首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The generation of the paraxial skeleton requires that commitment and differentiation of skeletal progenitors is precisely coordinated during limb outgrowth. Several signaling molecules have been identified that are important in specifying the pattern of these skeletal primordia. Very little is known, however, about the mechanisms regulating the differentiation of limb mesenchyme into chondrocytes. Overexpression of RARalpha in transgenic animals interferes with chondrogenesis and leads to appendicular skeletal defects (Cash, D.E., C.B. Bock, K. Schughart, E. Linney, and T.M. Underhill. 1997. J. Cell Biol. 136:445-457). Further analysis of these animals shows that expression of the transgene in chondroprogenitors maintains a prechondrogenic phenotype and prevents chondroblast differentiation even in the presence of BMPs, which are known stimulators of cartilage formation. Moreover, an RAR antagonist accelerates chondroblast differentiation as demonstrated by the emergence of collagen type II-expressing cells much earlier than in control or BMP-treated cultures. Addition of Noggin to limb mesenchyme cultures inhibits cartilage formation and the appearance of precartilaginous condensations. In contrast, abrogation of retinoid signaling is sufficient to induce the expression of the chondroblastic phenotype in the presence of Noggin. These findings show that BMP and RAR-signaling pathways appear to operate independently to coordinate skeletal development, and that retinoid signaling can function in a BMP-independent manner to induce cartilage formation. Thus, retinoid signaling appears to play a novel and unexpected role in skeletogenesis by regulating the emergence of chondroblasts from skeletal progenitors.  相似文献   

2.
3.
The vitamin A metabolite, retinoic acid, carries out essential and conserved roles in vertebrate heart development. Retinoic acid signals via retinoic acid receptors (RAR)/retinoid X receptors (RXRs) heterodimers to induce the expression of genes that control cell fate specification, proliferation, and differentiation. Alterations in retinoic acid levels are often associated with congenital heart defects. Therefore, embryonic levels of retinoic acid need to be carefully regulated through the activity of enzymes, binding proteins and transporters involved in vitamin A metabolism. Here, we review evidence of the complex mechanisms that control the fetal uptake and synthesis of retinoic acid from vitamin A precursors. Next, we highlight recent evidence of the role of retinoic acid in orchestrating myocardial compact zone growth and coronary vascular development.  相似文献   

4.
Retinoic acid (RA) is a vitamin A metabolite that acts as a morphogen and teratogen. Excess or defective RA signaling causes developmental defects including in the heart. The heart develops from the anterior lateral plate mesoderm. Cardiogenesis involves successive steps, including formation of the primitive heart tube, cardiac looping, septation, chamber development, coronary vascularization, and completion of the four‐chambered heart. RA is dispensable for primitive heart tube formation. Before looping, RA is required to define the anterior/posterior boundaries of the heart‐forming mesoderm as well as to form the atrium and sinus venosus. In outflow tract elongation and septation, RA signaling is required to maintain/differentiate cardiogenic progenitors in the second heart field at the posterior pharyngeal arches level. Epicardium‐secreted insulin‐like growth factor, the expression of which is regulated by hepatic mesoderm‐derived erythropoietin under the control of RA, promotes myocardial proliferation of the ventricular wall. Epicardium‐derived RA induces the expression of angiogenic factors in the myocardium to form the coronary vasculature. In cardiogenic events at different stages, properly controlled RA signaling is required to establish the functional heart.  相似文献   

5.
The limb defect in the mouse Hypodoctyly (Hd) affects only the distal structures. Heterozygotes (Hd/+) lack all or part of the distal phalanx and the terminal claw of digit 1 on the hindlimbs; mice homozygous (Hd/Hd) for the mutation have just one digit on each of the four limbs. Early limb development in the mutant appears normal and a change in morphology can only be detected later. Limb buds of Hd/+ and Hd/Hd embryos become reduced in width, with Hd/Hd buds becoming very pointed instead of rounded. This change in bud shape is correlated with an increase in cell death anteriorly in Hd/+ hindlimbs and both anteriorly and posteriorly in Hd/Hd fore- and hindlimb buds. The apical ectodermal ridge is very pronounced in pointed Hd/Hd limb buds. Mesenchyme cells from the Hd/Hd mutant in culture show a cell-autonomous change in behaviour and less cartilage differentiates. © 1996 Wiley-Liss, Inc.  相似文献   

6.
Mammalian WNT genes encode secreted glycoproteins that are conserved homologues of the Drosophila Wingless gene, which plays a crucial role in Drosophila development. Recently, WNT pathway signaling has been implicated in ovarian development, oogenesis, and early development. We sought to evaluate whether these genes may contribute to the formation of healthy human oocytes or embryos, and whether the expression of these genes could provide informative markers of human oocyte and embryo quality. To do this, we employed the primate embryo gene expression resource (PREGER; www.preger.org) to examine expression of mRNAs encoding 38 components of the WNT signaling pathway in rhesus monkey oocytes and embryos as a nonhuman primate model. We observed considerable conservation between rhesus monkey and mouse of expression of WNT, FZD, and effector gene mRNAs, and a generalized downregulation of genes encoding key components of the WNT signaling pathway during preimplantation development. Our results support a role for WNT signaling during oocyte growth or maturation, but not during preimplantation development. Additionally, we observed differences between in vitro cultured and in vivo developing blastocysts, indicating possible effects of culture on WNT signaling during the peri-implantation period.  相似文献   

7.
BACKGROUND: Derivatives of retinol (vitamin A), commonly referred to as retinoids, signal through retinoic acid and retinoid X receptors (RARs/RXRs) and are essential for normal limb formation. Retinoid imbalances or perturbations in receptor function result in aberrant limb development. To examine the mechanisms underlying retinol-induced limb defects, we determined the responsiveness of limbs from RARalpha1-/-gamma mice to excess retinol in vitro. METHODS: RARalpha1-/-gamma+/- mice were bred and their embryos were recovered at gestational day (GD) 12.5. The forelimbs were excised and cultured in vitro in the presence of all-trans retinol acetate (0, 1.25, 12.5, or 62.5 microM) for 6 days. The expression profiles of genes known to affect chondrogenesis (sox9 and col2a1) and limb outgrowth (meis1, meis2, and pbx1a) were examined by real-time qRT-PCR following retinol exposure for 3 hr. RESULTS: Whereas RARalpha1-/-gamma+/+ and RARalpha1-/-gamma+/- limbs exhibited deleterious effects on limb outgrowth and chondrogenesis in the presence of exogenous retinol, this outcome was significantly attenuated in RARalpha1-/-gamma-/- limbs. The expressions of sox9 and col2a1 were significantly decreased in retinol-exposed RARalpha1-/-gamma+/+ limbs. In contrast, expression was not altered in limbs from their RARalpha1-/-gamma+/- or RARalpha1-/-gamma-/- littermates. Retinol exposure upregulated the expression of meis1 and meis2 in RARalpha1-/-gamma+/+ limbs; however, in RARalpha1-/-gamma-/- limbs the expression of both genes was unresponsive to retinol. Pbx1a remained unresponsive to retinol treatment in all genotypes. CONCLUSION: In the absence of RARalpha1, RARgamma is a functionally important mediator of retinoid-induced limb dysmorphogenesis.  相似文献   

8.
Cytokinins are essential hormones for the proper growth and development of plants. They exert their actions through the phosphorylation of two-component signaling factors. The two-component elements in cytokinin signaling display not only overlapping, but also specific functions throughout a life cycle. These elements regulate the development of shoots, roots, and inflorescence meristems inArabidopsis; shoot meristems in rice; and nodule formation in the lotus. They are also involved in interactions between plants and pathogens. In this review, we examine the mechanism for signaling events initiated by cytokinins inArabidopsis.  相似文献   

9.
Retinoic acid (RA) signaling plays critical roles in the regionalization of the central nervous system and mesoderm of all vertebrates that have been examined. However, to date, a role for RA in pancreas and liver development has only been demonstrated for the teleost zebrafish. Here, we demonstrate that RA signaling is required for development of the pancreas but not the liver in the amphibian Xenopus laevis and the avian quail. We disrupted RA signaling in Xenopus tadpoles, using both a pharmacological and a dominant-negative strategy. RA-deficient quail embryos were obtained from hens with a dietary deficiency in vitamin A. In both species we found that pancreas development was dependent on RA signaling. Furthermore, treatment of Xenopus tadpoles with exogenous RA led to an expansion of the pancreatic field. By contrast, liver development was not perturbed by manipulation of RA signaling. Taken together with our previous finding that RA signaling is necessary and sufficient for zebrafish pancreas development, these data support the hypothesis that a critical role for RA signaling in pancreas development is a conserved feature of the vertebrates.  相似文献   

10.
《Cell reports》2023,42(4):112325
  1. Download : Download high-res image (157KB)
  2. Download : Download full-size image
  相似文献   

11.
BMP signaling in skeletal development   总被引:16,自引:0,他引:16  
Development of the vertebrate skeleton, a complex biological event that includes diverse processes such as formation of mesenchymal condensations at the sites of future skeletal elements, osteoblast and chondrocyte differentiation, and three dimensional patterning, is regulated by many growth factors. Bone morphogenetic proteins (BMPs), members of the TGF-beta superfamily, play a pivotal role in the signaling network and are involved in nearly all processes associated with skeletal morphogenesis. BMP signals are transduced from the plasma membrane receptors to the nucleus through both Smad pathway and non-Smad pathways, and regulated by many extracellular and intercellular proteins that interact with BMPs or components of the BMP signaling pathways. To gain a better understanding of the molecular mechanisms underlying the role of BMP in early skeletal development, it is necessary to elucidate the BMP signaling transduction pathways in chondrocytes and osteoblasts. The major objective of this review was to summarize BMP signaling pathways in the context of craniofacial, axial, and limb development. In particular, this discourse will focus on recent advances of the role of different ligands, receptors, Smads, and BMP regulators in osteoblast and chondrocyte differentiation during embryonic development.  相似文献   

12.
13.
Salamanders are infrequently mentioned in analyses of tetrapod limb formation, as their development varies considerably from that of amniotes. However, urodeles provide an opportunity to study how limb ontogeny varies with major differences in life history. Here we assess limb development in Desmognathus aeneus, a direct-developing salamander, and compare it to patterns seen in salamanders with larval stages (e.g., Ambystoma mexicanum). Both modes of development result in a limb that is morphologically indistinct from an amniote limb. Developmental series of A. mexicanum and D. aeneus were investigated using Type II collagen immunochemistry, Alcian Blue staining, and whole-mount TUNEL staining. In A. mexicanum, as each digit bud extends from the limb palette Type II collagen and proteoglycan secretion occur almost simultaneously with mesenchyme condensation. Conversely, collagen and proteoglycan secretion in digits of D. aeneus occur only after the formation of an amniote-like paddle. Within each species, Type II collagen expression patterns resemble those of proteoglycans. In both, distal structures form before more proximal structures. This observation is contrary to the proximodistal developmental pattern of other tetrapods and may be unique to urodeles. In support of previous findings, no cell death was observed during limb development in A. mexicanum. However, apoptotic cells that may play a role in digit ontogeny occur in the limbs of D. aeneus, thereby suggesting that programmed cell death has evolved as a developmental mechanism at least twice in tetrapod limb evolution.  相似文献   

14.
15.
Cartilage formation in the embryonic limb is presaged by a cellular condensation phase that is mediated by both cell-cell and cell-matrix interactions. N-Cadherin, a Ca(2+)-dependent cell-cell adhesion molecule, is expressed at higher levels in the condensing mesenchyme, followed by down-regulation upon chondrogenic differentiation, strongly suggesting a functional role in the cellular condensation process. To further examine the role of N-cadherin, we have generated expression constructs of wild type and two deletion mutants (extracellular and intracellular) of N-cadherin in the avian replication-competent, RCAS retrovirus, and transfected primary chick limb mesenchymal cell cultures with these constructs. The effects of altered, sustained expression of N-cadherin and its mutant forms on cellular condensation, on the basis of peanut agglutinin (DNA) staining, and chondrogenesis, based on expression of chondrocyte phenotypic markers, were characterized. Cellular condensation was relatively unchanged in cultures overexpressing wild type N-cadherin, compared to controls on all days in culture. However, expression of either of the deletion mutant forms of N-cadherin resulted in decreased condensation, with the extracellular deletion mutant demonstrating the most severe inhibition, suggesting a requirement for N-cadherin mediated cell-cell adhesion and signaling in cellular condensation. Subsequent chondrogenic differentiation was also affected in all cultures overexpressing the N-cadherin constructs, on the basis of metabolic sulfate incorporation, the presence of the cartilage matrix proteins collagen type II and cartilage proteoglycan link protein, and alcian blue staining of the matrix. The characteristics of the cultures suggest that the N-cadherin mutants disrupt proper cellular condensation and subsequent chondrogenesis, while the cultures overexpressing wild type N-cadherin appear to condense normally, but are unable to proceed toward differentiation, possibly due to the prolonged maintenance of increased cell-cell adhesiveness. Thus, spatiotemporally regulated N-cadherin expression and function, at the level of both homotypic binding and linkage to the cytoskeleton, is required for chondrogenesis of limb mesenchymal cells.  相似文献   

16.
Summary Tissue-culture methods can be used to test the developmental capacity of embryonic cells. In micro-mass cultures, derived from wing cells of stages 21 through 24 chick embryos, aggregates of cells form and then differentiate into cartilage nodules, as judged by the presence of an Alcian blue staining extracellular matrix. Wing cells derived from embryos as young as stage 17 can form aggregates. However, unless they are treated with db cyclic AMP and theophylline, it is not until stage 20 that these aggregates can produce cartilage in culture. In clonal cell culture, cartilage colonies are not produced by primary cell suspensions of limb cells until stage 25 when overt cartilage differentiation is occurring in vivo. It is possible to obtain clonable cartilage cells from limb cells from embryos between stages 20 and 24 if the cells are either treated with db cyclic AMP and theophylline or maintained in suspension culture for 12 to 48 hr. On the basis of these in vitro results a multiple step model for the conversion of limb mesenchyme into cartilage cells is proposed. The model involves the appearance of cells with a predisposition to form aggregates, development of the capacity to form cartilage in response to elevated levels of cyclic AMP, the appearance of receptors that translate changes in either cell shape or cell cycle parameters into elevated levels of cyclic AMP, aggregation, elevated levels of cyclic AMP, cartilage cell determination, and differentiation. This model can serve as the basis for further tests. Presented in the Opening Symposium on Nutritional Factors and Differentiation at the 28th Annual Meeting of the Tissue Culture Association, New Orleans, Louisiana, June 6–9, 1977. This work was supported by USPHS Training Grant HD00152 from the National Institute of Child Health and Human Development, while P.B.A. was a postdoctoral trainee, and by NIH Grant HD05505 to M.S.  相似文献   

17.
Summary Forelimbs of Day 11 and Day 12 embryonic mice were excised and cultured for 3 d in the presence of either 0.25 μg (8×10−7 M), 0.5 μg(1.7×10−6 M), or 1.0 μg (3.3×10−6 M) of all-rans retinoic acid (RA) per milliliter of culture medium. Cultured limbs were fixed, stained, and mounted whole on glass slides and evaluated with computerized optical image analysis for RA-induced effects on the area and shape of the total limb and individual bone anlagen. Relative effects of RA on total bone, soft tissue, long bone, and paw regions were also examined. With Day 11 forelimbs total bone area was increased by 10.5% by the low dose of RA. The increase was mostly in long bones and at the expense of soft tissue. Total bone area was increased 9.3% with Day 12 forelimbs. This increase was primarily in the paw. The high dose of RA decreased Day 11 forelimb area, primarily affecting long bones. Day 12 forelimbs were not significantly affected by the high dose of RA. Effects of the imtermediate dose were primarily limited to reduction in soft tissue area. Long bone:paw and soft tissue: bone ratios reflected these effects. The high dose produced a consistent rounding or shortening of Day 11 forelimb bones. On Day 12 0.5 μg/ml RA produced an inconsistent pattern of rounding of bone anlagen. Treatment with the high dose on Day 12 produced angular rather than rounded contours in many cases, as indicated by shape factor values closer to zero than obtained with controls. These data show that direct exposure to RA can affect both the size and shape of bone anlagen of the developing limb; the low dose enhances and the high dose depresses development. The results support previous studies which suggest that RA may play a critical role in the control of cell activities such as cell migration, proliferation, and cytodifferentiation in the development of the cartilaginous bone anlagen.  相似文献   

18.
The effect of hypoxia in development   总被引:1,自引:0,他引:1  
There is increasing evidence that the oxygen supply to the human embryo in the first trimester is tightly controlled, suggesting that too much oxygen may interfere with development. The use of hypoxia probes in mammalian embryos during the organogenic period indicates that the embryo is normally in a state of partial hypoxia, and this may be essential to control cardiovascular development, perhaps under the control of hypoxia-inducible factor (HIF). A consequence of this state of partial hypoxia is that disturbances in the oxygen supply can more easily lead to a damaging degree of hypoxia. Experimental mammalian embryos show a surprising degree of resilience to hypoxia, with many organogenic stage embryos able to survive 30-60 min of anoxia. However, in some embryos this degree of hypoxia causes abnormal development, particularly transverse limb reduction defects. These abnormalities are preceded by hemorrhage/edema and tissue necrosis. Other parts of the embryo are also susceptible to this hypoxia-induced damage and include the genital tubercle, the developing nose, the tail, and the central nervous system. Other frequently observed defects in animal models of prenatal hypoxia include cleft lip, maxillary hypoplasia, and heart defects. Animal studies indicate that hypoxic episodes in the first trimester of human pregnancy could occur by temporary constriction of the uterine arteries. This could be a consequence of exposure to cocaine, misoprostol, or severe shock, and there is evidence that these exposures have resulted in hypoxia-related malformations in the human. Exposure to drugs that block the potassium current (IKr) can cause severe slowing and arrhythmia of the mammalian embryonic heart and consequently hypoxia in the embryo. These drugs are highly teratogenic in experimental animals. There is evidence that drugs with IKr blockade as a side effect, for example phenytoin, may cause birth defects in the human by causing periods of embryonic hypoxia. The strongest evidence of hypoxia causing birth defects in the human comes from studies of fetuses lacking hemoglobin (Hb) F. These fetuses are thought to be hypoxic from about the middle of the first trimester and show a range of birth defects, particularly transverse limb reduction defects.  相似文献   

19.
20.
Members of the Wnt family are known to play diverse roles in the organogenesis of vertebrates. The full-coding sequences of chicken Wnt-5a were identified and the role it plays in limb development was examined by comparing its expression pattern with that of two other Wnt members, Wnt-4 and Wnt-11, and by misexpressing it with a retrovirus vector in the limb bud. Wnt-5a expression is detected in the limb-forming region at stage 14, and in the apical ectodermal ridge and distal mesenchyme of the limb bud. The signal was graded along the proximal-distal axis at stages 20-28 and also along the anterior-posterior axis during early stages. It disappeared in the cartilage-forming region after stage 26, and was restricted to the region surrounding the phalanges at stage 34. Wnt-4 and Wnt-11, other members of the Wnt-5a-subclass, were expressed with a distinct spatiotemporal pattern during the later phase. Wnt-4 was expressed in the articular structure and Wnt-11 was expressed in the dorsal and ventral mesenchyme adjacent to the ectoderm. Wnt-5a expression was partially reduced after apical ectodermal ridge removal, whereas Wnt-11 expression was down-regulated by dorsal ectoderm removal. Therefore, expression of these Wnt was differentially regulated by the ectodermal signal. Misexpression of Wnt-5a in the limb bud with the retrovirus resulted in truncation of long bones predominantly in the zeugopod because of retarded chondrogenic differentiation. Distal elements, such as the phalanges and metacarpals, were not significantly reduced in size. These results suggest that Wnt-5a is involved in pattern formation along the proximal-distal axis by regulation of chondrogenic differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号