首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sphingosine 1-phosphate (Sph-1-P) is a bioactive lipid mediator released from activated platelets. To date, 5 seven-transmembrane-spanning receptors, Edg-1/S1P1, Edg-3/S1P3, Edg-5/S1P2, Edg-6/S1P4 and Edg-8/S1P5, have been identified as specific Sph-1-P receptors. Our recent novel studies established that Edg-1/S1P1 is glycosylated in its N-terminal extracellular portion and further identified the specific glycosylation site as asparagine 30. We also demonstrated that the structure of the N-terminal ectodomain of Edg-1/S1P1 affects both its transport to the cell surface and the N-glycosylation process. These studies revealed a possible regulatory role for the N-glycan on Edg-1/S1P1 in the dynamics of the receptor, such as its lateral and internal movements within the membrane, in ligand-stimulated mammalian cells. Published in 2004.  相似文献   

2.
Lysophospholipids are bioactive molecules that are implicated in the control of fundamental biological processes such as proliferation, differentiation, survival and motility in different cell types. Here we review the role of sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) in the regulation of skeletal muscle biology. Indeed, a wealth of experimental data indicate that these molecules are crucial players in the skeletal muscle regeneration process, acting by controllers of activation, proliferation and differentiation not only of muscle-resident satellite cells but also of mesenchymal progenitors that originate outside the skeletal muscle. Moreover, S1P and LPA are clearly involved in the regulation of skeletal muscle metabolism, muscle adaptation to different physiological needs and resistance to muscle fatigue. Notably, studies accomplished so far, have highlighted the complexity of S1P and LPA signaling in skeletal muscle cells that appears to be further complicated by their close dependence on functional cross-talks with growth factors, hormones and cytokines. Our increasing understanding of bioactive lipid signaling can individuate novel molecular targets aimed at enhancing skeletal muscle regeneration and reducing the fibrotic process that impairs full functional recovery of the tissue during aging, after a trauma or skeletal muscle diseases. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.  相似文献   

3.
Receptor tyrosine kinases (RTKs) are transactivated by the stimulation of G protein-coupled receptors (GPCRs). Sphingosine 1-phosphate (S1P), a ligand of GPCR, is known as a tumor-promoting lipid, but its signaling pathways are not fully understood. We here demonstrated that S1P induces rapid and transient tyrosine phosphorylation of epidermal growth factor receptor (EGFR) and c-Met in gastric cancer cells, both of which have been proposed as prognostic markers of gastric cancers. The pathway of S1P-induced c-Met transactivation is Gi-independent and matrix metalloproteinase-independent, which differs from that of EGFR transactivation. Our results indicate that S1P acts upstream of various RTKs and thus may act as a potent stimulator of gastric cancer.  相似文献   

4.
Asthma is characterized by airway inflammation, hyper-responsiveness and remodeling. Extracellular acidification is known to be associated with severe asthma; however, the role of extracellular acidification in airway remodeling remains elusive. In the present study, the effects of acidification on the expression of connective tissue growth factor (CTGF), a critical factor involved in the formation of extracellular matrix proteins and hence airway remodeling, were examined in human airway smooth muscle cells (ASMCs). Acidic pH alone induced a substantial production of CTGF, and enhanced transforming growth factor (TGF)-β-induced CTGF mRNA and protein expression. The extracellular acidic pH-induced effects were inhibited by knockdown of a proton-sensing ovarian cancer G-protein-coupled receptor (OGR1) with its specific small interfering RNA and by addition of the Gq/11 protein-specific inhibitor, YM-254890, or the inositol-1,4,5-trisphosphate (IP3) receptor antagonist, 2-APB. In conclusion, extracellular acidification induces CTGF production through the OGR1/Gq/11 protein and inositol-1,4,5-trisphosphate-induced Ca2+ mobilization in human ASMCs.  相似文献   

5.
The sphingolipid metabolite, sphingosine-1-phosphate (S1P), has emerged as a critical player in a number of fundamental biological processes and is important in cancer, angiogenesis, wound healing, cardiovascular function, atherosclerosis, immunity and asthma, among others. Activation of sphingosine kinases, enzymes that catalyze the phosphorylation of sphingosine to S1P, by a variety of agonists, including growth factors, cytokines, hormones, and antigen, increases intracellular S1P. Many of the biological effects of S1P are mediated by its binding to five specific G protein-coupled receptors located on the cell surface in an autocrine and/or paracrine manner. Therefore, understanding the mechanism by which intracellularly generated S1P is released out of cells is both interesting and important. In this review, we will discuss how S1P is formed and released. We will focus particularly on the current knowledge of how the S1P gradient between tissues and blood is maintained, and the role of ABC transporters in S1P release.  相似文献   

6.
Dermal fibroblasts are important regulators of inflammatory and immune responses in the skin. The aim of the present study was to elucidate the interaction between two key players in inflammation, Toll-like receptors (TLRs) and sphingosine 1-phosphate (S1P), in normal human fibroblasts in the context of inflammation, fibrosis and cell migration. We demonstrate that TLR2 ligation strongly enhances the production of the pro-inflammatory cytokines IL-6 and IL-8. S1P significantly induces pro-inflammatory cytokines time- and concentration-dependently via S1P receptor (S1PR)2 and S1PR3. The TLR2/1 agonist Pam3CSK4 and S1P (> 1 μM) or TGF-β markedly upregulate IL-6 and IL-8 secretion. Pam3CSK4 and S1P alone promote myofibroblast differentiation as assessed by significant increases of α-smooth muscle actin and collagen I expression. Importantly, costimulation with S1P (> 1 μM) induces differentiation into myofibroblasts. In contrast, Pam3CSK4 and low S1P concentrations (< 1 μM) accelerate cell migration. These results suggest that TLR2/1 signaling and S1P cooperate in pro-inflammatory cytokine production and myofibroblast differentiation and promote cell migration of skin fibroblasts in a S1P-concentration dependent manner. Our findings provide significant insights into how infectious stimuli or danger signals and sphingolipids contribute to dermal inflammation which may be relevant for skin tissue repair after injury or disease.  相似文献   

7.
Sphingosine 1-phosphate (S1P) is a bioactive lysophospholipid which is known to induce diverse cellular responses through at least five G-protein-coupled receptors on various cell types. However, neither the distribution of S1P receptors nor the effects of S1P on multiple myeloma (MM) cells are fully understood. Here, we show that MM cells express the S1P receptors, S1P1, S1P2, and S1P3. Furthermore, S1P protects MM cells against Dex-induced apoptosis. Importantly, S1P upregulates Mcl-1 expression in a time- and concentration-dependent manner in human MM cell lines. Treatment of MM cells with pertussis toxin (PTX), a pan-S1P receptor inhibitor, results in blockage of S1P-induced upregulation of Mcl-1. These data demonstrate that S1P upregulates the expression of Mcl-1 and protects MM cells from Dex-induced apoptosis, providing the preclinical framework for novel therapeutics targeting at both Mcl-1 and/or S1P to improve the patient outcome in MM.  相似文献   

8.
It is possible that connective tissue growth factor (CTGF) serves as either an independent regulator or a downstream effector of transforming growth factor-beta (TGF-beta) on the proteoglycan synthesis in vascular endothelial cells. Since TGF-beta regulates endothelial proteoglycan synthesis in a cell density-dependent manner, dense and sparse cultures of bovine aortic endothelial cells were metabolically labeled with [(35)S]sulfate or (35)S-labeled amino acids in the presence of CTGF, and the labeled proteoglycans were characterized by biochemical techniques. The results indicate that CTGF suppresses the synthesis of biglycan but newly induced that of decorin in the cells when the cell density is low; in addition, no change was observed in the hydrodynamic size and the glycosaminoglycan chain length of these two small chondroitin/dermatan sulfate proteoglycans. The regulation of endothelial proteoglycan synthesis by CTGF is completely different from that by TGF-beta, suggesting that CTGF is not a downstream effector of TGF-beta but an independent regulator in vascular endothelial cells with respect to the proteoglycan synthesis.  相似文献   

9.
Both sphingosine 1-phosphate (S1P) and estrogen have been documented to play endothelial protective roles. However, it remains unclear whether estrogen could regulate the anabolism of the bioactive molecule S1P and the underlying mechanisms. In this study, 108 healthy participants were separated into three age groups, and their plasma S1P levels were analyzed by liquid chromatography tandem mass spectrometry. Results showed that the plasma S1P levels were significantly higher in women than those in men within the age of 16–55 years old and higher in pre-menopausal than post-menopausal women. The experiment in C57 BL/6 mice confirmed the gender difference of plasma S1P level. In vitro study demonstrated that after the stimulation of 17β-estradiol (E2), S1P levels both in EA.hy926 cells and the culture media were increased about 9 and 3 times, respectively; the mRNA expression, the protein level and the activity of sphingosine kinase (SphK) 1, not SphK2, were markedly increased; the mRNA and protein expression of ATP-binding cassette transporter (ABC) C1, G2 and S1P transporter spinster homolog 2 (Spns2) were significantly elevated; furthermore, the mRNA and protein expressions of S1P receptors (S1PRs) 1–2 were increased in a time-dependent manner. This study suggests that E2 markedly improves S1P synthesis by activating SphK1 and induces S1P export via activating ABCC1, G2 and Spns2 from endothelium system, which may consequently lead to the gender difference of plasma S1P in adult human and mouse. The results of this study suggest that E2 may exert its vasculoprotective function by activation of the SphK1–S1P–S1PR signaling axis.  相似文献   

10.
The role of protein kinase C (PKC) isozymes in phorbol myristate acetate (PMA)-induced sphingosine 1-phosphate (S1P) receptor 1 (S1P1) phosphorylation was studied. Activation of S1P1 receptors induced an immediate increase in intracellular calcium, which was blocked by preincubation with PMA. Both S1P and PMA were able to increase S1P1 phosphorylation in a concentration- and time-dependent fashion. Down-regulation of PKC (overnight incubation with PMA) blocked the subsequent effect of the phorbol ester on S1P1 phosphorylation, without decreasing that of the natural agonist. Pharmacological inhibition of PKC α prevented the effects of PMA on S1P-triggered intracellular calcium increase and on S1P1 phosphorylation; no such effect was observed on the effects of the sphingolipid agonist. The presence of PKC α and β isoforms in S1P1 immunoprecipitates was evidenced by Western blotting. Additionally, expression of dominant-negative mutants of PKC α or β and knockdown of these isozymes using short hairpin RNA, markedly attenuated PMA-induced S1P1 phosphorylation. Our results indicate that the classical isoforms, mainly PKC α, mediate PMA-induced phosphorylation and desensitization of S1P1.  相似文献   

11.
Downregulation of Ski and SnoN co-repressors by anisomycin   总被引:1,自引:0,他引:1  
Proteasome pathway regulates TGF-beta signaling; degradation of activated Smad2/3 and receptors turns TGF-beta signal off, while degradation of negative modulators such as Ski and SnoN maintains the signal. We have found that anisomycin is able to downregulate Ski and SnoN via proteasome as TGF-beta does, but through a mechanism independent of Smad activation. The mechanism used by anisomycin to downregulate Ski and SnoN is also independent of MAPK activation and protein synthesis inhibition. TGF-beta signal was the only pathway described causing Ski and SnoN degradation, thus this new effect of anisomycin on endogenous Ski and SnoN proteins suggests alternative processes to downregulate these negative modulators of TGF-beta signaling.  相似文献   

12.
Macrophage recruitment to sites of inflammation is an essential step in host defense. However, the signals regulating the mobilization of these cells are still not fully understood. Sphingosine-1-phosphate (S1P), a pleiotropic bioactive lipid mediator, is known to regulate an array of biological activities in various cell types. Here, we investigated the roles of S1P and S1P receptors (S1PRs) in macrophage migration in vitro. Furthermore, we explored the cross-talk between transforming growth factor-β1 (TGF-β1) and S1P signalling pathways in this process. We found that S1P exerted a powerful migratory action on RAW264.7 macrophages, as determined in Boyden chambers. Moreover, by employing RNA interference technology and pharmacological tools, we have demonstrated that S1PR1, but not S1PR2 and S1PR3, is required for S1P-induced macrophage migration. Importantly, we observed a pronounced increase in sphingosine kinase-1 (SphK1) mRNA expression and subsequently increase in S1P production, following transforming growth factor-β1 (TGF-β1) stimulation in RAW264.7 macrophages. The expression of S1PR1, but not S1PR2 and S1PR3, was also significantly up-regulated after TGF-β1 stimulation. Interestingly, exogenously added S1P-induced up-regulation of SphK1 and the synthesis of additional S1P, suggesting a self-amplifying loop of S1P to enhance macrophage migration. In conclusion, our results reveal that SphK1/S1PR1 signalling axis is induced by TGF-β1 and stimulates cell migration in RAW 264.7 macrophages. This study provides new clues for the molecular mechanisms of macrophage recruitment during inflammation.  相似文献   

13.
14.
The contributions of membrane type-1 matrix metalloproteinase (MT1-MMP) and of the glucose-6-phosphate transporter (G6PT) in sphingosine-1-phosphate (S1P)-mediated Ca(2+) mobilization were assessed in glioblastoma cells. We show that gene silencing of MT1-MMP or G6PT decreased the extent of S1P-induced Ca(2+) mobilization, chemotaxis, and extracellular signal-related kinase phosphorylation. Chlorogenic acid and (-)-epigallocatechin-3-gallate, two diet-derived inhibitors of G6PT and of MT1-MMP, respectively, reduced S1P-mediated Ca(2+) mobilization. An intact MT1-MMP/G6PT signaling axis is thus required for efficient Ca(2+) mobilization in response to bioactive lipids such as S1P. Targeted inhibition of either MT1-MMP or G6PT may lead to reduced infiltrative and invasive properties of brain tumor cells.  相似文献   

15.
16.
Zaslavsky A  Li S  Xu Y 《FEBS letters》2005,579(18):3899-3906
Several different types of interactions between sphingosine-1-phosphate (S1P) receptors and platelet-derived growth factor receptor (PDGFR) have been revealed recently. In this work, we used HEK293 cells to further investigate the potential crosstalk. Interestingly, we observed that S1P specifically induced a PDGFR-dependent cell detachment in HEK293 cells, which could be inhibited by AG1296, a specific inhibitor for PDGFR. EGFR on the other hand, did not have any effect on cell detachment. The detachment was extracellular matrix (ECM) protein specific, suggesting the involvement of specific integrin molecules. When beta(1) integrin was engaged into an active state, S1P-induced cell detachment was blocked, suggesting that S1P induced an inside-out inhibitory effect on beta(1) integrin. G(i) protein and ERK activation were required for the cell detachment induced by S1P, suggesting an endogenous receptor for S1P is likely to be involved.  相似文献   

17.
18.
Connective tissue growth factor (CTGF/CCN2) is a matricellular protein induced by transforming growth factor (TGF)‐β and intimately involved with tissue repair and overexpressed in various fibrotic conditions. We previously showed that keratinocytes in vitro downregulate TGF‐β‐induced expression of CTGF in fibroblasts by an interleukin (IL)‐1 α‐dependent mechanism. Here, we investigated further the mechanisms of this downregulation by both IL‐1α and β. Human dermal fibroblasts and NIH 3T3 cells were treated with IL‐1α or β in presence or absence of TGF‐β1. IL‐1 suppressed basal and TGF‐β‐induced CTGF mRNA and protein expression. IL‐1α and β inhibited TGF‐β‐stimulated CTGF promoter activity, and the activity of a synthetic minimal promoter containing Smad 3‐binding CAGA elements. Furthermore, IL‐1α and β inhibited TGF‐β‐stimulated Smad 3 phosphorylation, possibly linked to an observed increase in Smad 7 mRNA expression. In addition, RNA interference suggested that TGF‐β activated kinase1 (TAK1) is necessary for IL‐1 inhibition of TGF‐β‐stimulated CTGF expression. These results add to the understanding of how the expression of CTGF in human dermal fibroblasts is regulated, which in turn may have implications for the pathogenesis of fibrotic conditions involving the skin. J. Cell. Biochem. 110: 1226–1233, 2010. Published 2010 Wiley‐Liss, Inc.  相似文献   

19.
This review highlights an emerging role for sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) in many different types of fibrosis. Indeed, both LPA and S1P are involved in the multi-process pathogenesis of fibrosis, being implicated in promoting the well-established process of differentiation of fibroblasts to myofibroblasts and the more controversial epithelial–mesenchymal transition and homing of fibrocytes to fibrotic lesions. Therefore, targeting the production of these bioactive lysolipids or blocking their sites/mechanisms of action has therapeutic potential. Indeed, LPA receptor 1 (LPA1) selective antagonists are currently being developed for the treatment of fibrosis of the lung as well as a neutralising anti-S1P antibody that is currently in Phase 1 clinical trials for treatment of age related macular degeneration. Thus, LPA- and S1P-directed therapeutics may not be too far from the clinic. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.  相似文献   

20.
Loss of endothelial barrier function is implicated in the etiology of metastasis, atherosclerosis, sepsis and many other diseases. Studies suggest that sphingosine-1-phosphate (S1P), particularly HDL-bound S1P (HDL–S1P) is essential for endothelial barrier homeostasis and that HDL–S1P may be protective against the loss of endothelial barrier function in disease. This review summarizes evidence providing mechanistic insights into how S1P maintains endothelial barrier function, highlighting the recent findings that implicate the major S1P carrier, HDL, in the maintenance of the persistent S1P-signaling needed to maintain endothelial barrier function. We review the mechanisms proposed for HDL maintenance of persistent S1P-signaling, the evidence supporting these mechanisms and the remaining fundamental questions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号