首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although there are a number of well-characterized genetic defects that lead to increased risk of thrombosis, little information is available on the relative importance of genetic factors in thrombosis risk in the general population. We performed a family-based study of the genetics of thrombosis in the Spanish population to assess the heritability of thrombosis and to identify the joint actions of genes on thrombosis risk and related quantitative hemostasis phenotypes. We examined 398 individuals in 21 extended pedigrees. Twelve pedigrees were ascertained through a proband with idiopathic thrombosis, and the remaining pedigrees were randomly ascertained. The heritability of thrombosis liability and the genetic correlations between thrombosis and each of the quantitative risk factors were estimated by means of a novel variance component method that used a multivariate threshold model. More than 60% of the variation in susceptibility to common thrombosis is attributable to genetic factors. Several quantitative risk factors exhibited significant genetic correlations with thrombosis, indicating that some of the genes that influence quantitative variation in these physiological correlates also influence the risk of thrombosis. Traits that exhibited significant genetic correlations with thrombosis included levels of several coagulation factors (factors VII, VIII, IX, XI, XII, and von Willebrand), tissue plasminogen activator, homocysteine, and the activated protein C ratio. This is the first study that quantifies the genetic component of susceptibility to common thrombosis. The high heritability of thrombosis risk and the significant genetic correlations between thrombosis and related risk factors suggest that the exploitation of correlated quantitative phenotypes will aid the search for susceptibility genes.  相似文献   

2.
神经管畸形相关基因的研究进展   总被引:7,自引:1,他引:6  
曲梅  李竹 《遗传》2002,24(6):695-698
神经管畸形是由遗传和环境因素共同作用而导致的一种常见的出生缺陷。遗传因素中包括细胞增殖因子、转录因子及影响叶酸代谢的关键酶的基因。本文着重从动物模型和群体流行病学调查两方面,简述目前研究的热点基因及特定位点的遗传多态性与神经管畸形的关系,从而揭示多因素作用在神经管畸形病因学研究中的意义。 Progress in Researches on Neural Tube Defects Related the Genes QU Mei,LI Zhu Institute of Reproductive and Child Health of Peking University,National Reference Laboratory on Reproductive Health Research Ministry of Health,Beijing 100083,China Abstract:Neural tube defects are common birth defects which are ascribed to the combination of genetic and environmental factors.The genetic factors include cell growth factors,transformation factors and key enzymic genes involved in folate metabolism.This paper reviews the genes as focus of current investigantion and the relationship between the genetic polymorphism on the specific sites and neural tube defects based on animal model and population epidemiological study.It indicats that the multifactors play an important role in the etiology of neural tube defects. Key words:neural tube defects; genetic polymorphism  相似文献   

3.
Climatic history and ecology are considered the most important factors moulding the spatial pattern of genetic diversity. With the advent of molecular markers, species' historical fates have been widely explored. However, it has remained speculative what role ecological factors have played in shaping spatial genetic structures within species. With an unprecedented, dense large-scale sampling and genome-screening, we tested how ecological factors have influenced the spatial genetic structures in Alpine plants. Here, we show that species growing on similar substrate types, largely determined by the nature of bedrock, displayed highly congruent spatial genetic structures. As the heterogeneous and disjunctive distribution of bedrock types in the Alps, decisive for refugial survival during the ice ages, is temporally stable, concerted post-glacial migration routes emerged. Our multispecies study demonstrates the relevance of particular ecological factors in shaping genetic patterns, which should be considered when modelling species projective distributions under climate change scenarios.  相似文献   

4.
5.
Part of the association between physical activity and low blood pressure (BP) may be a consequence of genetic selection. We investigated the association of genetic factors and physical activity in adolescence and adulthood with BP. BP was measured with a Finapres device in 71 monozygotic and 104 dizygotic male twin pairs using no antihypertensive medication. Subjects' mean age was 50.4 yr (range 40-72 yr). Subjects were interviewed about their lifetime exercise and other health habits. Exercise was classified as aerobic, power, or other, and these were further divided into adolescence (12-20 yr of age), the previous year, and lifetime. Genetic modeling was conducted to estimate genetic and environmental components of variance of systolic and diastolic BP. Aerobic exercise in adolescence and high-intensity aerobic exercise throughout the lifetime were associated with low diastolic BP in adulthood. Of the variance in diastolic BP, genetic factors accounted for 35% and aerobic exercise in adolescence for 5%. For systolic BP, genetic factors accounted for 39% of the variance. In turn, genetic factors accounted for 44% of the variance in aerobic exercise in adolescence. The genetic factors in part accounting for the variance in diastolic BP and those in part accounting for variance in aerobic exercise in adolescence were correlated. The association between aerobic exercise in adolescence and low diastolic BP in adulthood is a new finding, as is the observation that the factors partly share the same genes.  相似文献   

6.
高效遗传转化技术体系的建立对植物功能基因组学研究和作物新品种的培育均具有促进作用,目前,再生效率低下是限制许多植物高效遗传转化体系建立的主要技术屏障之一。随着对植物分生组织和体细胞胚形成过程研究的深入,鉴定到了一些关键调控基因,统称为发育调节因子。发育调节因子应用于植物遗传转化后,可以有效改善植物分生组织诱导和再生能力,为提高遗传转化效率提供了重要机遇。综述了7类发育调节因子在提高植物遗传转化效率中的研究进展,重点介绍了其中3类在促进玉米遗传转化中的应用,最后展望了建立植物高效遗传转化体系的发展方向。  相似文献   

7.
Theory predicts that founder effects have a primary role in determining metapopulation genetic structure. However, ecological factors that affect extinction-colonization dynamics may also create spatial variation in the strength of genetic drift and migration. We tested the hypothesis that ecological factors underlying extinction-colonization dynamics influenced the genetic structure of a tiger salamander (Ambystoma tigrinum) metapopulation. We used empirical data on metapopulation dynamics to make a priori predictions about the effects of population age and ecological factors on genetic diversity and divergence among 41 populations. Metapopulation dynamics of A. tigrinum depended on wetland area, connectivity and presence of predatory fish. We found that newly colonized populations were more genetically differentiated than established populations, suggesting that founder effects influenced genetic structure. However, ecological drivers of metapopulation dynamics were more important than age in predicting genetic structure. Consistent with demographic predictions from metapopulation theory, genetic diversity and divergence depended on wetland area and connectivity. Divergence was greatest in small, isolated wetlands where genetic diversity was low. Our results show that ecological factors underlying metapopulation dynamics can be key determinants of spatial genetic structure, and that habitat area and isolation may mediate the contributions of drift and migration to divergence and evolution in local populations.  相似文献   

8.
Knowledge of dispersal in a species, both its quantity and the factors influencing it, are crucial for our understanding of ecology and evolution, and for species conservation. Here we quantified and formally assessed the potential contribution of extrinsic factors on individual dispersal in the threatened Tasmanian population of wedge‐tailed eagle Aquila audax. As successful breeding by these individuals appears strongly related to habitat, we tested the effect of landscape around sampling sites on genetic diversity and spatial genetic variation, as these are influenced by patterns of dispersal. Similarly, we also tested whether habitat intervening sampling sites could explain spatial genetic variation. Twenty microsatellites were scored, but only a small proportion of spatial genetic variation (4.6%) could be explained by extrinsic factors, namely habitat suitability and elevation between sites. However, significant clinal genetic variation was evident across Tasmania, which we explain by intrinsic factors, likely high natal philopatry and occasional long‐distance dispersal. This study demonstrates that spatial genetic variation can be detected in highly vagile species at spatial scales that are small relative to putative dispersal ability, although here there was no substantial relationship with landscape factors tested.  相似文献   

9.
Tests of the genetic structure of empirical populations typically focus on the correlative relationships between population connectivity and geographic and/or environmental factors in landscape genetics. However, such tests may overlook or misidentify the impact of candidate factors on genetic structure, especially when connectivity patterns differ between past and present populations because of shifting environmental conditions over time. Here we account for the underlying demographic component of population connectivity associated with a temporarily dynamic landscape in tests of the factors structuring population genetic variation in an Australian lizard, Lerista lineopunctulata, from 24 nuclear loci. Correlative tests did not support significant effect from factors associated with a static contemporary landscape. However, spatially explicit demographic modeling of genetic differentiation shows that changes in environmental conditions (as estimated from paleoclimatic data) and corresponding distributional shifts from the past to present landscape significantly structures genetic variation. Results from model‐based inference (i.e., from an integrative modeling approach that generates spatially explicit expectations that are tested with approximate Bayesian computation) contrasts with those from correlative analyses, highlighting the importance of expanding the landscape genetic perspective to tests the links between pattern and process, revealing how factors shape patterns of genetic variation within species.  相似文献   

10.
袁娟  张其中  罗芬 《生态科学》2008,27(4):272-276
鱼类是脊椎动物亚门中种属数量最多的类群,分布广泛,起源复杂,拥有丰富的遗传多样性.多种自然和人为因素对鱼类遗传资源存在不同程度的作用,对鱼类生存和进化有重要影响.采用分子手段探讨鱼类遗传资源现状,可为遗传育种、鱼类进化研究和遗传资源保护等提供一定科学依据.以鱼类线粒体DNA(mtDNA)为代表的分子标记技术已被用于研究鱼类群体遗传结构及其与影响因素间的关系.本文综述了鱼类mtDNA的结构特征及其在鱼类分子群体遗传研究中的应用,对了解和运用mtDNA等分子标记研究鱼类群体遗传具有一定参考价值.  相似文献   

11.
The influence of spatio-temporal factors on genetic variation of infectious hematopoietic necrosis virus (IHNV) is an active area of research. Using host-isolate pairs collected from 1966 to 2004 for 237 IHNV isolates from California and southern Oregon, we examined genetic variation of the mid-G gene of IHNV that could be quantified across times and geographic locations. Information hypothesized to influence genetic variation was environmental and/or fish host demographic factors, viz. location (inland or coastal), year of isolation, habitat (river, lake, or hatchery), the agent factors of subgroup (LI or LII) and serotype (1, 2, or 3), and the host factors of fish age (juvenile or adult), sex (male or female), and season of spawning run (spring, fall, late fall, winter). Inverse distance weighting (IDW) was performed to create isopleth maps of the genetic distances of each subgroup. IDW maps showed that more genetic divergence was predicted for isolates found inland (for both subgroups: LI and LII) than for coastal watershed isolates. A mixed-effect beta regression with a logit link function was used to seek associations between genetic distances and hypothesized explanatory factors. The model that best described genetic distance contained the factors of location, year of isolation, and the interaction between location and year. Our model suggests that genetic distance was greater for isolates collected from 1966 to 2004 at inland locations than for isolates found in coastal watersheds during the same years. The agreement between the IDW and beta regression analyses quantitatively supports our conclusion that, during this time period, more genetic variation existed within subgroup LII in inland watersheds than within coastal LI isolates.  相似文献   

12.
Inherited genetic variation contributes to individual risk for many complex diseases and is increasingly being used for predictive patient stratification. Previous work has shown that genetic factors are not equally relevant to human traits across age and other contexts, though the reasons for such variation are not clear. Here, we introduce methods to infer the form of the longitudinal relationship between genetic relative risk for disease and age and to test whether all genetic risk factors behave similarly. We use a proportional hazards model within an interval-based censoring methodology to estimate age-varying individual variant contributions to genetic relative risk for 24 common diseases within the British ancestry subset of UK Biobank, applying a Bayesian clustering approach to group variants by their relative risk profile over age and permutation tests for age dependency and multiplicity of profiles. We find evidence for age-varying relative risk profiles in nine diseases, including hypertension, skin cancer, atherosclerotic heart disease, hypothyroidism and calculus of gallbladder, several of which show evidence, albeit weak, for multiple distinct profiles of genetic relative risk. The predominant pattern shows genetic risk factors having the greatest relative impact on risk of early disease, with a monotonic decrease over time, at least for the majority of variants, although the magnitude and form of the decrease varies among diseases. As a consequence, for diseases where genetic relative risk decreases over age, genetic risk factors have stronger explanatory power among younger populations, compared to older ones. We show that these patterns cannot be explained by a simple model involving the presence of unobserved covariates such as environmental factors. We discuss possible models that can explain our observations and the implications for genetic risk prediction.  相似文献   

13.
Conservation genetics encompasses genetic management of small populations, resolution of taxonomic uncertainties and management units, and the use of molecular genetic analyses in forensics and to understanding species' biology. The role of genetic factors in extinctions of wild populations has been controversial, but evidence now shows that they make important contributions to extinction risk. Inbreeding has been shown to cause extinctions of wild populations, computer projections indicate that inbreeding depression has important effects on extinction risk, and most threatened species show signs of genetic deterioration. Inappropriate management is likely to result if genetic factors are ignored in threatened species management.  相似文献   

14.
The genetic and physical structures of commonly used F-prime factors carrying the galactose region of the Escherichia coli chromosome were analyzed. Deletions in the chromosomal DNA sequences in the F-prime factors were found to be frequent events. A genetic method was developed to reconstruct the original F-prime factors from deletion variants. Heteroduplex analysis of the reconstructed F-prime factors confirmed the derivation of the F-prime factors F100 and F152, from the same Hfr, and finally determined the normal E. coli chromosomal sequence in the region between fep and uvrB, containing about 5 min in genetic units and about 246.5 in kilobase units (kb). This sequence could be connected with the DNA sequences of the lac-purE region, which had been physically determined previously. Together they constituted a total of 528.6 kb. From these combined sequences, the distance from lacPO to galK was calculated to be 412.9 kb, which corresponds to 8.8 min in genetic units.  相似文献   

15.
中国白灵侧耳自然群体的交配型因子分析   总被引:1,自引:0,他引:1  
为了研究我国新疆白灵侧耳自然种群的遗传多样性,估测自然种群的遗传丰度,对51株新疆野生白灵侧耳的84个原生质体单核体的交配型因子进行分析。在84个单核体中存在54个不同的A因子和59个不同的B因子。x2检测表明交配型因子A和B的系列因子均为等概率分布。据此估算我国白灵侧耳自然群体中有79个A因子,100个B因子,自然群体中的单核交配型总数79×100=7,900个,双核交配型总数31,201,050个。可见,新疆白灵侧耳遗传多样性丰富,新疆是我国白灵侧耳的野生种质资源宝库。  相似文献   

16.
环境因素在物种进化和遗传变异过程中起着非常重要的作用。为探讨新疆鹅喉羚遗传多样性与环境因子的关系,本研究采用聚合酶链式反应(PCR)和直接测序的方法,测定了新疆鹅喉羚11个群体84份样本的线粒体DNA Cyt b基因(1140 bp)和D-loop区(1100 bp)序列,分析各群体遗传多样性及环境因子对遗传多样性的影响。结果显示新疆鹅喉羚具有较高的单倍型多样性,较低的核苷酸多样性,表明其遗传多样性处于较低水平。环境因子与群体遗传多样性的相关性分析结果表明,海拔、年均降水量、年均气温、人口数量是影响新疆鹅喉羚遗传多样性的主要环境因子,其中海拔是最关键的环境因子。本研究结论为新疆鹅喉羚群体有效合理的保护与管理提供理论依据。  相似文献   

17.
肿瘤是基因-环境交互作用引起的复杂性疾病.在同样的环境暴露下,不同遗传背景的个体发生肿瘤的风险有很大差异.研究肿瘤相关遗传因素对理解肿瘤发生发展乃至诊断治疗都有重要意义.近年来发展的全基因组关联研究(genome-wide association study,GWAS)可在全基因组范围内发现与复杂疾病或表型关联的遗传因素,为复杂疾病遗传学研究提供了强有力的手段.欧美研究者运用全基因组关联研究的方法,对各种常见肿瘤进行了研究,获得了重要成果.2010年以来,中国科学家在国际核心期刊发表了一系列高水平的肿瘤全基因组关联研究成果,在中国常见肿瘤的遗传病因学研究方面取得了重要进展.  相似文献   

18.
Schizophrenia is a complex multifactorial disease, in most cases manifested as a result of the interaction of genetic and psychological factors, as well as certain environmental conditions. However, genetic factors certainly play a determining role in the predisposition to schizophrenia. The coefficient of heritability of schizophrenia is about 80%, which is typical of the most highly inherited multifactorial diseases. This review presents the results of the latest world studies of genetic factors in the development of schizophrenia, including epigenetic, genome-wide association studies, and next generation sequencing.  相似文献   

19.
Elucidating the factors influencing genetic differentiation is an important task in biology, and the relative contribution from natural selection and genetic drift has long been debated. In this study, we used a regression-based approach to simultaneously estimate the quantitative contributions of environmental adaptation and isolation by distance on genetic variation in Boechera stricta, a wild relative of Arabidopsis. Patterns of discrete and continuous genetic differentiation coexist within this species. For the discrete differentiation between two major genetic groups, environment has larger contribution than geography, and we also identified a significant environment-by-geography interaction effect. Elsewhere in the species range, we found a latitudinal cline of genetic variation reflecting only isolation by distance. To further confirm the effect of environmental selection on genetic divergence, we identified the specific environmental variables predicting local genotypes in allopatric and sympatric regions. Water availability was identified as the possible cause of differential local adaptation in both geographical regions, confirming the role of environmental adaptation in driving and maintaining genetic differentiation between the two major genetic groups. In addition, the environment-by-geography interaction is further confirmed by the finding that water availability is represented by different environmental factors in the allopatric and sympatric regions. In conclusion, this study shows that geographical and environmental factors together created stronger and more discrete genetic differentiation than isolation by distance alone, which only produced a gradual, clinal pattern of genetic variation. These findings emphasize the importance of environmental selection in shaping patterns of species-wide genetic variation in the natural environment.  相似文献   

20.
Climate change has a significant effect on the productivity of livestock including milk, meat, and reproduction. This could be attributed to the internal diversion of energy resources towards adaptive mechanisms. Among the climate change variables, thermal stress seems to be the major limiting factor in animal agriculture. A better understanding of the effects of climate change-influenced ecological factors on the genetic diversity of livestock species is warranted. Sheep is an ideal livestock species to be used in investigating environmental adaptation due to its wide range of agroecological habitats, genetic and phenotypic variability. There is a heavy reliance on sheep genetic diversity for future animal protein security, but the implications of climate change on their genetic diversity receive less attention.Here, the potential environmental factors influencing natural selection in sheep populations are presented. We argue that prolonged exposure to these factors plays a major role in influencing the development of adaptation traits in indigenous sheep breeds, consequently leading to the alteration of genetic diversity at specific loci. The factors discussed include hot temperatures (heat stress), insufficient water, low quantity and quality of forage, and prevalence of parasites, pests, and diseases. In addition, genetic diversity, some signatures of selection for adaptation and economic angles of selection are also briefly discussed.A better understanding of environmental factors influencing the genetic diversity of sheep populations will inform breeding and management programs and may offer an opportunity for greater production efficiency with low input costs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号