首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Muscular dystrophies are a group of genetic disorders that specifically affect skeletal muscle and are characterized by progressive muscle degeneration and weakening. To develop therapies and treatments for these diseases, a better understanding of the molecular basis of muscular dystrophies is required. Thus, identification of causative genes mutated in specific disorders and the study of relevant animal models are imperative. Zebrafish genetic models of human muscle disorders often closely resemble disease pathogenesis, and the optical clarity of zebrafish embryos and larvae enables visualization of dynamic molecular processes in vivo. As an adjunct tool, morpholino studies provide insight into the molecular function of genes and allow rapid assessment of candidate genes for human muscular dystrophies. This unique set of attributes makes the zebrafish model system particularly valuable for the study of muscle diseases. This review discusses how recent research using zebrafish has shed light on the pathological basis of muscular dystrophies, with particular focus on the muscle cell membrane and the linkage between the myofibre cytoskeleton and the extracellular matrix.  相似文献   

2.
Advances in molecular biology and recombinant DNA technologies have contributed to our understanding of the molecular basis of many diseases. Now the possibility of gene transfer into normal cells to produce a gene product of therapeutic potential, or into diseased cells to correct the pathologic alteration, promises to revolutionize medical practice. In contemporary medicine, many therapeutic strategies focus on the link between a biochemical deficiency and the ensuing disorder. The treatment of noninfectious disease is often based on replacement therapy; medication is given to compensate for biochemical defects and to prevent or reverse the progression of disease. Although conventional therapies seldom alter the fundamental cause of a disease, gene therapy potentially could correct, at a molecular level, the genetic abnormalities contributing to its pathogenesis. Treatment directed at specific molecular alterations associated with the development of neurologic disease provides expectations of more effective and less toxic therapy. The development of gene therapy for nervous system tumors has progressed rapidly and may be prototypical in the development of therapies for inherited and acquired disorders of the nervous system. We describe possible strategies for using gene therapy to treat nervous system disorders, and we review recent advances in gene therapy for nervous system tumors.  相似文献   

3.
Exploring the molecular basis of heterosis for plant breeding   总被引:1,自引:0,他引:1  
Since approximate a century ago, many hybrid crops have been continually developed by crossing two inbred varieties. Owing to heterosis(hybrid vigor) in plants, these hybrids often have superior agricultural performances in yield or disease resistance succeeding their inbred parental lines. Several classical hypotheses have been proposed to explain the genetic causes of heterosis. During recent years, many new genetics and genomics strategies have been developed and used for the identifications of heterotic genes in plants. Heterotic effects of the heterotic loci and molecular functions of the heterotic genes are being investigated in many plants such as rice, maize, sorghum, Arabidopsis and tomato.More and more data and knowledge coming from the molecular studies of heterotic loci and genes will serve as a valuable resource for hybrid breeding by molecular design in future. This review aims to address recent advances in our understanding of the genetic and molecular mechanisms of heterosis in plants. The remaining scientific questions on the molecular basis of heterosis and the potential applications in breeding are also proposed and discussed.  相似文献   

4.
5.
6.
Frost HM 《Hormone research》2000,54(Z1):36-43
Multidisciplinary advances in skeletal physiology offer a new paradigm for the effects of growth hormone (GH) and other agents on bone and osteoporosis. The still-evolving Utah paradigm of skeletal physiology supplements earlier ideas with later discovered roles of the skeleton's tissue-level 'nephron equivalents' and muscle strength in skeletal development, physiology and disorders. This article summarizes how these factors could influence the effects of GH on bone strength and bone 'mass', and the use of GH in the treatment of osteoporoses. Although the cellular and molecular biological mechanisms involved remain obscure, the associated cascades of cellular, genetic and biochemical processes and molecules should offer many opportunities to find or design agents that have medically useful effects on bone and muscle without giving rise to unwanted side-effects.  相似文献   

7.
Monogenic disorders of obesity and body fat distribution.   总被引:2,自引:0,他引:2  
Recently, great progress has been made towards understanding the molecular basis of body fat regulation. Identification of mutations in several genes in spontaneous monogenic animal models of obesity and development of transgenic models have indicated the physiological roles of many genes in the regulation of body fat distribution. In humans, mutations in leptin, leptin receptor, prohormone convertase 1 (PC1), pro-opiomelanocortin (POMC), melanocortin 4-receptor (MC4-R), and peroxisome proliferator-activated receptor (PPAR) gamma2 genes have been described in patients with severe obesity. Most of these obesity disorders exhibit a distinct phenotype with varying degrees of hypothalamic and pituitary dysfunction and a recessive inheritance, whereas MC4-R mutation has a nonsyndromic phenotype with dominant inheritance. These mutations suggest the critical role of central signaling systems composed of leptin/leptin receptor and alpha-melanocyte stimulating hormone/MC4-R in human energy homeostasis. Although the genetic basis of monogenic disorders of body fat distribution, such as congenital generalized lipodystrophy and familial partial lipodystrophy, Dunnigan variety, is still unknown, the genes for these have recently been localized to chromosomes 9q34 and 1q21-22, respectively. The advances in our knowledge of the phenotypic manifestations and underlying molecular mechanisms of genetic body fat disorders may lead to better treatment and prevention of obesity and other disorders of adipose tissue in the future.  相似文献   

8.
Polyglutamine (polyQ) disorders share many similarities, such as a common mutation type in unrelated human causative genes, neurological character, and certain aspects of pathogenesis, including morphological and physiological neuronal alterations. The similarities in pathogenesis have been confirmed by findings that some experimental in vivo therapy approaches are effective in multiple models of polyQ disorders. Additionally, mouse models of polyQ diseases are often highly similar between diseases with respect to behavior and the features of the disease. The common features shared by polyQ mouse models may facilitate the investigation of polyQ disorders and may help researchers explore the mechanisms of these diseases in a broader context. To provide this context and to promote the understanding of polyQ disorders, we have collected and analyzed research data about the characterization and treatment of mouse models of polyQ diseases and organized them into two complementary Excel data tables. The data table that is presented in this review (Part I) covers the behavioral, molecular, cellular, and anatomic characteristics of polyQ mice and contains the most current knowledge about polyQ mouse models. The structure of this data table is designed in such a way that it can be filtered to allow for the immediate retrieval of the data corresponding to a single mouse model or to compare the shared and unique aspects of many polyQ models. The second data table, which is presented in another publication (Part II), covers therapeutic research in mouse models by summarizing all of the therapeutic strategies employed in the treatment of polyQ disorders, phenotypes that are used to examine the effects of the therapy, and therapeutic outcomes.  相似文献   

9.
Chronic inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease, spondyloarthritis and psoriasis cause significant morbidity and are a considerable burden for the patients in terms of pain, impaired function and diminished quality of life, as well as for society, because of the associated high health-care costs, and loss of productivity. Our limited understanding of the pathogenic mechanisms involved in these diseases currently hinders early diagnosis and the development of more specific and effective therapies.The past years have been marked by considerable progress in our insight of the genetic basis of many diseases. In particular, genome-wide association studies (GWAS) performed with thousands of patients have provided detailed information about the genetic variants associated with a large number of chronic inflammatory diseases. These studies have brought to the forefront many genes linked to signaling pathways that were not previously known to be involved in pathogenesis, pointing to new directions in the study of disease mechanisms. GWAS also provided fundamental evidence for a key role of the immune system in the pathogenesis of these diseases, because many of the identified loci map to genes involved in different immune processes. However, the mechanisms by which disease-associated genetic variants act on disease development and the targeted cell populations remain poorly understood. The challenge of the post-GWAS era is to understand how these variants affect pathogenesis, to allow translation of genetic data into better diagnostics and innovative treatment strategies.Here, we review recent results that document the importance of the IL-23/IL-17 pathway for the pathogenesis of several chronic inflammatory diseases and summarize data that demonstrate how therapeutic targeting of this pathway can benefit affected patients.  相似文献   

10.
Impressive progress has been made during the past several decades in understanding the pathogenesis of human genetic disease. The tools of molecular biology have allowed the isolation of many disease-related genes by forward and a few by reverse genetics, and the imminent completion of a complete human genetic linkage map will accelerate the genetic characterization of many more genetic diseases. The major impacts of the molecular characterization of human genetic diseases will be 1. To increase markedly the number of human diseases that we recognize to have major genetic components. We already understand that genetic diseases are not rare medical curiosities with negligible societal impact, but rather constitute a wide spectrum of both rare and extremely common diseases responsible for an immense amount of suffering in all human societies. The characterization of the human genome will lead to the identification of genetic factors in many more human diseases, even those that now seem too multifactorial or polygenic for ready understanding. 2. To allow the development of powerful new approaches to diagnosis, detection, screening and even therapy of these disorders aimed directly at the mutant genes rather than at the gene products. This should eventually allow much more accurate and specific management of human genetic disease and the genetic factors in many human maladies. The preparation of a fine-structure physical map of the entire human genome together with an overlapping contiguous set of clones spanning entire chromosomes or large portions of chromosomes is rapidly becoming feasible, and the information that will flow from this effort promises eventually to affect the management of many important genetic diseases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The survival of cancer patients suffering from glioblastoma multiforme is limited to just a few months even after treatment with the most advanced techniques. The indefinable borders of glioblastoma cell infiltration into the surrounding healthy tissue prevent complete surgical removal. In addition, genetic mutations, epigenetic modifications and microenvironmental heterogeneity cause resistance to radio- and chemotherapy altogether resulting in a hardly to overcome therapeutic scenario. Therefore, the development of efficient therapeutic strategies to combat these tumors requires a better knowledge of genetic and proteomic alterations as well as the infiltrative behavior of glioblastoma cells and how this can be targeted. Among many cell surface receptors, members of the integrin family are known to regulate glioblastoma cell invasion in concert with extracellular matrix degrading proteases. While preclinical and early clinical trials suggested specific integrin targeting as a promising therapeutic approach, clinical trials failed to deliver improved cure rates up to now. Little is known about glioblastoma cell motility, but switches in invasion modes and adaption to specific microenvironmental cues as a consequence of treatment may maintain tumor cell resistance to therapy. Thus, understanding the molecular basis of integrin and protease function for glioblastoma cell invasion in the context of radiochemotherapy is a pressing issue and may be beneficial for the design of efficient therapeutic approaches. This review article summarizes the latest findings on integrins and extracellular matrix in glioblastoma and adds some perspective thoughts on how this knowledge might be exploited for optimized multimodal therapy approaches.  相似文献   

12.
The kidney is widely used to study the mechanisms of organogenesis. Its development involves fundamental processes, such as epithelial branching, induced morphogenesis and cytodifferentiation, which are common to the development of many other organs. Gene-targeting experiments have greatly improved our understanding of kidney development, and have revealed many important genes that regulate early kidney organogenesis, some of which have a role in inherited human kidney disorders. Although our understanding of how the kidney is assembled is still limited, these studies are beginning to provide insights into the genetic and cellular interactions that regulate early organogenesis.  相似文献   

13.
Retinal degenerations are the major cause of incurable blindness characterized by loss of retinal photoreceptor cells. Several genes causing these genetic diseases have been identified, however the molecular characterization of a high percentage of patients affected by retinitis pigmentosa (RP), a common form of retinal degeneration, is still unknown. The high genetic heterogeneity of these diseases hampers the comprehension of the pathogenetic mechanism causing photoreceptor cell death. Therapies are not available yet and for this reason there is a lot of interest in understanding the etiology and the pathogenesis of these disorders at a cellular and molecular level. Some common features have been identified in different forms of RP. Apoptosis was reported to be the final outcome in all RP animal models and patients analyzed so far. We recently identified two apoptotic pathways co-activated in photoreceptors undergoing cell death in the retinal degeneration (rd1) mouse model of autosomal recessive RP. Our studies opened new perspectives together with many questions that require deeper analyses in order to take advantage of this knowledge and develop new therapeutic approaches. We believe that minimizing cell demise may represent a promising curing strategy that needs to be exploited for retinal degeneration.  相似文献   

14.
Genetic disorders of the skeleton comprise a large group of more than 450 clinically distinct and genetically heterogeneous diseases associated with mutations in more than 300 genes. Achieving a definitive diagnosis is complicated due to the genetic heterogeneity of these disorders, their individual rarity and their diverse radiographic presentations. We used targeted exome sequencing and designed a 1.4Mb panel for simultaneous testing of more than 4,800 exons in 309 genes involved in skeletal disorders. DNA from 69 individuals from 66 families with a known or suspected clinical diagnosis of a skeletal disorder was analyzed. Of 36 cases with a specific clinical hypothesis with a known genetic basis, mutations were identified for eight cases (22%). Of 20 cases with a suspected skeletal disorder but without a specific diagnosis, four causative mutations were identified. Also included were 11 cases with a specific skeletal disorder but for which there was at the time no known associated gene. For these cases, one mutation was identified in a known skeletal disease genes, and re-evaluation of the clinical phenotype in this case changed the diagnoses from osteodysplasia syndrome to Apert syndrome. These results suggest that the NGS panel provides a fast, accurate and cost-effective molecular diagnostic tool for identifying mutations in a highly genetically heterogeneous set of disorders such as genetic skeletal disorders. The data also stress the importance of a thorough clinical evaluation before DNA sequencing. The strategy should be applicable to other groups of disorders in which the molecular basis is largely known.  相似文献   

15.
Co-evolution has produced many intriguing adaptations and made significant contributions to biodiversity through the co-adaptive radiations of interacting groups, such as pollinating insects and flowering plants or hosts and endosymbionts. New methods from molecular genetics and comparative genomics, in conjunction with advances in evolutionary genetic theory, are for the first time providing tools for detecting, investigating and understanding the genetic bases of the co-adaptive process and co-speciation. Advances in the emerging field of community genetics, which integrates genetics and community ecology, could revolutionize how co-evolution is studied, how genes are functionally annotated and how conservation geneticists implement preservation strategies.  相似文献   

16.
During development, skeletal muscles are established in a highly organized manner, which persists throughout life. Molecular and genetic experiments over the last decades have identified many developmental control genes critical for skeletal muscle formation. Developmental studies have shown that skeletal muscles of the body, limb and head have distinct embryonic and cellular origin, and the genetic regulation at work in these domains and during adult myogenesis are starting to be identified. In this review we will summarize the current knowledge on the regulatory circuits that lead to the establishment of skeletal muscle in these different anatomical regions.  相似文献   

17.
Although disorders of the skeleton are individually rare, they are of clinical relevance because of their overall frequency. Many attempts have been made in the past to identify disease groups in order to facilitate diagnosis and to draw conclusions about possible underlying pathomechanisms. Traditionally, skeletal disorders have been subdivided into dysostoses, defined as malformations of individual bones or groups of bones, and osteochondrodysplasias, defined as developmental disorders of chondro-osseous tissue. In light of the recent advances in molecular genetics, however, many phenotypically similar skeletal diseases comprising the classical categories turned out not to be based on defects in common genes or physiological pathways. In this article, we present a classification based on a combination of molecular pathology and embryology, taking into account the importance of development for the understanding of bone diseases.  相似文献   

18.
The past two decades have seen an explosion in our understanding of the origin and development of the midbrain dopamine system. Much of this work has been focused on the aspects of dopamine neuron development related to the onset of movement disorders such as Parkinson's disease, with the intent of hopefully delaying, preventing or fixing symptoms. While midbrain dopamine degeneration is a major focus for treatment and research, many other human disorders are impacted by abnormal dopamine, including drug addiction, autism and schizophrenia. Understanding dopamine neuron ontogeny and how dopamine connections and circuitry develops may provide us with key insights into potentially important avenues of research for other dopamine‐related disorders. This review will provide a brief overview of the major molecular and genetic players throughout the development of midbrain dopamine neurons and what we know about the behavioral‐ and disease‐related implications associated with perturbations to midbrain dopamine neuron development. We intend to combine the knowledge of two broad fields of neuroscience, both developmental and behavioral, with the intent on fostering greater discussion between branches of neuroscience in the service of addressing complex cognitive questions from a developmental perspective and identifying important gaps in our knowledge for future study.  相似文献   

19.
Congdon E  Poldrack RA  Freimer NB 《Neuron》2010,68(2):218-230
Elucidating the molecular mechanisms underlying quantitative neurocognitive phenotypes will further our understanding of the brain's structural and functional architecture and advance the diagnosis and treatment of the psychiatric disorders that these traits underlie. Although many neurocognitive traits are highly heritable, little progress has been made in identifying genetic variants unequivocally associated with these phenotypes. A major obstacle to such progress is the difficulty in identifying heritable neurocognitive measures that are precisely defined and systematically assessed and represent unambiguous mental constructs, yet are also amenable to the high-throughput phenotyping necessary to obtain adequate power for genetic association studies. In this perspective we compare the current status of genetic investigations of neurocognitive phenotypes to that of other categories of biomedically relevant traits and suggest strategies for genetically dissecting traits that may underlie disorders of brain and behavior.  相似文献   

20.
Mitochondrial encephalomyopathies: Clinical and molecular analysis   总被引:10,自引:0,他引:10  
The classification of mitochondrial encephalomyopathies relied upon clinical, biochemical, and histological features until the discovery of mitochondrial DNA defects in 1988. Since then, an outburst of molecular genetic information has aided our understanding of the pathogenesis and the classification of these heterogeneous disorders. Novel concepts of maternal inheritance, mitochondrial DNA (mtDNA) heteroplasmy, tissue distribution, and threshold have explained many of the clinical characteristics. The discovery of point mutations, large-scale mtDNA deletions, duplications, and autosomally inherited disorders with multiple mtDNA deletions have revealed new genetic phenomena. Despite our rapidly expanding understanding of the molecular genetic defects, many questions remain to be explored to fill the gap in our knowledge of the relationship between genotype and clinical phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号