首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Digit loss is a common theme in tetrapod evolution that may involve changes in several developmental processes. The skink genus Hemiergis provides an ideal model to study these processes in closely related taxa: within three Western Australian Hemiergis species, digit quantity ranges between two and five. For three consecutive reproductive seasons, gravid females of Hemiergis were collected in the field and their embryos prepared for histological analysis of limb skeletal development (chondrogenesis and osteogenesis). Comparative studies of skeletal developmental morphology demonstrate that limbs with fewer than five digits do not result from a simple truncation of a putative ancestral (five-digit) developmental program. The developmental and adult morphologies in two-, three-, and four-digit Hemiergis are neither predicted nor explained by a simple model of heterochrony involving either chondrogenesis or osteogenesis. In postnatal Hemiergis, digit number and relative limb length do not correlate in a simple linear fashion. Instead, limb size and digit reduction may correlate with substrate conditions and burrowing behavior.  相似文献   

2.
Early in vertebrate limb development, a program initiates that polarizes the limb along the antero-posterior axis. The mesenchyme at the posterior margin is ultimately responsible for the asymmetry due to a region called the zone of polarizing activity (ZPA). The ZPA produces and secretes the molecule SHH, which coordinates the patterning of the resulting digits. Preaxial polydactyly (PPD) is a commonly occurring limb abnormality; investigating the genetic basis of this defect has provided insights into our understanding of digit patterning. PPD disrupts limb asymmetry by producing an ectopic ZPA at the opposite margin of the limb bud. Mutations in the long-range, limb-specific regulatory element of the Shh gene are responsible for the defect. Genetic analysis of this limb abnormality provides an important approach in understanding the mechanisms that control digit patterning.  相似文献   

3.
Sonic hedgehog (Shh), which regulates proliferation in many contexts, functions as a limb morphogen to specify a distinct pattern of digits. How Shh's effects on cell number relate to its role in specifying digit identity is unclear. Deleting the mouse Shh gene at different times using a conditional Cre line, we find that Shh functions to control limb development in two phases: a very transient, early patterning phase regulating digit identity, and an extended growth-promoting phase during which the digit precursor mesenchyme expands and becomes recruited into condensing digit primordia. Our analysis reveals an unexpected alternating anterior-posterior sequence of normal mammalian digit formation. The progressive loss of digits upon successively earlier Shh removal mirrors this alternating sequence and highlights Shh's role in cell expansion to produce the normal digit complement.  相似文献   

4.
Fibroblast growth factors (FGFs) and their receptors have been implicated in limb development. However, because of early post-implantation lethality associated with fibroblast growth factor receptor 1 (FGFR1) deficiency, the role of this receptor in limb development remains elusive. To overcome embryonic lethality, we have performed a conditional knockout of Fgfr1 using the Cre-LoxP approach. We show that Cre-mediated deletion of Fgfr1 in limb mesenchyme, beginning at a time point slightly after the first sign of initial budding, primarily affects formation of the first one or two digits. In contrast, deletion of Fgfr1 at an earlier stage, prior to thickening of limb mesenchyme, results in more severe defects, characterized by malformation of the AER, diminished Shh expression and the absence of the majority of the autopod skeletal elements. We show that FGFR1 deficiency does not affect cell proliferation. Instead, it triggers cell death and leads to alterations in expression of a number of genes involved in apoptosis and digit patterning, including increased expression of Bmp4, Dkk1 and Alx4, and downregulation of MKP3. These data demonstrate that FGF/FGFR1 signals play indispensable roles in the early stages of limb initiation, eliciting a profound effect on the later stages of limb development, including cell survival, autopod formation and digit patterning.  相似文献   

5.
The chick talpid2 mutant displays polydactylous digits attributed to defects of the Hedgehog (HH) signaling pathway. We examined the talpid2 neural tube and show that patterning defects in the spinal cord and the midbrain are distinct from each other and from the limb. Unlike the Sonic Hedgehog (SHH) source in the limb, the SHH-rich floor plate (FP) is reduced in the talpid2 midbrain. This is accompanied by a severe depletion of medial cell populations that encounter high concentrations of SHH, an expansion of lateral cell populations that experience low concentrations of SHH and a broad deregulation of HH's principal effectors (PTC1, GLI1, GLI2, GLI3). Together with the failure of SHH misexpression to rescue the talpid2 phenotype, these results suggest that talpid2 is likely to have a tissue-autonomous, bidirectional (positive and negative) role in HH signaling that cannot be attributed to the altered expression of several newly cloned HH pathway genes (SUFU, DZIP1, DISP1, BTRC). Strikingly, FP defects in the spinal cord are accompanied by relatively normal patterning in the talpid2 mutant. We propose that this differential FP dependence may be due to the prolonged apposition of the notochord to the spinal cord, but not the midbrain during development.  相似文献   

6.
Development of the musculature in chick limbs involves tissue and cellular patterning. Patterning at the tissue level leads to the precise arrangement of specific muscles; at the cellular level patterning gives rise to the fibre type diversity in muscles. Although the data suggests that the information controlling muscle patterning is localised within the limb mesenchyme and not in the somitic myogenic precursor cells themselves, the mechanisms underlying muscle organisation have still to be elucidated. The anterior-posterior axis of the limb is specified by a group of cells in the posterior region of the limb mesenchyme, called the zone of polarizing activity (ZPA). When polarizing-region cells are grafted to the anterior margin of the bud, they cause mirror-image digit duplications to be produced. The effect of ZPA grafts can be reproduced by application of retinoic acid (RA) beads and by grafting sonic hedgehog (SHH)-expressing cells to the anterior margin of the limb. Although most previous studies have looked at changes of the skeletal patterning, ZPA and RA also affect muscle patterning. In this report, we investigated the role of SHH in tissue and cellular patterning of forearm wing muscles. Ectopic application of a localised source of SHH to the anterior margin of the wing, leading to complete digit duplication, is able to transform anterior forearm muscles into muscles with a posterior identity. Moreover, the ectopic source of SHH induces a mirror image duplication of the normal posterior muscles fibre types in the new posterior muscles. The reorganisation of the slow fibres can be detected before muscle mass cleavage has started; suggesting that the appropriate fibre type arrangement is in place before the splitting process can be observed.  相似文献   

7.
Digit reduction has occurred in parallel in many mammalian lineages. However, despite this pattern's prevalence, the developmental mechanisms underlying mammalian digit reduction remain controversial. We therefore undertook a study of digit development in the pig (Sus scrofa), a mammal with reduced first, second, and fifth digits. Our results indicate that from its earliest formation, the pig limb bud is significantly narrower than that of the model pentadactyl mammal, mouse. Furthermore, the cartilage condensations of the pig's reduced digits are noticeably smaller than those of their nonreduced counterparts from the time of their formation. In addition, growth rates of pig digits are comparable, as are the patterns of cell death in developing pig and mouse limbs. Taken together, results suggest that pig's first, second, and fifth digits are primarily reduced through evolutionary modifications in the early developmental patterning of their limbs. Results of this study, coupled with those from study of limb development in other mammals, suggest that although major developmental reorganizations (e.g., complete digit or limb loss) during early limb development may be selected against, it may be common for more subtle evolutionary modifications in limb development (e.g., changes in relative digit size) to occur at this time.  相似文献   

8.
Direct‐developing amphibians form limbs during early embryonic stages, as opposed to the later, often postembryonic limb formation of metamorphosing species. Limb patterning is dramatically altered in direct‐developing frogs, but little attention has been given to direct‐developing salamanders. We use expression patterns of two genes, sox9 and col2a1, to assess skeletal patterning during embryonic limb development in the direct‐developing salamander Plethodon cinereus. Limb patterning in P. cinereus partially resembles that described in other urodele species, with early formation of digit II and a generally anterior‐to‐posterior formation of preaxial digits. Unlike other salamanders described to date, differentiation of preaxial zeugopodial cartilages (radius/tibia) is not accelerated in relation to the postaxial cartilages, and there is no early differentiation of autopodial elements in relation to more proximal cartilages. Instead, digit II forms in continuity with the ulnar/fibular arch. This amniote‐like connectivity to the first digit that forms may be a consequence of the embryonic formation of limbs in this direct‐developing species. Additionally, and contrary to recent models of amphibian digit identity, there is no evidence of vestigial digits. This is the first account of gene expression in a plethodontid salamander and only the second published account of embryonic limb patterning in a direct‐developing salamander species.  相似文献   

9.
10.
11.
12.
Patterning of the developing vertebrate limb along the anterior‐posterior axis is controlled by the zone of polarizing activity (ZPA) via the expression of Sonic hedgehog (Shh) and along the proximal‐distal axis by the apical ectodermal ridge (AER) through the production of fibroblast growth factors (FGFs). ZPA grafting, as well as ectopic application of SHH to the anterior chick limb bud, demonstrate that digit patterning is largely influenced by these secreted factors. Although signal transduction pathways have been well characterized for SHH and for FGFs, little is known of how these signals are regulated extracellularly in the limb. The present study shows that alteration of the extracellular environment through trypsin treatment can have profound effects on digit patterning. These effects appear to be mediated by the induction of Shh in host tissues and by ectopic AER formation, implicating the extracellular matrix in regulating the signaling activities of key patterning genes in the limb.  相似文献   

13.
The apical ectodermal ridge (AER) in the vertebrate limb is required for limb outgrowth and patterning. To investigate the role BMP ligands expressed in the AER play in limb development we selectively inactivated both Bmp2 and Bmp4 in this tissue. The autopods of mice lacking both of these genes contained extra digits, digit bifurcations and interdigital webbing due to a decrease in programmed cell death and an increase in cell proliferation in the underlying mesoderm. Upon removal of Bmp2 and Bmp4 in the AER, no defects in proximal-distal patterning were observed. At the molecular level, removal of Bmp2 and Bmp4 in the AER caused an increase in Fgf expression, which correlated with an increase in both the width and length of the AER. Investigation of Engrailed-1 (En1) expression in the AER of limb buds in which Bmp2 and Bmp4 had been removed indicated that En1 expression was absent from this tissue. Our data suggests that AER expression of Bmp2 and Bmp4 is required for digit and dorsal-ventral patterning but surprisingly not for limb outgrowth.  相似文献   

14.
Anthropoids in general and hominoids in particular exhibit differential adaptations in forearm and digital skeletal proportions to a diverse array of locomotor modes. Hox genes act as selector genes with spatially regulated expression patterns during development. Their expression in the forelimb appears to define modules that specify differential skeletal growth. Here we explore forelimb skeletal proportions in a large sample of anthropoids from a background provided by Hoxd expression patterns in late-stage murine embryonic forelimbs. Interspecific correlation and principal components analyses of primate forelimb data indicate that morphological variation in anthropoids reflects well-defined developmental modules downstream of Hoxd expression. The phalanges of digit one appear to represent a single growth module, whereas the metacarpals and manual phalanges of the posterior digits correspond to a second, independent, expression territory that extends proximally into the distal zeugopod. In particular, hominoids show very high correlations among the posterior digits and the independence of digit one. In addition, the distal radius is generally highly correlated with the posterior digits and not digit one. Relying on established functional differences among Hox paralogs, we present a model that parsimoniously explains hominoid forearm and digital proportions as a consequence of downstream effects of Hox. We, therefore, suggest that Hox-defined developmental modules have served as evolutionary modules during manual evolution in anthropoids.  相似文献   

15.
Two regulatory signals play major roles in digit patterning during vertebrate limb development, the SHH morphogen and the BMP antagonist Gremlin1. Their dynamic expression in limb buds is controlled by distant cis-regulatory elements embedded in unrelated neighboring genes, which has confused identification of the primary cause of different types of congenital limb malformations affecting mice and humans. Comparative and functional genomics have uncovered the large and complex chromosomal landscapes that control Shh and Gremlin1 expression, identified the molecular cause of the congenital malformations and provided insights into limb evolution. While most of the transacting factors remain unknown, Hoxd proteins have been shown to bind to the far upstream Shh cis-regulatory elements and activate their expression in limb buds.  相似文献   

16.
While cilia are present on most cells in the mammalian body, their functional importance has only recently been discovered. Cilia formation requires intraflagellar transport (IFT), and mutations disrupting the IFT process result in loss of cilia and mid-gestation lethality with developmental defects that include polydactyly and abnormal neural tube patterning. The early lethality in IFT mutants has hindered research efforts to study the role of this organelle at later developmental stages. Thus, to investigate the role of cilia during limb development, we generated a conditional allele of the IFT protein Ift88 (polaris). Using the Cre-lox system, we disrupted cilia on different cell populations within the developing limb. While deleting cilia in regions of the limb ectoderm had no overt effect on patterning, disruption in the mesenchyme resulted in extensive polydactyly with loss of anteroposterior digit patterning and shortening of the proximodistal axis. The digit patterning abnormalities were associated with aberrant Shh pathway activity, whereas defects in limb outgrowth were due in part to disruption of Ihh signaling during endochondral bone formation. In addition, the limbs of mesenchymal cilia mutants have ectopic domains of cells that resemble chondrocytes derived from the perichondrium, which is not typical of Indian hedgehog mutants. Overall these data provide evidence that IFT is essential for normal formation of the appendicular skeleton through disruption of multiple signaling pathways.  相似文献   

17.
The family of GLI proteins (GLI1-3) comprises the intracellular mediators of the hedgehog pathway, which regulates a myriad of developmental processes, one of which is limb development. Whereas GLI1 and GLI2 seem to be dispensable during limb development, GLI3 is especially crucial since all GLI3-associated human congenital diseases comprise limb malformations. Furthermore, Gli3−/− mouse embryos exhibit pronounced polydactyly in conjunction with a loss of digit identities.Here we examined how the quantity of GLI3 contributes to its function by using different Gli3 mutants in order to vary overall GLI3 levels. In addition, we made use of the Gli3Δ699 allele, which encodes a C-terminally truncated version of GLI3, thus mimicking the processed GLI3 isoform (GLI3R). The Gli3Δ699 mutant made it feasible to analyze isoform-specific contributions of GLI3 within the context of anteroposterior patterning of the limb bud. We revealed a so far unappreciated variation in the quantitative demand for GLI3 within different phases and aspects of distal limb formation. In addition, our analyses provide evidence that unprocessed full-length GLI3 is dispensable for anteroposterior patterning of the limb bud. Instead, digit identities are most likely defined by GLI3 repressor activity alone. Furthermore, we present evidence that the anteroposterior grading of GLI3 activity by the action of SHH is supported by a prototype patterning, which regulates Gli3 independently from SHH.  相似文献   

18.
It has been proposed that digit identity in chick limb bud is specified in a dose-dependent fashion by a long-range morphogen, produced by the polarising region. One candidate is Sonic hedgehog (Shh) protein, but it is not clear whether Shh acts long or short range or via Bmps. Here we dissect the relationship between Shh and Bmp signalling. We show that Shh is necessary not only for initiating bmp2 expression but also for sustaining its expression during the period when additional digits are being specified. We also show that we can reproduce much of the effect of Shh during this period by applying only Bmp2. We further demonstrate that it is Bmps that are responsible for digit specification by transiently adding Noggin or Bmp antibodies to limbs treated with Shh. In such limbs, multiple additional digits still form but they all have the same identity. We also explored time dependency and range of Shh signalling by examining ptc expression. We show that high-level ptc expression is induced rapidly when either Shh beads or polarising regions are grafted to a host limb. Furthermore, we find that high-level ptc expression is first widespread but later more restricted. All these data lead us to propose a new model for digit patterning. We suggest that Shh initially acts long range to prime the region of the limb competent to form digits and thus control digit number. Then later, Shh acts short range to induce expression of Bmps, whose morphogenetic action specifies digit identity.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号