not only be important in biological functions, e.g. binding viruses, but could also be informative to the surfaces (often ciliated) onto which such mucus films are attached.  相似文献   

13.
Wong KY  Gao J 《Biochemistry》2007,46(46):13352-13369
Molecular dynamics simulations employing combined quantum mechanical and molecular mechanical (QM/MM) potentials have been carried out to investigate the reaction mechanism of the hydrolysis of paraoxon by phosphotriesterase (PTE). We used a dual-level QM/MM approach that synthesizes accurate results from high-level electronic structure calculations with computational efficiency of semiempirical QM/MM potentials for free energy simulations. In particular, the intrinsic (gas-phase) energies of the active site in the QM region are determined by using density functional theory (B3LYP) and second-order M?ller-Plesset perturbation theory (MP2) and the molecular dynamics free energy simulations are performed by using the mixed AM1:CHARMM potential. The simulation results suggest a revised mechanism for the phosphotriester hydrolysis mechanism by PTE. The reaction free energy profile is mirrored by structural motions of the binuclear metal center in the active site. The two zinc ions occupy a compact conformation with an average zinc-zinc distance of 3.5 +/- 0.1 A in the Michaelis complex, whereas it is elongated to 5.3 +/- 0.3 A at the transition state and product state. The substrate is loosely bound to the more exposed zinc ion (Znbeta2+) at an average distance of 3.8 A +/- 0.3 A. The P=O bond of the substrate paraoxon is activated by adopting a tight coordination to the Znbeta2+, releasing the coordinate to the bridging hydroxide ion and increasing its nucleophilicity. It was also found that a water molecule enters into the binding pocket of the loosely bound binuclear center, originally occupied by the nucleophilic hydroxide ion. We suggest that the proton of this water molecule is taken up by His254 at low pH or released to the solvent at high pH, resulting in a hydroxide ion that pulls the Znbeta2+ ion closer to form the compact configuration and restores the resting state of the enzyme.  相似文献   

14.
Free polyribosomes and polyribosomes bound to endoplasmic membranes were isolated from 10-day-old chick embryos by differential centrifugation. The tightly and loosely bound polyribosomal fractions were isolated from the membrane-bound polyribosomes using 0,5 M KCl. The synthesis of collagen and non-collagen proteins on the polyribosomes were studied in a homologous cell-free system. It was shown that the polyribosomes tightly bound to the membranes possess a lower protein-synthesizing activity as compared to free and loosely bound polyribosomes. The amount of bacterial collagenase-cleaved polypeptides in the protein product synthesized on the polyribosomes tightly and loosely bound to the memranes and on free polyribosomes is 31, 23 and 9%, respectively. The data obtained suggest that the loosely bound polyribosomes are actively involved in collagen synthesis and that this fraction is not a contamination of free polyribosomes in the preparations of totally bound polyribosomes. The role of tightly and loosely bound polyribosomes in the formation of the membrane polyribosomal complex is discussed.  相似文献   

15.
Intravenous iron therapy is used to treat anemia associated with chronic kidney disease. The chemical structures of parenteral iron agents have not been characterized in detail, and correlations between structure, efficiency of iron delivery, and toxicity via catalysis of oxygen-derived free radical creation remain to be established. In this study, two formulations of parenteral iron have been characterized by absorption spectroscopy, X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM), and elemental analysis. The samples studied were Venofer (Iron Sucrose Injection, USP) and Ferrlecit (Sodium Ferric Gluconate in Sucrose Injection). The 250-800-nm absorption spectra and the XRD patterns showed that both formulations contain a mineral core composed of iron oxyhydroxide in the beta-FeOOH mineral polymorph known as akaganeite. This was further confirmed for each formulation by imaging using TEM and AFM. The average core size for the nanoparticles, after dialysis to remove unbound or loosely bound carbohydrate, was approximately 3+/-2 nm for the iron-sucrose, and approximately 2+/-1 nm for the iron-gluconate. Each of the nanoparticles consists of a mineral core, surrounded by a layer of bound carbohydrate. The overall diameter of the average bead in the dialyzed preparations was approximately 7+/-4 nm for the iron-sucrose, and 3+/-1 nm for the iron-gluconate. Undialyzed preparations have particles with larger average sizes, depending on the extent of dilution of unbound and loosely bound carbohydrate. At a dilution corresponding to a final Fe concentration of 5 mg/mL, the average particle diameter in the iron-sucrose formulation was approximately 22+/-9 nm, whereas that of the iron-gluconate formulation was approximately 12+/-5 nm.  相似文献   

16.
The exposure of maize plants to drought led in most cases to a decrease in both the total and free water percentages, but to an increase in cell sap concentration, bound water percentage and bound water/free water ratio, comparing with the case of normal water supply. The employment of any of the studied treatments at either the normal or low soil moisture levels led throughout the period of time preceding the milky stage to a decrease in the free water percentage in maize leaves, but to the reverse effect with respect to both the bound water percentage and the bound water/free water ratio. The determinations of water fractions in leaves (free, bound water % and the ratio between them) before or at the tasseling stage appeared to be more reliable, compared with osmotic pressure determinations, as indication for the effective use of a given treatment in increasing the drought resistance of maize plants.  相似文献   

17.
To determine whether root-to-shoot signalling of soil moisture heterogeneity depended on root distribution, wild-type (WT) and abscisic acid (ABA)-deficient (Az34) barley (Hordeum vulgare) plants were grown in split pots into which different numbers of seminal roots were inserted. After establishment, all plants received the same irrigation volumes, with one pot watered (w) and the other allowed to dry the soil (d), imposing three treatments (1 d: 3 w, 2 d: 2 w, 3 d: 1 w) that differed in the number of seminal roots exposed to drying soil. Root distribution did not affect leaf water relations and had no sustained effect on plant evapotranspiration (ET). In both genotypes, leaf elongation was less and leaf ABA concentrations were higher in plants with more roots in drying soil, with leaf ABA concentrations and water potentials 30% and 0.2 MPa higher, respectively, in WT plants. Whole-pot soil drying increased xylem ABA concentrations, but maximum values obtained when leaf growth had virtually ceased (100 nm in Az34, 330 nm in WT) had minimal effects (<40% leaf growth inhibition) when xylem supplied to detached shoots. Although ABA may not regulate leaf growth in vivo, genetic variation in foliar ABA concentration in the field may indicate different root distributions between upper (drier) and lower (wetter) soil layers.  相似文献   

18.
We consider the influence of the molecular structure of phospholipid membranes on their dielectric properties in the radio frequency range. Membranes have a stratified dielectric structure on the submolecular level, with the lipid chains forming a central hydrophobic layer enclosed by the polar headgroups (HGs) and bound water layers. In our numerical model, isotropic permittivities of 2.2 and 48.8 were assigned to the lipid chain and bound water layers, respectively. The HG region was assumed to possess an anisotropic static permittivity with 142.2 and 30.2 in the tangential and normal directions, respectively. The permittivities of the HG and bound water regions have been assumed to disperse at frequencies around 51 and 345 MHz to become 2.2 and 1.8, respectively, in both the normal and tangential directions. Electric field distribution and absorption were calculated for phospholipid vesicles with 75 nm radius as an example. Significant absorption has been obtained in the HG and bound water regions. Averaging the membrane absorption over the layers resulted in a decreased absorption below 1 GHz but a more than 10-fold increase above 1 GHz, compared to a model with a homogeneous membrane of averaged properties. We propose single particle dielectric spectroscopy by AC electrokinetics at low-bulk medium conductivities for an experimental verification of our model.  相似文献   

19.
Eight samples of a polysaccharide schizophyllan ranging in weight-average molecular weight Mw (in water) from 5 x 10(3) to 1.3 x 10(5) were prepared and their antitumor activity (expressed in terms of the tumor inhibition ratio) against Sarcoma 180 ascites, intrinsic viscosities [eta], and gel-filtration chromatograms in aqueous solution were determined. The tumor inhibition ratio was essentially unity for samples with Mw higher than 9 x 10(4), but reduced to zero or even to a negative value when Mw was lower than 10(4). The [eta] data combined with the chromatographic data showed that above Mw approximately 9 x 10(4) the predominant species of schizophyllan in aqueous solution is the previously found rigid triple helix, whereas below Mw approximately 9 x 10(4) both triple helices and single chains coexist in the solution and the fraction of triple helices decreases monotonically to zero as Mw is decreased to 5 x 10(3). From these findings it was concluded that the antitumor potency of schizophyllan in water is related to the amount of triple helices relative to that of single chains.  相似文献   

20.
An evaluation of the hydration of lysozyme by an NMR titration method   总被引:2,自引:0,他引:2  
In this study a new titration method is proposed to study the motional properties of water molecules in conjunction with globular proteins using proton NMR relaxation measurements. The method was applied to the study of the interaction of water with lysozyme and allowed identification of four water fractions-superbound water, polar-bound water, structured water and bulk water - in exchanged equilibrium. The titration demonstrated that 193 water molecules are hydrogen bonded directly to the lysozyme molecule. The combination of structured and bound water extends to 1.4 g H2O per g lysozyme and approx. two to three layers from the surface of the macromolecule. It is proposed that this structured water is related to non-isotropic water rotation in conjunction with hydrophobic patches and directly related to 'hydrophobic bonding' changes. Water amounts greater than 1.4 g H2O per g lysozyme are sufficiently distant from the macromolecule for motion to revert to that typical of water in bulk. The typical correlation times for water motion in the four fraction are: over 10(-6) s (superbound); 10(-9) s (polar bound); 10(-11) s (structured) and 10(-12) s (bulk). These results correlate well with results from other measurement techniques found in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号