首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Glutamine:fructose-6-phosphate amidotransferase (GFAT) plays a key role in desensitizing the insulin-responsive glucose transport system (GTS), and recent studies have revealed that loss of GFAT activity accompanies desensitization. To gain insights into the mechanisms underlying loss of enzyme activity, we have used primary cultured adipocytes and two well established inhibitors of mRNA synthesis to estimate GFAT turnover. Both actinomycin D and 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) caused a rapid and extensive loss in GFAT activity (greater than 70% loss, t1/2 of 45 min) indicating that GFAT has a relatively short half-life. Since induction of insulin resistance requires GFAT, we next examined the ability of mRNA inhibitors to block glucose-induced desensitization. When adipocytes were cultured for 18 h with 20 mM glucose, amino acids, and 25 ng/ml insulin, maximal insulin responsiveness of the GTS was reduced by greater than 70%. Both actinomycin D and DRB rapidly and completely prevented desensitization in a dose-dependent manner (ED50 of 16 nM and 15 microM, respectively). These findings are the predicted functional consequence of diminished GFAT activity. Evidence that actinomycin D acts selectively on GFAT without influencing other steps within the desensitization pathway was obtained using glucosamine, an agent that enters the hexosamine biosynthesis pathway at a point distal to the action of GFAT. Actinomycin D inhibited glucose-induced desensitization but failed to block glucosamine-induced desensitization. From these studies we conclude that 1) glucose-induced desensitization of the GTS can be completely prevented by actinomycin D and DRB, two potent and diverse inhibitors of mRNA synthesis; 2) the functional integrity of the desensitization pathway is maintained by a short-lived protein; and 3) the identity of this short-lived protein is most likely GFAT, the first and rate-limiting enzyme of the hexosamine biosynthesis pathway.  相似文献   

3.
We varied rates of glucose transport and glycogen synthase I (GS-I) activity (%GS-I) in isolated rat epitrochlearis muscle to examine the role of each process in determining the rate of glycogen accumulation. %GS-I was maintained at or above the fasting basal range during 3 h of incubation with 36 mM glucose and 60 microU/ml insulin. Lithium (2 mM LiCl) added to insulin increased glucose transport rate and muscle glycogen content compared with insulin alone. The glycogen synthase kinase-3beta inhibitor GF-109203 x (GF; 10 microM) maintained %GS-I about twofold higher than insulin with or without lithium but did not increase glycogen accumulation. When %GS-I was lowered below the fasting range by prolonged incubation with 36 mM glucose and 2 mU/ml insulin, raising rates of glucose transport with bpV(phen) or of %GS-I with GF produced additive increases in glycogen concentration. Phosphorylase activity was unaffected by GF or bpV(phen). In muscles of fed animals, %GS-I was approximately 30% lower than in those of fasted rats, and insulin-stimulated glycogen accumulation did not occur unless %GS-I was raised with GF. We conclude that the rate of glucose transport is rate limiting for glycogen accumulation unless %GS-I is below the fasting range, in which case both glucose transport rate and GS activity can limit glycogen accumulation.  相似文献   

4.
Like many cell types in culture, both undifferentiated and differentiated BALB/c 3T3 preadipose cells respond to glucose deprivation with an increased uptake of 2-deoxy-D-glucose (deoxyglucose) and 3-O-methyl-D-glucose (methylglucose). Glucose readdition to glucose-deprived cultures resulted in a prompt fall in uptake activity; in undifferentiated cells, a half-maximally effective concentration of glucose was approximately 0.5 mM, while 0.1 mM was ineffective. Several hexoses differed in their efficacy of "deactivating" methylglucose transport in glucose-deprived cells; it appeared that a particular hexose must be metabolized beyond the 6-phosphate form to deactivate the transport system. Previous studies have shown that the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) stimulates hexose transport in undifferentiated and differentiated BALB/c 3T3 cells. In this study, it was found that TPA (and insulin in differentiated cells) prevented the glucose-induced deactivation of transport activity. Glucose-induced deactivation of transport activity was also prevented by cycloheximide or actinomycin D addition concomitantly with glucose. In glucose-starved cells, agents such as TPA and insulin appear to override a cellular control mechanism sensitive to the external concentration of glucose, so that elevated levels of transport activity are maintained under environmental conditions (i.e., a return to physiological glucose concentrations) that normally induce a fall in transport activity.  相似文献   

5.
Recent evidence has shown that activation of lipid-sensitive protein kinase C (PKC) isoforms leads to skeletal muscle insulin resistance. However, earlier studies demonstrated that phorbol esters increase glucose transport in skeletal muscle. The purpose of the present study was to try to resolve this discrepancy. Treatment with the phorbol ester 12-deoxyphorbol-13-phenylacetate 20-acetate (dPPA) led to an approximately 3.5-fold increase in glucose transport in isolated fast-twitch epitrochlearis and flexor digitorum brevis muscles. Phorbol ester treatment was additive to a maximally effective concentration of insulin in fast-twitch skeletal muscles. Treatment with dPPA did not affect insulin signaling in the epitrochlearis. In contrast, phorbol esters had no effect on basal glucose transport and inhibited maximally insulin-stimulated glucose transport approximately 50% in isolated slow-twitch soleus muscle. Furthermore, dPPA treatment inhibited the insulin-stimulated tyrosine phosphorylation of insulin receptor substrate (IRS)-1 and the threonine and serine phosphorylation of PKB by approximately 50% in the soleus. dPPA treatment also caused serine phosphorylation of IRS-1 in the slow-twitch soleus muscle. In conclusion, our results show that phorbol esters stimulate glucose transport in fast-twitch skeletal muscles and inhibit insulin signaling in slow-twitch soleus muscle of rats. These findings suggest that mechanisms other than PKC activation mediate lipotoxicity-induced whole body insulin resistance.  相似文献   

6.
We examined the effect of leptin on the insulin resistance in skeletal muscles by measuring glucose transport. Male Wistar rats were fed rat chow or high-fat diets for 30 days. Before sacrifice, rats fed high-fat diet were subcutaneously injected with leptin (1 mg/kg b.w.) for 3 days. The glucose transport in epitrochlearis and soleus muscles did not differ in the experimental groups under basal conditions, however these values decreased significantly in the rats fed high-fat diet under insulin stimulation (p<0.01). Leptin treatment recovered the decreased glucose transport in epitrochlearis (p<0.05) and soleus muscles (p=0.08). Triglyceride concentrations in soleus muscles were increased significantly in the rats fed high-fat diet as compared to rats fed chow diet (p<0.01), and were decreased significantly by leptin treatment (p<0.01). The glucose transport was measured under basal conditions and after 60 microU/ml of insulin treatment with or without 50 ng/ml of leptin. Leptin had no direct stimulatory effect on glucose transport under both basal and insulin-stimulated conditions in vitro. These results demonstrate that leptin injection to rats fed high-fat diet recovered impaired insulin responsiveness of skeletal muscles and muscle triglyceride concentrations. However, there was no direct stimulatory effect of leptin on insulin sensitivity of skeletal muscles in vitro.  相似文献   

7.
Glucose transport activity was found to increase over 5 h in rat epitrochlearis muscle in response to a moderate concentration (50-100 microunits/ml) of insulin. This process was examined using 3-methylglucose. The increase in permeability to 3-methylglucose was 2- to 4-fold greater after 5 h than after 1 h in muscles incubated with 50 microunits/ml of insulin and 1 or 8 mM glucose. The increase in permeability to 3-methylglucose during the period between 1 and 5 h of exposure to 50 microunits/ml of insulin and 1 mM glucose was due to an increase in the apparent Vmax of sugar transport. There were two components to this activation of glucose transport. One, which was not influenced by inhibition of protein synthesis, resulted in activation of sugar transport to the same extent by 50 microunits/ml as by 20,000 microunits/ml of insulin; however, this activation took approximately 20 times longer with 50 microunits/ml insulin. The other, which was blocked by cycloheximide, resulted in a further activation of sugar transport to a level higher than that attained in response to 20,000 microunits/ml of insulin. Glucose had no effect on activation of sugar transport during the first hour, but a high concentration (20-36 mM) of glucose prevented the further activation of glucose transport during prolonged treatment with 50 microunits/ml of insulin. It appears from these results that prolonged exposure to a moderate concentration of insulin has previously unrecognized effects that include: a progressive activation of glucose transport over a long time that eventually results in as great a response as a "supramaximal" insulin concentration, and in the presence of low glucose concentration, further activation of glucose transport by an additional, protein synthesis-dependent mechanism. The results also show that a high concentration of glucose can, under some conditions, inhibit stimulation of its own transport.  相似文献   

8.
Hemorrhagic shock was produced by bleeding rats to a mean arterial pressure of 40 mm Hg (1 mm Hg = 133 N/m2), which was maintained for 2 h. Muscles from these animals ('shock' muscles) showed resistance to the stimulation of glucose uptake by insulin. Addition of 1 mM ATP-MgCl2 to the medium had no effect on basal glucose uptake in either group of muscles, but it permitted insulin to exert its stimulatory effect in 'shock' muscles. An optimal insulin effect on glucose uptake in 'shock' muscles incubated without ATP was observed at an insulin concentration of 0.2 Unit/ml. When 1 mM ATP-MgCl2 was added to the medium, optimal insulin effect in 'shock' muscles was observed at an insulin concentration of 0.007 Unit/ml. Increasing the concentration of ATP-MgCl2 to 2.5 mM in the medium resulted in an optimal insulin effect at an insulin concentration of ATP-MgCl2 to 2.5 mM in the medium resulted in an optimal insulin effect at an insulin concentration of 0.001 Unit/ml in 'shock' muscles. Following 1 h cubation in Krebs-HCO3 medium, intracellular ATP contents of 'shock' muscles were approximately 50% lower than in control muscles. Addition of 1 mM ATP-MgCl2 to the incubation medium had no effect on the intracellular ATP contents of either group of muscles following incubation; however, 2.5 mM ATP-MgCl2 elevated intracellular ATP contents of 'shock' muscles but had no effect in control muscles. Possible mechanisms for this reversal of insulin resistance by ATP-MgCl2 in shock are discussed.  相似文献   

9.
Renal failure is associated with peripheral insulin resistance and consequent carbohydrate intolerance. This report investigates carbohydrate metabolism in vitro in epitrochlearis and hemidiaphragm muscles taken from acutely uraemic and sham-operated rats. Muscles from acutely uraemic rats (compared to those from sham-operated rats ) incubated with 5 mM glucose showed increased rates of basal and insulin-stimulated glycolysis and glycogen turnover, but pyruvate dehydro-genase and tricarboxylic acid - cycle flux was not increased in uraemia. Glycolysis (but not glycogen turnover) in muscles from acutely uraemic rats tended to show decreased responsiveness to stimulation by insulin. It is concluded that acute uraemia is associ-ated with a defect(s) in muscle that produces intrinsic insulin resistance and results in diversion of glucose (both in basal and insulin-stimulated states) from glycogen synthesis into glycolysis.  相似文献   

10.
Exercise induces an increase in glucose transport in muscle. As the acute increase in glucose transport reverses, it is replaced by an increase in insulin sensitivity. Interleukin-6 (IL-6) increases with exercise and has been reported to activate AMP-activated protein kinase (AMPK). Based on this information, we hypothesized that IL-6 would result in an increase in muscle insulin sensitivity. Rat epitrochlearis and soleus muscles were incubated with 120 ng/ml IL-6. Exposure to IL-6 induced a modest acute increase in glucose transport and was followed 3.5 h later by an increase in insulin sensitivity in epitrochlearis but not soleus muscles. IL-6 also brought about an increase in AMPK phosphorylation in epitrochlearis muscles. We conclude that exposure of fast-twitch muscle to 120 ng/ml IL-6 increases insulin sensitivity by activating AMPK. However, exposure of epitrochlearis muscles to 10 ng/ml IL-6, a concentration >100-fold higher than that attained in plasma during exercise, had no effect on glucose transport or insulin sensitivity. These findings provide evidence that the increases in glucose transport and insulin sensitivity induced by IL-6 are pharmacological rather than physiological effects. We interpret our results as evidence that the increase in IL-6 during exercise does not play a role in the exercise-induced increases in muscle glucose uptake and insulin sensitivity.  相似文献   

11.
A role for elevated glycogen synthase kinase-3 (GSK-3) activity in the multifactorial etiology of insulin resistance is now emerging. However, the utility of specific GSK-3 inhibition in modulating insulin resistance of skeletal muscle glucose transport is not yet fully understood. Therefore, we assessed the effects of novel, selective organic inhibitors of GSK-3 (CT-98014 and CT-98023) on glucose transport in insulin-resistant muscles of Zucker diabetic fatty (ZDF) rats. Incubation of type IIb epitrochlearis and type I soleus muscles from ZDF rats with CT-98014 increased glycogen synthase activity (49 and 50%, respectively, P < 0.05) but did not alter basal glucose transport (2-deoxyglucose uptake). In contrast, CT-98014 significantly increased the stimulatory effects of both submaximal and maximal insulin concentrations in epitrochlearis (37 and 24%) and soleus (43 and 26%), and these effects were associated with increased cell-surface GLUT4 protein. Lithium enhanced glycogen synthase activity and both basal and insulin-stimulated glucose transport in muscles from ZDF rats. Acute oral administration (2 x 30 mg/kg) of CT-98023 to ZDF rats caused elevations in GSK-3 inhibitor concentrations in plasma and muscle. The glucose and insulin responses during a subsequent oral glucose tolerance test were reduced by 26 and 34%, respectively, in the GSK-3 inhibitor-treated animals. Thirty minutes after the final GSK-3 inhibitor treatment, insulin-stimulated glucose transport was significantly enhanced in epitrochlearis (57%) and soleus (43%). Two hours after the final treatment, insulin-mediated glucose transport was still significantly elevated (26%) only in the soleus. These results indicate that specific inhibition of GSK-3 enhances insulin action on glucose transport in skeletal muscle of the insulin-resistant ZDF rat. This unique approach may hold promise as a pharmacological treatment against insulin resistance of skeletal muscle glucose disposal.  相似文献   

12.
Based on our previous finding that desensitization of the insulin-responsive glucose transport system (GTS) requires three components, glucose, insulin, and glutamine, we postulated that the routing of incoming glucose through the hexosamine biosynthesis pathway plays a key role in the development of insulin resistance in primary cultured adipocytes. Two approaches were used to test this hypothesis. First, we assessed whether glucose-induced desensitization of the GTS could be prevented by glutamine analogs that irreversibly inactivate glutamine-requiring enzymes, such as glutamine:fructose-6-phosphate amidotransferase (GFAT) the first and the rate-limiting enzyme in hexosamine biosynthesis. Both O-diazoacetyl-L-serine (azaserine) and 6-diazo-5-oxonorleucine inhibited desensitization in 18-h treated cells without affecting maximal insulin responsiveness in control cells. Moreover, close agreement was seen between the ability of azaserine to prevent desensitization of the GTS in intact adipocytes (70% inhibition, ED50 = 1.1 microM), its ability to inactivate GFAT in intact adipocytes (64% inhibition, ED50 = 1.0 microM) and its ability to inactivate GFAT activity in a cytosolic adipocyte preparation (ED50 = 1.3 microM). From these results we concluded that a glutamine amidotransferase is involved in the induction of insulin resistance. As a second approach, we determined whether glucosamine, an agent known to preferentially enter the hexosamine pathway at a point distal to enzymatic amidation by GFAT, could induce cellular insulin resistance. When adipocytes were exposed to various concentrations of glucosamine for 5 h, progressive desensitization of the GTS was observed (ED50 = 0.36 mM) that culminated in a 40-50% loss of insulin responsiveness. Moreover, we estimated that glucosamine is at least 40 times more potent than glucose in mediating desensitization, since glucosamine entered adipocytes at only one-quarter of the glucose uptake rate, yet induced desensitization at an extra-cellular dose 10 times lower than glucose. In addition, we found that glucosamine-induced desensitization did not require glutamine and was unaffected by azaserine treatment. Thus, we conclude that glucosamine enters the hexosamine-desensitization pathway at a point distal to GFAT amidation. Overall, these studies indicate that a unique metabolic pathway exists in adipocytes that mediates desensitization of the insulin-responsive GTS, and reveal that an early step in this pathway involves the conversion of fructose 6-phosphate to glucosamine 6-phosphate by the first and rate-limiting enzyme of the hexosamine pathway, glutamine:fructose-6-phosphate amidotransferase.  相似文献   

13.
It has been reported that treatment of cultured human skeletal muscle myotubes with the peroxisome proliferator-activated receptor-delta (PPARdelta) activator GW-501516 directly stimulates glucose transport and enhances insulin action. Cultured myotubes are minimally responsive to insulin stimulation of glucose transport and are not a good model for studying skeletal muscle glucose transport. The purpose of this study was to evaluate the effect of GW-501516 on glucose transport to determine whether the findings on cultured myotubes have relevance to skeletal muscle. Rat epitrochlearis and soleus muscles were treated for 6 h with 10, 100, or 500 nM GW-501516, followed by measurement of 2-deoxyglucose uptake. GW-501516 had no effect on glucose uptake. There was no effect on insulin sensitivity or responsiveness. Also, in contrast to findings on myotubes, treatment of muscles with GW-501516 did not result in increased phosphorylation or increased expression of AMP-activated protein kinase (AMPK) or p38 mitogen-activated protein kinase (MAPK). Treatment of epitrochlearis muscles with GW-501516 for 24 h induced a threefold increase in uncoupling protein-3 mRNA, providing evidence that the GW-501516 compound that we used gets into and is active in skeletal muscle. In conclusion, our results show that, in contrast to myotubes in culture, skeletal muscle does not respond to GW-501516 with 1) an increase in AMPK or p38 MAPK phosphorylation or expression or 2) direct stimulation of glucose transport or enhanced insulin action.  相似文献   

14.
Glucosamine induced insulin resistance in 3T3-L1 adipocytes, which was associated with a 15% decrease in cellular ATP content. To study the role of ATP depletion in insulin resistance, we employed sodium azide (NaN3) and dinitrophenol (DNP), which affect mitochondrial oxidative phosphorylation, to achieve a similar 15% ATP depletion. Unlike glucosamine, NaN3 and DNP markedly increased basal glucose transport, and the increased basal glucose transport was associated with increased GLUT-1 content in the plasma membrane without changes in total GLUT-1 content. These agents, like glucosamine, did not affect the early insulin signaling that is implicated in insulin stimulation of glucose transport. In cells with a severe 40% ATP depletion, basal glucose transport was similarly elevated, and insulin-stimulated glucose transport was similar in cells with 15% ATP depletion. In these cells, however, early insulin signaling was severely diminished. These data suggest that cellular ATP depletion by glucosamine, NaN3, and DNP exerts differential effects on basal and insulin-stimulated glucose transport and that ATP depletion per se does not induce insulin resistance in 3T3-L1 adipocytes.  相似文献   

15.
Glucocorticoids cause insulin resistance in skeletal muscle. The aims of the present study were to investigate the effects of contraction on glucose uptake, insulin signaling, and regulation of glycogen synthesis in skeletal muscles from rats treated with the glucocorticoid analog dexamethasone (1 mg x kg(-1) x day(-1) ip for 12 days). Insulin resistance in dexamethasone-treated rats was confirmed by reduced insulin-stimulated glucose uptake (approximately 35%), glycogen synthesis (approximately 70%), glycogen synthase activation (approximately 80%), and PKB Ser(473) phosphorylation (approximately 40%). Chronic dexamethasone treatment did not impair glucose uptake during contraction in soleus or epitrochlearis muscles. In epitrochlearis (but not in soleus), the presence of insulin during contraction enhanced glucose uptake to similar levels in control and dexamethasone-treated rats. Contraction also increased glycogen synthase fractional activity and dephosphorylated glycogen synthase at Ser(645), Ser(649), Ser(653), and Ser(657) normally in muscles from dexamethasone-treated rats. After contraction, insulin-stimulated glycogen synthesis was completely restored in epitrochlearis and improved in soleus from dexamethasone-treated rats. Contraction did not increase insulin-stimulated PKB Ser(473) or glycogen synthase kinase-3 (GSK-3) phosphorylation. Instead, contraction increased GSK-3beta Ser(9) phosphorylation in epitrochlearis (but not in soleus) in muscles from control and dexamethasone-treated rats. In conclusion, contraction stimulates glucose uptake normally in dexamethasone-induced insulin resistant muscles. After contraction, insulin's ability to stimulate glycogen synthesis was completely restored in epitrochlearis and improved in soleus from dexamethasone-treated rats.  相似文献   

16.
Insulin resistance can be induced in vivo by intravenous infusion of glucosamine or in cells by incubation with glucosamine. However, a publication (Hresko, R. C., et al. (1998) J. Biol. Chem. 273, 20658-20668) suggests a trivial explanation of glucosamine-induced insulin resistance whereby intracellular ATP pools are depleted presumably due to the phosphorylation of glucosamine to glucosamine 6-phosphate, a hexosamine pathway intermediate. The reduced ATP level impaired insulin receptor (IR) autophosphorylation and tyrosine kinase activity toward substrates. The present work describes the development and comparison of two methods for inducing insulin resistance, by treating 3T3-L1 adipocytes overnight using either 25 mM glucose/5 nM insulin or 2 mM glucosamine. Under these conditions basal glucose transport rates were comparable with controls. Insulin-stimulated 2-deoxyglucose uptake, however, was reduced by approximately 45% in response to both high glucose/insulin and glucosamine treatment, relative to control cells. The total relative amounts of the insulin-responsive glucose transporter, Glut4, remained constant under both treatment conditions. The relative phosphotyrosine (Tyr(P)) contents of the insulin receptor and its substrate 1 (IRS-1) were assessed in whole cell homogenates. With both methods to induce insulin resistance, IR/IRS-1 Tyr(P) levels were virtually indistinguishable from those in control cells. Insulin-stimulated phosphorylation of Akt on Ser(473) was not impaired in insulin-resistant cells. Furthermore, the relative Tyr(P) content of the PDGF receptor was comparable in high glucose/insulin- or glucosamine-treated 3T3-L1 adipocytes upon subsequent challenge with PDGF. Finally, the relative amounts of glutamine:fructose-6-phosphate amidotransferase and O-linked N-acetylglucosamine transferase, two important hexosamine pathway enzymes, were similar in both treatments when compared with controls. Thus, 3T3-L1 adipocytes can be used as a model system for studying insulin resistance induced by increased influx of glucose. Under appropriate experimental conditions, glucosamine treatment can mimic the effects of increased glucose flux without impairment of tyrosine phosphorylation-based signaling.  相似文献   

17.
Insulin and muscle contractions stimulate glucose transport in skeletal muscle through a translocation of intracellular GLUT4 glucose transporters to the cell surface. Judged by immunofluorescence microscopy, part of the GLUT4 storage sites is associated with the extensive microtubule cytoskeleton found in all muscle fibers. Here, we test whether microtubules are required mediators of the effect of insulin and contractions. In three different incubated rat muscles with distinct fiber type composition, depolymerization of microtubules with colchicine for < or =8 h did not inhibit insulin- or contraction-stimulated 2-deoxyglucose transport or force production. On the contrary, colchicine at least partially prevented the approximately 30% decrease in insulin-stimulated transport that specifically developed during 8 h of incubation in soleus muscle but not in flexor digitorum brevis or epitrochlearis muscles. In contrast, nocodazole, another microtubule-disrupting drug, rapidly and dose dependently blocked insulin- and contraction-stimulated glucose transport. A similar discrepancy between colchicine and nocodazole was also found in their ability to block glucose transport in muscle giant "ghost" vesicles. This suggests that the ability of insulin and contractions to stimulate glucose transport in muscle does not require an intact microtubule network and that nocodazole inhibits glucose transport independently of its microtubule-disrupting effect.  相似文献   

18.
We have examined the hypothesis that glucosamine (GlcN) can rapidly induce insulin resistance through an allosteric mechanism. When insulin-treated adipocytes were exposed to 2mM GlcN, glucose uptake was rapidly reduced by approximately 60% with a T(1/2) of 2 min. We also observed an increase in intracellular GlcN-6-P (at 5 min) from undetectable levels to approximately 260 nmol/g. Continued GlcN treatment resulted in additional accumulation of GlcN-6-P (>1200 nmol/g at 2h), but caused no further decrease in glucose uptake. Although the acute inhibitory action of GlcN could be completely reversed by removing extracellular GlcN, a slow and progressive decrease in insulin-stimulated glucose transport was observed with longer treatment times (T(1/2) of 45 min, 62% loss by 5h). From these data, we conclude that: (1) GlcN elevates intracellular GlcN-6-P levels within minutes, resulting in desensitization of the glucose transport system through allosteric inhibition of hexokinase; (2) prolonged treatment elevates GlcN-6-P to levels that cannot be effectively lowered by cell washing; and (3) residual levels of GlcN-6-P continue to allosterically inhibit glucose uptake, resulting in a slower rate of desensitization that is temporally similar to glucose-induced desensitization, but mechanistically different.  相似文献   

19.
To study molecular mechanisms for glucosamine-induced insulin resistance, we induced complete and reversible insulin resistance in 3T3-L1 adipocytes with glucosamine in a dose- and time-dependent manner (maximal effects at 50 mM glucosamine after 6 h). In these cells, glucosamine impaired insulin-stimulated GLUT-4 translocation. Glucosamine (6 h) did not affect insulin-stimulated tyrosine phosphorylation of the insulin receptor and insulin receptor substrate-1 and -2 and weakly, if at all, impaired insulin stimulation of phosphatidylinositol 3-kinase. Glucosamine, however, severely impaired insulin stimulation of Akt. Inhibition of insulin-stimulated glucose transport was correlated with that of Akt activity. In these cells, glucosamine also inhibited insulin stimulation of p70 S6 kinase. Glucosamine did not alter basal glucose transport and insulin stimulation of GLUT-1 translocation and mitogen-activated protein kinase. In summary, glucosamine induced complete and reversible insulin resistance in 3T3-L1 adipocytes. This insulin resistance was accompanied by impaired insulin stimulation of GLUT-4 translocation and Akt activity, without significant impairment of upstream molecules in insulin-signaling pathway.  相似文献   

20.
The present study demonstrates the effect of glucosamine on the functional maturation of cultured B cells of the neonatal rat. When B cells had been maintained at a physiological concentration (5.5 mM) of glucose for 7 days, a drop in the stimulatory effect of 16.7 mM glucose on insulin release and biosynthesis was observed together with a reduced insulin content. By contrast, the sensitivity of glucose-induced insulin release was increased after one week of culture with 5.5 mM glucose and 5 mM glucosamine. And both the insulin content and glucose-induced insulin biosynthesis also remained at the same level as observed at the first day of culture with 5.5 mM glucose alone. In summary, it was suggested that glucosamine-supplemented culture may result in the transition of B cells of neonatal rat from a poor glucose sensitivity to adult-type response of insulin release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号