首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NADH increases during ischemia because O(2) shortage limits NADH oxidation at the electron transport chain. Ischemic (IPC) and anesthetic preconditioning (APC) attenuate cardiac reperfusion injury. We examined whether IPC and APC similarly alter NADH, i.e., mitochondrial metabolism. NADH fluorescence was measured at the left ventricular wall of 40 Langendorff-prepared guinea pig hearts. IPC was achieved by two 5-min periods of ischemia and APC by exposure to 0.5 or 1.3 mM sevoflurane for 15 min, each ending 30 min before 30 min of global ischemia. During ischemia, NADH initially increased in nonpreconditioned control hearts and then gradually declined below baseline levels. This increase in NADH was lower after APC but not after IPC. The subsequent decline was slower after IPC and APC. On reperfusion, NADH was less decreased after IPC or APC, mechanical and metabolic functions were improved, and infarct size was lower compared with controls. Our results indicate that IPC and APC cause distinctive changes in mitochondrial metabolism during ischemia and thus lead to improved function and tissue viability on reperfusion.  相似文献   

2.
The interaction between myocardial function, oxygen consumption and energy production was examined in the left ventricular myocardium during various physiological conditions. Myocardial function was measured by both LV dP/dTmax and by local contractile tension. Coronary blood flow was measured from the coronary sinus; regional coronary blood supply was recorded using a thermistor placed on the epicardial surface. Intracellular oxygen balance was estimated using NADH fluorescence. Myocardial oxygen consumption and utilization of glucose, pyruvate, lactate and free fatty acids were calculated from their concentrations in the arterial and coronary sinus blood. The effects of tachycardia at 180 and 240 bpm, noradrenaline infusion (25 micrograms kg-1 min-1), and increased coronary blood flow caused by hypopneic respiration were examined. During pacing, contractile force, coronary flow and NADH fluorescence increased. At 240 bpm, the lactate/pyruvate ratio increased from 5.98 +/- 0.92 to 8.76 +/- 1.41 and NADH fluorescence increased from 50 to 71.7 +/- 3.73 (as compared to control), indicating impairment of myocardial oxygenation. Hypopneic respiration produced a marked elevation of coronary blood flow. Both noradrenaline infusion and hypopnea produced a decrease in both NADH fluorescence and the lactate/pyruvate ratio. No significant difference was found between the FORCE/ATP, FORCE/MVO2 and ATP/MVO2 ratios during pacing and noradrenaline. However, during hypopnea, the amount of ATP apparently formed (as calculated by substrate utilization assuming the formation of 3 ATP molecules per oxygen) was disproportionately greater than contractile force and oxygen consumption. It is suggested that this discrepancy may be due to the uncoupling of oxidative phosphorylation.  相似文献   

3.
4.
Ischemic preconditioning (IPC) induces distinctive changes in mitochondrial bioenergetics during warm (37 degrees C) ischemia and improves function and tissue viability on reperfusion. We examined whether IPC before 2 h of hypothermic (27 degrees C) ischemia affords additive cardioprotection and improves mitochondrial redox balance assessed by mitochondrial NADH and flavin adenine dinucleotide (FAD) autofluorescence in intact hearts. A mediating role of ATP-sensitive K(+) (K(ATP)) channel opening was investigated. NADH and FAD fluorescence was measured in the left ventricular wall of guinea pig isolated hearts assigned to five groups of eight animals each: hypothermia alone, hypothermia with ischemia, IPC with cold ischemia, 5-hydroxydecanoic acid (5-HD) alone, and 5-HD with IPC and cold ischemia. IPC consisted of two 5-min periods of warm global ischemia spaced 5 min apart and 15 min of reperfusion before 2 h of ischemia at 27 degrees C and 2 h of warm reperfusion. The K(ATP) channel inhibitor 5-HD was perfused from 5 min before until 5 min after IPC. IPC before 2 h of ischemia at 27 degrees C led to better recovery of function and less tissue damage on reperfusion than did 27 degrees C ischemia alone. These improvements were preceded by attenuated increases in NADH and decreases in FAD during cold ischemia and the reverse changes during warm reperfusion. 5-HD blocked each of these changes induced by IPC. This study indicates that IPC induces additive cardioprotection with mild hypothermic ischemia by improving mitochondrial bioenergetics during and after ischemia. Because effects of IPC on subsequent changes in NADH and FAD were inhibited by 5-HD, this suggests that mitochondrial K(ATP) channel opening plays a substantial role in improving mitochondrial bioenergetics throughout mild hypothermic ischemia and reperfusion.  相似文献   

5.
We hypothesized that exercise training preserves endothelium-dependent relaxation, lessens receptor-mediated constriction of coronary resistance arteries, and reduces myocardial contractile dysfunction in response to ischemia. After 10 wk of treadmill running or cage confinement, regional and global indexes of left ventricular contractile function were not different between trained and sedentary animals in response to three 15-min periods of ischemia (long-term; n = 17), one 5-min bout of ischemia (short-term; n = 18), or no ischemia (sham-operated; n = 24). Subsequently, coronary resistance vessels ( approximately 106 +/- 4 microm ID) were isolated and studied using wire myographs. Maximal ACh-evoked relaxation was approximately 25, 40, and 60% of KCl-induced preconstriction after the long-term, short-term, and sham-operated protocols, respectively, and was similar between groups. Maximal sodium nitroprusside-evoked relaxation also was similar between groups among all protocols, and vasoconstrictor responses to endothelin-1 and U-46619 were not different in trained and sedentary rats after short-term ischemia or sham operation. We did observe that, after long-term ischemia, maximal tension development in response to endothelin-1 and U-46619 was blunted (P < 0.05) in trained animals by approximately 70 and approximately 160%, respectively. These results support our hypothesis that exercise training lessens receptor-mediated vasoconstriction of coronary resistance vessels after ischemia and reperfusion. However, training did not preserve endothelial function of coronary resistance vessels, or myocardial contractile function, after ischemia and reperfusion.  相似文献   

6.
Recent studies have demonstrated that increased expression of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) 2a improves myocardial contractility and Ca2+ handling at baseline and in disease conditions, including myocardial ischemia-reperfusion (I/R). Conversely, it has also been reported that pharmacological inhibition of SERCA might improve postischemic function in stunned hearts or in isolated myocardium following I/R. The goal of this study was to test how decreases in SERCA pump level/activity affect cardiac function following I/R. To address this question, we used a heterozygous SERCA2a knockout (SERCA2a+/-) mouse model with decreased SERCA pump levels and studied the effect of myocardial stunning (20-min ischemia followed by reperfusion) and infarction (30-min ischemia followed by reperfusion) following 60-min reperfusion. Our results demonstrate that postischemic myocardial relaxation was significantly impaired in SERCA2a+/- hearts with both stunning and infarction protocols. Interestingly, postischemic recovery of contractile function was comparable in SERCA2a+/- and wild-type hearts subjected to stunning. In contrast, following 30-min ischemia, postischemic contractile function was reduced in SERCA2a+/- hearts with significantly larger infarction. Rhod-2 spectrofluorometry revealed significantly higher diastolic intracellular Ca2+ in SERCA2a+/- hearts compared with wild-type hearts. Both at 30-min ischemia and 2-min reperfusion, intracellular Ca2+ levels were significantly higher in SERCA2a+/- hearts. Electron paramagnetic resonance spin trapping showed a similar extent of postischemic free-radical generation in both strains. These data provide direct evidence that functional SERCA2a level, independent of oxidative stress, is crucial for postischemic myocardial function and salvage during I/R.  相似文献   

7.
The effect of synthetic parathyroid hormone (PTH)-related peptide [PTHrP(1-34)] on regional myocardial function was studied in 11 anesthetized pigs. Intracoronary infusion of PTHrP (cumulative dose: 14 +/- 1 microg) decreased coronary resistance to 33 +/- 2% of baseline (P < 0.05) and regional myocardial function to 90 +/- 3% of baseline (not significant). Ischemia-reperfusion alters the activity of several kinases and therefore possibly the myocardial effects of PTHrP. In stunned myocardium, induced by 20-min ischemia and 30-min reperfusion, the dose of PTHrP reducing coronary resistance to a minimum of 29 +/- 2% was decreased to 8 +/- 2 microg (P < 0.05). Regional myocardial function was no longer decreased but increased to 132 +/- 9% (P < 0.05). The increase in regional myocardial function during PTHrP was inversely related to baseline function at 30-min reperfusion in vivo (r = 0.9) as well as in myocytes isolated from stunned pig hearts (r = 0.7). In isolated rat hearts subjected to 30-min global ischemia followed by 30-min reperfusion, blockade of endogenous PTHrP by d-Trp(12)-Tyr(34)-PTH(7-34) attenuated the recovery of left ventricular developed pressure by 30 +/- 14% (P < 0.05). Thus endogenous and exogenous PTHrP impact on the function of stunned myocardium.  相似文献   

8.
This study examined the hypothesis that low-concentration apomorphine improves postischemic hemodynamic and mitochondrial function in the isolated rat heart model by attenuating oxidation of myocardial proteins. Control and apomorphine-treated hearts were subjected to 35 min of perfusion, 25 min of normothermic global ischemia, and 60 min of reperfusion. Apomorphine (2 microM) was introduced into the perfusate for 20 min starting from the onset of reperfusion. Apomorphine significantly (p <.05) improved postischemic hemodynamic function: work index of the heart (product of LVDP and heart rate) was twice as high in apomorphine-treated hearts compared to controls at the end of reperfusion (p <.01). After isolation of cardiac mitochondria, the respiratory control ratio (RCR) was calculated from the oxygen consumption rate of State 3 and State 4 respiration. Apomorphine significantly improved postischemic RCR (87% of preischemic value vs. 39% in control, p <.05). Using an immunoblot technique, carbonyl content of multiple unidentified myocardial proteins (mitochondrial and nonmitochondrial) was observed to be elevated after global ischemia and reperfusion. Apomorphine significantly attenuated the increased protein oxidation at the end of reperfusion. These results support the conclusion that apomorphine is capable of preventing ischemia/reperfusion-induced oxidative stress and thereby attenuating myocardial protein oxidation and preserving mitochondrial respiration function.  相似文献   

9.
Reduced myocardial function at very high heart rates may be due to limited coronary blood supply. The effects of the vasodilators nitroglycerin (10 micrograms kg-1 min-1) and elevated CO2 upon regional function during tachycardia were studied. In open-chest anaesthetized dogs, regional contractile force, epicardial tissue blood flow and local NADH redox level were recorded during graded ventricular pacing. It was found that the vasodilating action of nitroglycerin in the unpaced heart was much lower than produced by CO2 (23.6 +/- 5.8% vs. 137.6 +/- 33.5%). Maximal pacing at 275 bpm caused only a moderate flow elevation in control (20 +/- 6.8%) and CO2 conditions (20.3 +/- 4.03%), but marked vasodilation during nitroglycerin infusion (85.2 +/- 14.6%). Regional function during tachycardia was improved similarly by both vasodilators. NADH levels increased with heart rates under all experimental conditions, but the absolute NADH levels were consistently lower following vasodilator treatments. The lowest NADH levels were observed during nitroglycerin treatment at all heart rates. It is suggested that nitroglycerin augments myocardial functional reserve by preserving oxygen balance more than predicted by its vasodilatory effect alone.  相似文献   

10.
To understand the subcellular basis of contractile failure due to ischemia-reperfusion injury, effects of 20, 60, and 90 min of global ischemia followed by 30 min of reperfusion were examined in isolated guinea pig hearts. Cardiac ultrastructure and function as well as Ca2+ transport abilities of both mitochondrial and microsomal fractions were determined in control, ischemic, and reperfused hearts. Hearts were unable to generate any contractile force after 20 min of ischemia and showed a 75% recovery upon reperfusion. However, there were no significant changes in the subcellular Ca2+ transport in the 20-min ischemic or reperfused hearts. When hearts were made ischemic for 60 and 90 min, the recovery of contractile force on reperfusion was 50 and 7%, respectively. There was a progressive decrease in mitochondrial and microsomal Ca2+ binding and uptake activities after 60 and 90 min of ischemia; these changes were evident at various times of incubation period and at different concentrations of Ca2+. Mitochondrial Ca2+ transport changes were only partially reversible upon reperfusion after 60 and 90 min of ischemia, whereas the microsomal Ca2+ binding, uptake and Ca2+ ATPase activities deteriorated further upon reperfusion of the 90-min ischemic hearts. Ultrastructural changes increased with the duration of the ischemic insult and reperfusion injury was extensive in the 90-min ischemic hearts. These data show that the lack of recovery of contractile function upon reperfusion after a prolonged ischemic insult was accompanied by defects in sarcoplasmic reticulum Ca2+ transporting properties and structural damage.  相似文献   

11.
Is stunning prevented by ischemic preconditioning?   总被引:2,自引:0,他引:2  
In a model of global ischemia in the isolated perfused rat heart, a 20-min ischemic period followed by 30 min of reperfusion induces a decrease in isovolumic developed pressure (LVDP) and +dP/dtmax to 61 ± 6% and 61 ± 7% of baseline, respectively. Left ventricular end-diastolic pressure (LVEDP) increases to 36 ± 4 mmHg at the end of the reperfusion period. No significant necrotic area as assessed by triphenyltetrazolium chloride (TTC) was detected at the end of the reperfusion period. By an immunohistochemical method using antiactin monoclonal antibodies 10.8 ± 1.9% of unstained cells were detected in the stunned hearts and 10.3 ± 1.2% in control hearts. Preceding the ischemic episode with a cycle of 5 min of ischemia followed by 10 min of reperfusion (ischemic preconditioning) protected contractile function. LVDP and +dP/dtmax now stabilized at 89 ± 5% and 94 ± 5% of baseline respectively. LVEDP was 20 ± 2 mmHg at the end of the reperfusion period. The protection of contractile dysfunction after 20 min of ischemia was achieved also by early reperfusion of low Ca2+-low pH perfusate. With this intervention LVDP stabilized at 87 ± 5% of baseline. LVEDP was 12 ± 2 mmHg at the end of the reperfusion period. A positive inotropic intervention induced by a modified postextrasystolic potentiation protocol at the end of the reperfusion period increases LVDP to levels higher than baseline in the stunned hearts. However, these values were less than those obtained in control hearts. Ischemic preconditioning significantly increased the maximal inotropic response. Therefore, ischemic preconditioning diminishes the contractile dysfunction of early stunning.  相似文献   

12.
A brief period of ischemia followed by timely reperfusion may lead to prolonged, yet reversible, contractile dysfunction (myocardial stunning). Damage to the myocardium occurs not only during ischemia, but also during reperfusion, where a massive release of oxygen-free radicals (OFR) occurs. We have previously utilized 2-DE and MS to define 57 protein spot changes during brief ischemia/reperfusion (15 min ischemia, 60 min reperfusion; 15I/60R) injury in a rabbit model (White, M. Y., Cordwell, S. J., McCarron, H. C. K., Prasan, A. M. et al., Proteomics 2005, 5, 1395-1410) and shown that the majority of these occur because of physical and/or chemical PTMs. In this study, we subjected rabbit myocardium to 15I/60R in the presence of the OFR scavenger N-(2-mercaptopropionyl) glycine (MPG). Thirty-seven of 57 protein spots altered during 15I/60R remained at control levels in the presence of MPG (15I/60R + MPG). Changes to contractile proteins, including myosin light chain 2 (MLC-2) and troponin C (TnC), were prevented by the addition of MPG. To further investigate the individual effects of ischemia and reperfusion, we generated 2-DE gels from rabbit myocardium subjected to brief ischemia alone (15I/0R), and observed alterations of 33 protein spots, including 18/20 seen in both 15I/60R-treated and 15I/60R + MPG-treated tissue. The tissue was also subjected to ischemia in the presence of MPG (15I/0R + MPG), and 21 spot changes, representing 14 protein variants, remained altered despite the presence of the OFR scavenger. These ischemia-specific proteins comprised those involved in energy metabolism (lactate dehydrogenase and ATP synthase alpha), redox regulation (NADH ubiquinone oxidoreductase 51 kDa and GST Mu), and stress response (Hsp27 and 70, and deamidated alpha B-crystallin). We conclude that contractile dysfunction associated with myocardial stunning is predominantly caused by OFR damage at the onset of reperfusion, but that OFR-independent damage also occurs during ischemia. These ischemia-specific protein modifications may be indicative of early myocardial injury.  相似文献   

13.
The role of NO in ischemia/reperfusion injury in isolated rat heart   总被引:5,自引:0,他引:5  
Nitric oxide (NO) is an important regulator of myocardial function and vascular tone under physiological conditions. However, its role in the pathological situations, such as myocardial ischemia is not unequivocal, and both positive and negative effects have been demonstrated in different experimental settings including human pathology. The aim of the study was to investigate the role of NO in the rat hearts adapted and non-adapted to ischemia. Isolated Langendorff-perfused hearts were subjected to test ischemic (TI) challenge induced by 25 min global ischemia followed by 35 min reperfusion. Short-term adaptation to ischemia (ischemic preconditioning, IP) was evoked by 2 cycles of 5 min ischemia and 5 min reperfusion, before TI. Recovery of function at the end of reperfusion and reperfusion-induced arrhythmias served as the end-points of injury. Coronary flow (CF), left ventricular developed pressure (LVDP), and dP/dt(max) (index of contraction) were measured at the end of stabilization and throughout the remainder of the protocol until the end of reperfusion. The role of NO was investigated by subjecting the hearts to 15 min perfusion with NO synthase (NOS) inhibitor L-NAME (100 mmol/l), prior to sustained ischemia. At the end of reperfusion, LVDP in the controls recovered to 29.0 +/- 3.9 % of baseline value, whereas preconditioned hearts showed a significantly increased recovery (LVDP 66.4 +/- 5.7 %, p < 0.05). Recovery of both CF and dP/dt(max) after TI was also significantly higher in the adapted hearts (101.5 +/- 5.8 % and 83.64 +/- 3.92 % ) as compared with the controls (71.9 +/- 6.3 % and 35.7 +/- 4.87 %, respectively, p < 0.05). NOS inhibition improved contractile recovery in the non-adapted group (LVDP 53.8 +/- 3.1 %; dP/dt(max) 67.5 +/- 5.92 %) and increased CF to 82.4 +/- 5.2 %. In contrast, in the adapted group, it abolished the protective effect of IP (LVDP 31.8 +/- 3.1 %; CF 70.3 +/- 3.4 % and dP/dt(max) 43.25 +/- 2.19 %). Control group exhibited 100 % occurrence of ventricular tachycardia (VT), 57 % incidence of ventricular fibrillation (VF) - 21 % of them was sustained VF (SVF); application of L-NAME attenuated reperfusion arrhythmias (VT 70 %, VF 20 %, SVF 0 %). Adaptation by IP also reduced arrhythmias, however, L-NAME in the preconditioned hearts increased the incidence of arrhythmias (VT 100 %, VF 58 %, SVF 17 %). In conclusion: our results indicate that administration of L-NAME might be cardioprotective in the normal hearts exposed to ischemia/reperfusion (I/R) alone, suggesting that NO contributes to low ischemic tolerance in the non-adapted hearts. On the other hand, blockade of cardioprotective effect of IP by L-NAME points out to a dual role of NO in the heart: a negative role in the non-adapted myocardium subjected to I/R, and a positive one, due to its involvement in the mechanisms of protection triggered by short-term cardiac adaptation by preconditioning.  相似文献   

14.
The goal of this study was to determine whether changes in cardiac metabolism in Type 2 diabetes are associated with contractile dysfunction or impaired response to ischemia. Hearts from Zucker diabetic fatty (ZDF) and lean control rats were isolated and perfused with glucose, lactate, pyruvate, and palmitate. The rates of glucose, lactate, pyruvate, and palmitate oxidation rates and glycolysis were determined during baseline perfusion and low-flow ischemia (LFI; 0.3 ml/min for 30 min) and after LFI and reperfusion. Under all conditions, ATP synthesis from palmitate was increased and synthesis from lactate was decreased in the ZDF group, whereas the contribution from glucose was unchanged. During baseline perfusion, the rate of glycolysis was lower in the ZDF group; however, during LFI and reperfusion, there were no differences between groups. Despite these metabolic shifts, there were no differences in oxygen consumption or ATP production rates between the groups under any perfusion conditions. Cardiac function was slightly depressed before LFI in the ZDF group, but during reperfusion, function was improved relative to the control group despite the increased dependence on fatty acids for energy production. These data suggest that in this model of diabetes, the shift from carbohydrates to fatty acids for oxidative energy production did not increase myocardial oxygen consumption and was not associated with impaired response to ischemia and reperfusion.  相似文献   

15.
Inducible nitric oxide synthase (iNOS) plays an important role in the inflammatory process of certain major cardiac disorders including myocardial infarction and allograft rejection. However, the role of iNOS in acute myocardial ischemia has not been well defined. We determined the effects of genetically disruption of the intact iNOS system on cardiac tolerance to ischemia/reperfusion injury. Adult male wild-type (WT) and iNOS knockout (KO) B6,129 mice were subjected to 20 min global ischemia and 30 min reperfusion in a Langendorff isolated perfused heart model (37 degrees C, n = 10/each group). Ventricular contractile function, heart rate, coronary flow, and leakage of intracellular enzymes (CK and LDH) were not significantly different between the groups during pre-ischemia as well as reperfusion period (P > 0.05). Myocardial infarct size was also not significantly different between WT (20.2+/-2.0% of risk area) and KO mice (23.5+/-3.8%; Mean+/-SEM, P > 0.05). However, the post-ischemic heart rate was significantly preserved in KO as compared to WT (P < 0.05). We conclude that disruption of iNOS gene does not exacerbate ischemia/ reperfusion injury in the heart.  相似文献   

16.
Phillips AB  Ko W 《Life sciences》2007,81(17-18):1355-1361
Preconditioning (PC) is a potential approach to myocardial protection. We hypothesize that brief ischemia or adenosine given prior to an extended period of warm ischemia may prevent myocardial stunning by altering myocardial metabolism. Using a global ischemia model, 19 dogs were subjected to no PC(control), two episodes of ischemia (2 min of global ischemia followed by 3 min of reperfusion) (IPC), or 30 min of pulmonary artery adenosine infusion (AP), to a maximum of 350 microg/kg/min, followed by 20 min of global warm ischemia on cardiopulmonary bypass. Left ventricular pressure-volume loops and myocardial oxygen consumption (MVO(2)) were measured at baseline and after 60 min of reperfusion, on right heart bypass. All data were compared between baseline and reperfusion. Load independent left ventricular function, defined as preload recruitable stroke work (PRSW), decreased in control and IPC groups (72+/-7%, 71+/-12%, respectively). AP blunted the decrease in PRSW (45+/-9%, p<.05 compared to control). Myocardial energetic conversion efficiency, defined as the slope of the MVO(2)-Stroke work relationship was not significantly changed for controls (2.17+/-0.47 to 1.84+/-0.68) and IPC (2.99+/-0.45 to 2.16+/-0.65), but was for AP (1.16+/-0.88 to 5.71+/-1.66, p<0.04). IPC did not prevent ventricular stunning or alter myocardial energetics. AP reduced ventricular stunning but resulted in worsened myocardial energy efficiency. The benefits to ventricular function of the adenosine pretreatment protocol used in this study were only possible at a cost of higher metabolic requirements.  相似文献   

17.
We studied the differences between the functional and bioenergetic effects of antioxidants (AOX) administered before or after myocardial ischemia. Sprague-Dawley rat hearts were perfused with a modified Krebs-Henseleit solution and bubbled with 95% O(2)-5% CO(2). The protocol consisted of 10 min of baseline perfusion, 20 min of global ischemia, and 30 min of reperfusion. An AOX, either 1,2-dihydroxybenzene-3,5-disulfonate (Tiron), a superoxide scavenger, or N-acetyl-L-cysteine, was infused during either baseline or reperfusion. An additional group received deferoxamine as a bolus before ischemia. Hearts were freeze-clamped at baseline, at end of ischemia, and at end of reperfusion for analysis of high-energy phosphates. All AOX, when given before ischemia, inhibited recovery of ATP compared with controls. Both Tiron and deferoxamine also inhibited recovery of phosphocreatine. AOX given before ischemia decreased the efficiency of contraction during reperfusion compared with controls. All of the changes in energetics and efficiency brought on by preischemic AOX treatment could be blocked by a preconditioning stimulus. This suggests that reactive oxygen species, which are generated during ischemia, enhance bioenergetic recovery by increasing the efficiency of contraction.  相似文献   

18.
Nine patients with coronary artery disease and normal left ventricular (LV) function underwent two episodes of dobutamine-induced ischemia to determine whether repeated episodes of ischemia lead to cumulative stunning. Positron emission tomography (PET) and oxygen 15-labeled H(2)O was used to assess myocardial blood flow (MBF) at baseline, peak stress, and after stress for each ischemic episode. Quantitative echocardiographic assessment of global ejection fraction (EF) and regional systolic function (SF) was performed at rest and regular intervals after dobutamine. SF was assessed for regions subtended by a coronary artery with a >70% diameter stenosis. Both EF and SF were more severely impaired 45 min after the second episode of stress compared with 45 min after the first (both P < 0.01), despite no difference in duration of the two dobutamine infusions or MBF at peak stress (1.72 vs. 1.69). After both episodes of ischemia, when LV function was impaired but subsequently recovered, MBF (1.15 +/- 0.39 and 1.20 +/- 0.43, respectively) was no different to baseline MBF (1.02 +/- 0.35), confirming that repeated episodes of dobutamine-induced ischemia lead to cumulative myocardial stunning.  相似文献   

19.
In this study we investigated the role of Mas on cardiac function during ischemia/reperfusion in isolated perfused mouse heart. Following a stabilization period of 30 min, hearts from WT and Mas KO mice were subjected to global ischemia. After 20 min of ischemia, the flow was restarted and the hearts were reperfused for 30 min. An additional group of WT mice was perfused with solution containing the Ang-(1-7) receptor Mas antagonist A-779. Isolated heart of Mas KO and WT treated with A-779 presented an increase in the perfusion pressure in the baseline period. This difference increased with 5 min of reperfusion reaching similar values to baseline period at the end of the reperfusion. Isolated hearts of Mas KO and WT treated with A-779 also presented a decreased systolic tension, +/-dT/dt, and HR. Upon global ischemia WT hearts showed a significant decrease in systolic tension and an increase in diastolic tension. During reperfusion an increase in systolic and diastolic tension was observed in WT mice. Deletion or blockade of Mas markedly attenuated these changes in isolated hearts. These results indicate that Mas plays an important role in cardiac function during ischemia/reperfusion which is in keeping with the cardiac and coronary effects previously described for Ang-(1-7).  相似文献   

20.
We studied the origins of ectopic beats during low-flow reperfusion after acute regional ischemia in excised rat hearts. The left anterior descending coronary artery was cannulated. Perfusate was delivered to the cannula using an high-performance liquid chromatography pump. This provided not only precise control of flow rate but also avoided mechanical artifacts associated with vessel occlusion and deocclusion. Optical mapping of epicardial transmembrane potential served to identify activation wavefronts. Imaging of NADH fluorescence was used to quantify local ischemia. Our experiments suggest that low-flow reperfusion of ischemic myocardium leads to a highly heterogeneous ischemic substrate and that the degree of ischemia between adjacent patches of tissue changes in time. In contrast to transient ectopic activity observed during full-flow reperfusion, persistent ectopic arrhythmias were observed during low-flow reperfusion. The origins of ectopic beats were traceable to areas of high spatial gradients of changes in NADH fluorescence caused by low-flow reperfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号