首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 652 毫秒
1.
To examine osmotic regulation during long-term acclimation to a hyperosmotic medium, hemolymph osmolality, [Na+] and total protein, tissue hydration, and free amino acid (FAA) pools in abdominal muscle, gills, central nervous tissue and hemolymph were quantified in the diadromous freshwater (FW) shrimp, Macrobrachium olfersii, during direct exposure to 21‰S seawater over a 20-day period. Hemolymph osmolality and [Na+] reach stable maxima within 24 h while total protein is unchanged. Muscle and nerve tissues rapidly lose water while gills hydrate; all tissues attain maximum hydration (+5%) by 5 days, declining to FW values except for gills. Total FAA are highest in muscle, reach a maximum by 2 days (+64%), declining to FW values. Gill FAA increase by 110% after 24 h, diminishing to FW values. Nerve FAA increase 187% within 24 h, and remain elevated. Hemolymph FAA decrease (-75%) after 24 h, stabilizing well below the FW concentration. During acclimation, muscle glycine (+247%), gill taurine (+253%) and proline (+150%), and nerve proline (+426%), glycine (+415%) and alanine (+139%) increase, while hemolymph leucine (-70%) decreases. Total FAA pools contribute 10-20% to intracellular (22-70 mmol/kg) and 0.5-2.4% to hemolymph (3-7 mOsm/kg) osmolalities during direct acclimation from FW. These data emphasize the modest participation of FAA pools in intracellular osmotic regulation during physiological adaptation by M. olfersii to osmotic challenge, accentuating the role of anisosmotic extracellular regulation, suggesting that, during the invasion of freshwater by the Crustacea, dependence on intracellular adjustment employing FAA as osmotic effectors, has become progressively reduced.  相似文献   

2.
3.
To examine osmotic regulation during long-term acclimation to a hyperosmotic medium, hemolymph osmolality, [Na+] and total protein, tissue hydration, and free amino acid (FAA) pools in abdominal muscle, gills, central nervous tissue and hemolymph were quantified in the diadromous freshwater (FW) shrimp, Macrobrachium olfersii, during direct exposure to 21‰S seawater over a 20-day period. Hemolymph osmolality and [Na+] reach stable maxima within 24?h while total protein is unchanged. Muscle and nerve tissues rapidly lose water while gills hydrate; all tissues attain maximum hydration (+5%) by 5 days, declining to FW values except for gills. Total FAA are highest in muscle, reach a maximum by 2 days (+64%), declining to FW values. Gill FAA increase by 110% after 24?h, diminishing to FW values. Nerve FAA increase 187% within 24?h, and remain elevated. Hemolymph FAA decrease (?75%) after 24?h, stabilizing well below the FW concentration. During acclimation, muscle glycine (+247%), gill taurine (+253%) and proline (+150%), and nerve proline (+426%), glycine (+415%) and alanine (+139%) increase, while hemolymph leucine (?70%) decreases. Total FAA pools contribute 10–20% to intracellular (22–70?mmol/kg) and 0.5–2.4% to hemolymph (3–7?mOsm/kg) osmolalities during direct acclimation from FW. These data emphasize the modest participation of FAA pools in intracellular osmotic regulation during physiological adaptation by M. olfersii to osmotic challenge, accentuating the role of anisosmotic extracellular regulation, suggesting that, during the invasion of freshwater by the Crustacea, dependence on intracellular adjustment employing FAA as osmotic effectors, has become progressively reduced.  相似文献   

4.
Osmoregulation was studied throughout the embryonic development of Astacus leptodactylus. Egg-carrying females were held in freshwater (FW) and in three dilute seawater media (200, 400, 600 mosm kg(-1), 6.8, 13.6, 20.4 per thousand salinity). In FW, changes in peri-embryonic fluid (PEF) and (when available) embryonic hemolymph osmolality were followed from newly-laid eggs to hatching (for an embryonic eye index, EI, of 430-450 microm) and in first-stage juveniles. The PEF and/or hemolymph osmolality remained stable at about 360-380 mosm kg(-1) from early to late (EI 410 microm) embryos; it decreased prior to hatching (EI 420 microm) and in newly-hatched juveniles, down to 290 mosm kg(-1). Artificial opening and removal of the egg membranes, followed by direct exposure to FW, demonstrated that the ability to hyper-osmoregulate, and consequently to survive, in FW appears in embryos with EI > or = 410 microm, i.e., only a few hours or days before hatching. Following a transfer to the dilute seawater media, the PEF/hemolymph osmolality increased slowly over 18-20 days and became isosmotic with the external media at 13.6 and 20.4 per thousand. The embryos died at EI 380-395 microm in these media, and only at 6.8 per thousand was the development completed until successful hatch. These results demonstrate that (1) the embryos become able to osmoregulate in FW shortly before hatching, (2) the embryos are osmo-protected in the eggs during their development, (3) embryonic development and hatching are possible up to a salinity of 7 per thousand. These results are discussed in relation to freshwater adaptation of crayfish.  相似文献   

5.
In view of the widely varying compositions of fixative solutions used for studying spiders, five different fixative formulas were tested for fixing male brown-spider (Loxosceles intermedia) gonad tissues. The brown spider represents a public health problem in Curitiba (Paraná State, Brazil). Morphological study of its gonads may aid in understanding the reproductive strategies of this species, and possibly in developing a reproduction control program. The fixatives tested contained glutaraldehyde alone or combined with paraformaldehyde, and the buffers cacodylate or phosphate, with or without the addition of sucrose or sodium chloride as osmolytes. Those containing 2.5% glutaraldehyde and 2% paraformaldehyde in 100 mM phosphate buffer with 200 mM sucrose, or in 200 mM sodium cacodylate, satisfactorily preserved mitochondria, the Golgi apparatus, and the membranes in general. These formulas were nearly isosmotic (439 mOsm/kg H2O and 455 mOsm/kg H2O respectively) to brown spider hemolymph (478 mOsm/kg H2O). With respective to the fixative agents, a glutaraldehyde-paraformaldehyde combination resulted in optimal fixation of Loxosceles intermedia cells. For other species of spiders, hemolymph osmolality should be considered, but the fixative formulas cited above would also probably yield good results.  相似文献   

6.
Accumulation sites of lead phosphate reaction product consequent to Na(+)/K(+)-ATPase activity in gill and renal epithelia of the freshwater shrimp Macrobrachium olfersii were located ultracytochemically by para-nitrophenyl-phosphate hydrolysis and lead precipitation, and quantified per unit membrane area and cytoplasmic volume. In shrimps in freshwater (<0.5 per thousand S, 20 mOsm/kg H(2)O, 0.7 mEq Na(+)/liter), numerous sites of electron-dense, Na(+)/K(+)-ATPase reaction product accumulation were demonstrated in the membrane invaginations of the mitochondria-rich, intralamellar septal cells (12.5 +/- 1.7 sites/microm(2) membrane, 179 +/- 22 sites/microm(3) cytoplasm, mean+/- SEM, N 相似文献   

7.
Green crabs, Carcinus maenas, exposed to dilute seawater (e.g., 5 ppt salinity, approximately 150 mOsm/kg) have hemolymph levels of methyl farnesoate (MF) that are up to 10-fold higher than animals in isosmotic seawater (27 ppt, approximately 800 mOsm/kg). In this paper, we examine aspects of osmotic and ionic stress to identify factors involved in elevating MF levels. MF levels did not rise after exposure to concentrated seawater, so only hypoosmotic stress elevates MF. MF levels rose in animals exposed to dilute seawater containing mannitol to make it isosmotic, indicating that the hypoosmotic rise in MF is due to decreased ion concentrations. Individual ions were investigated by exposing crabs either to isosmotic seawater with low concentrations of an ion or to dilute seawater with high concentrations of an ion. Ca(2+) and Mg(2+) in combination affected MF levels. Finally, we found that the increase in MF levels was accelerated when hemolymph osmolality was precociously lowered by partially replacing hemolymph with deionized water prior to transferring animals to dilute seawater. Thus, the 6-8 h delay between exposing crabs to dilute sea water and observing an increase in MF appears to reflect the time needed for specific hemolymph ions to decrease below a threshold concentration.  相似文献   

8.
Osmoregulation was studied during the postembryonic development of Astacus leptodactylus Eschscholtz 1823 in juvenile stages 1-8 and in adults. Juveniles hatch and later stages develop in freshwater or in moderately saline waters. The time of acclimation from freshwater to a saline medium increased from early juveniles to adults. At all stages, it was longer than in comparable stages of marine crustaceans, reflecting the high impermeability of the teguments to water and ions. All stages were able to hyperisoosmoregulate. In freshwater, the ability to hyperosmoregulate was established at hatching and increased during development. The hemolymph osmolality increased from 286 mosm kg-1 in stage 1 juveniles to 419 mosm kg-1 in adults. All stages also hyperregulated at low salinities (7 per thousand and 13 per thousand salinity) and were osmoconformers at higher salinities up to 21 per thousand salinity. The lowest isosmotic salinity tended to increase with the developmental stages. The ability to osmoregulate at hatch and throughout postembryonic development is probably a key physiological adaptation in this and other freshwater crayfish.  相似文献   

9.
To better understand the biochemical mechanisms underlying anisosmotic extracellular regulation in the freshwater Brachyura, we kinetically characterized the V-ATPase from the posterior gills of Dilocarcinus pagei, acclimated for 10days to salinities up to 21‰. Specific activity was highest in fresh water (26.5±2.1U mg(-1)), decreasing in 5‰ to 21‰, attaining 3-fold less at 15‰. Apparent affinities for ATP and Mg(2+) respectively increased 3.2- and 2-fold at 10‰, suggesting expression of different isoenzymes. In a 240-h time-course study of exposure to 21‰, maximum specific activity decreased 2.5- to 4-fold within 1 to 24h while apparent affinities for ATP and Mg(2+) respectively increased by 12-fold within 24h and 2.4-fold after 1h, unchanged thereafter. K(I) for bafilomycin A(1) decreased 150-fold after 1h, remaining constant up to 120h. This is the first kinetic analysis of V-ATPase specific activity in crustacean gills during salinity acclimation. Our findings indicate active gill Cl(-) uptake by D. pagei in fresh water, and short- and long-term down-regulation of V-ATPase-driven ion uptake processes during salinity exposure, aiding in comprehension of the biochemical adaptations underpinning the establishment of the Brachyura in fresh water.  相似文献   

10.
We investigate extra- and intracellular osmoregulatory capability in two species of hololimnetic Caridea and Anomura: Macrobrachium brasiliense, a palaemonid shrimp, and Aegla franca, an aeglid anomuran, both restricted to continental waters. We also appraise the sharing of physiological characteristics by the hololimnetic Decapoda, and their origins and role in the conquest of fresh water. Both species survive salinity exposure well. While overall hyperosmoregulatory capability is weak in A. franca and moderate in M. brasiliense, both species strongly hyporegulate hemolymph [Cl] but not osmolality. Muscle total free amino acids (FAA) increase slowly but markedly in response to the rapid rise in hemolymph osmolality consequent to hyperosmotic challenge: 3.5-fold in A. franca and 1.9-fold in M. brasiliense. Glycine, taurine, arginine, alanine and proline constitute ≈85% of muscle FAA pools in fresh water; taurine, arginine, alanine each contribute ≈22% in A. franca, while glycine predominates (70%) in M. brasiliense. These FAA also show the greatest increases on salinity challenge. Muscle FAA titers correlate strongly (R = 0.82) with hemolymph osmolalities across the main decapod sub/infraorders, revealing that marine species with high hemolymph osmolalities achieve isosmoticity of the intra- and extracellular fluids partly through elevated intracellular FAA concentrations; freshwater species show low hemolymph osmolalities and exhibit reduced intracellular FAA titers, consistent with isosmoticity at a far lower external osmolality. Given the decapod phylogeny adopted here and their multiple, independent invasions of fresh water, particularly by the Caridea and Anomura, our findings suggest that homoplastic strategies underlie osmotic and ionic homeostasis in the extant freshwater Decapoda.  相似文献   

11.
The estuarine crab Chasmagnathus granulatus (Crustacea, Decapoda, Brachyura) inhabits salt marshes along the South Atlantic coast from Rio de Janeiro (Brazil) to Patagonia (Argentina). In the present study, salinity tolerance (0-45‰; 16-1325 mOsm/kg H2O) and hemolymph osmotic and ionic (Na+, Cl, and K+) regulation in both female and male C. granulatus were analyzed in summer and winter. Results showed that both female and male C. granulatus are euryhaline. Mortality was only observed in extremely low salinity (0‰; 16 mOsm/kg H2O) for both sexes. For females, the LT50 at 0‰ salinity was similar in summer (20.1 h) and winter (17.4 h). Males were more tolerant to salinity than females in both seasons, and mortality was observed only in summer (LT50 = 50.9 h). Results from freshly collected crabs or long-term (16-day) osmotic and ionic regulation experiments in the laboratory showed that male C. granulatus is a better hyper-osmoregulator than female in summer and winter. However, a hypo-osmoregulatory ability was only observed in females experimentally subjected to salinity 40‰ (1176 ± 11 mOsm/kg H2O) in both seasons. In both sexes, hyper-osmotic regulation was achieved by hyper-regulating hemolymph Na+, Cl, and K+ concentration. In females, hypo-osmotic regulation was achieved by hypo-regulating hemolymph Na+ and Cl concentration. Long-term (16-day) osmotic and ionic regulations in different salinities were similar in males or females collected and tested in summer and winter. Despite this lack of a seasonal effect on hemolymph osmoregulatory and ionoregulatory patterns in males or females, a marked seasonal difference in the dynamics of these processes was observed for both sexes. In the first 2 days after hypo-osmotic shock (20‰→5‰; 636→185 mOsm/kg H2O), variations in female osmolality and ion (Na+ and Cl) concentration were larger and faster in winter than in summer, while in males the opposite was observed. Furthermore, a seasonal effect on the crab response to hyper-osmotic shock (20‰→40‰; 636→1176 mOsm/kg H2O) was only observed in males. A new osmolality and ion (Na+ and Cl) concentration steady state was faster achieved in winter than in summer. Regarding sexual differences, females showed a better capacity to hypo-regulate the hemolymph osmolality and Na+ concentration than males, even after a sudden increase in salinity (hyper-osmotic shock) in both seasons. On the other hand, males showed a better capacity to hyper-regulate the hemolymph osmolality and Na+ concentration than females, even after a sudden decrease in salinity (hypo-osmotic shock), especially in winter. Taken together, results reported in the present study suggest the need to consider both sex and collection season as important factors in future osmotic and ionic regulation studies in estuarine crabs.  相似文献   

12.
  • 1.1. Osmolality and chloride concentrations in the hemolymph of Penaeus monodon became stable 1 day after molting in 32 ppt, while total protein and calcium concentrations remained stable throughout the molting cycle. When intermolt (≥ 36 hr postmolt) animals were transferred from control (32 ppt) to experimental (8–40 ppt) salinities, osmolality, chloride and total protein, but not calcium, concentrations in the hemolymph achieved steady state values 24–48 hr after transfer.
  • 2.2. The hemolymph osmolality was a linear function (slope = 0.28) of medium osmolality at salinities between 8 and 40 ppt. It was isosmotic to seawater at 698 mOsm (10 g prawns) and 752 mOsm (30 g), and was hyperosmotic to the medium below isosmotic concentrations, and hypoosmotic to those above.
  • 3.3. Hemolymph chloride concentration was isoionic to seawater at 334 mM, and was hyperregulated below isoionic concentrations, and hyporegulated to those above.
  • 4.4. P. monodon maintained its hemolymph calcium concentration between 6.4 and 10 mM when medium salinities increased from 8 to 40 ppt.
  • 5.5. Total protein concentration in the hemolymph was independent of medium salinity (8–40 ppt) and hemolymph osmolality (540–850 mOsm).
  相似文献   

13.
Our previous studies have suggested a role for renomedullary interstitial cells (RMICs) and renal medullary hyaluronan (HA) in water homeostasis. In the present study, cultured rat RMICs were used to examine the relationship of osmolality and oxygen tension on the extracellular amount of HA in the culture and to the cellular immunoreactivity to CD44, a HA binding protein. Under isotonic (330 mOsm(.)kg(-1) H(2)O), normoxic (20% O(2)) conditions, supernatant from sub-confluent RMICs contained 120+/-37 pg 10(4) cells(-1) 24 h(-1) of HA. Under hyperosmotic conditions (630 mOsm kg(-1) H(2)O), HA in the supernatant was decreased by 42% and under hypoosmotic conditions (230 mOsm kg(-1) H(2)O) it was doubled. Under hypoxic, iso-osmolar conditions (5% and 1% O(2), 330 mOsm kg(-1) H(2)O) this HA content was decreased by 56 and 48%, respectively, compared with normoxic, iso-osmolal conditions. Expression of CD44 on sub-confluent cells increased with increasing osmolality, as shown by immunostaining and flow cytometric analysis. The increases in CD44 from 330 to 630, 930 and 1230 mOsm kg(-1) H(2)O amounted to 5, 142 and 212%, respectively. Low oxygen tension (5% O(2)) decreased the intensity of CD44 immunofluorescence by 31%. Cell viability was similar at all conditions studied. In summary, these data indicate that cultured RMICs produce HA and are immunoreactive to CD44. In the supernatant of RMICs, the HA content decreases under hyperosmotic, hypoxic conditions. Conversely, CD44 immunoreactivity increases under hyperosmotic conditions. These results may explain our previous in vivo findings of a decreased renal papillary HA content during anti-diuresis and an increased content during water diuresis. The results support the concept that RMICs play an important role in renal water handling.  相似文献   

14.
In benzene-exposed Ucides cordatus acclimated for 96 h to 9 and 34 per thousand SW, haemolymph, urine and gastric juice are isosmotic with each other, but differ significantly in osmolality from external media. In both salinities, under benzene action, urine K+ excretion and calcium absorption are increased significantly, whereas Na+ absorption and Mg2+ excretion show U/B ratios similar to control values. In 9 per thousand SW, some ionic exchanges via benzene-exposed gills are possibly hastened. Benzene exposure decreases significantly branchial chamber water osmolality, [Na+] and [K+], whereas [Ca2+] and [Mg2+] are unaffected. However, faster medium exchange presumably occurs in 34 per thousand SW, both crab groups show branchial chamber water osmotic and ionic concentrations similar to surrounding medium. Benzene exposure unaffected gastric juice composition. In both media, [Ca2+] and [Mg2] accumulate several times higher than surrounding media, and [Na+] and [K+] are significantly hypo-ionic to haemolymph. Na+ and K+ G/H ratios are lower in crabs acclimated to 34 per thousand SW than in crabs acclimated to 9 per thousand SW. Drinking rates are enhanced by benzene exposure and are higher at 34 per thousand SW than in seawater isosmotic with the haemolymph (26 per thousand SW). Benzene exposure affects significantly osmoregulatory capability, slowing haemolymph dilution after transfer to clean 9 per thousand SW. Lower haemolymph dilution rate accounts for higher osmolality, but 48 h after transfer there is no recovery like in control crabs. Haemolymph transfusion experiments suggest an interaction among effects of benzene and hormonal factors, possibly on water influx.  相似文献   

15.
何小瑞  徐文伯 《生理学报》1992,44(3):222-228
实验在麻醉大鼠上进行。用肾小管微穿刺技术观察到,脑室内注射高张盐水(icv.HS)后:(1)近曲小管末段钠残留分数从53.0±2.1%升高至66.0±2.9%(P<0.01);氯残留分数从65.4±3.4%升高至78.2±3.9%(P<0.05);钾残留分数和小管液渗透克分子浓度无显著变化。(2)远曲小管起始段钠残留分数从8.2±0.9%升高至13.6±1.8%(P<0.05);氯残留分数从5.4±0.8%升高至9.5±1.4%(P<0.05);小管液渗透克分子浓度从139.8±6.9mOsm/kg H_2O升高至181.3±15.6mOsm/kgH_2O(P<0.05);钾残留分数无显著变化。静脉注射速尿能消除icv.HS引起的尿钾增多反应,但不能消除icv.HS引起的利尿和尿钠增多反应。上述结果表明,刺激脑内渗透压感受器能抑制近曲小管中钠和氯的重吸收,并促进远曲小管及其以后部位的钠钾交换,导致尿钠排出增多和尿钾排出增多。  相似文献   

16.
In numerous animal cells, experimental manipulations that increase the intracellular free Ca2+ concentration induce cell volume reduction. This may occur under isosmotic conditions, e.g. when external Ca2+ (Ca(o)) is replaced by Mg2+ (42) or during exposure to hypoosmotic conditions (i.e. regulatory volume decrease, RVD) in the presence of Ca(o). We determined the osmolytes responsible for volume reduction under isosmotic and hypoosmotic conditions in barnacle muscle cells. Organic osmolytes (i.e. free amino acids and methylamines) and inorganic ions accounted for approximately 78% and 22% of the intracellular isosmotic activity, respectively. Isosmotic Ca(o) removal induced a net loss of KCI (with a ratio of 1K:1Cl) and free amino acids (FAA, mainly glycine and taurine). During RVD. the same ions (but in a proportion of 2K:1Cl) and FAA were lost. Since RVD was accompanied by extracellular alkalinization, the 2K:1Cl loss may be explained by the presence of a K+/H+ exchanger (or K+-OH- co-transporter) or Cl-/OH- exchanger. The lack of RVD in the absence of Ca(o) cannot be attributed to the loss of intracellular osmolytes during isosmotic Ca(o) removal because addition of Ca(o) during cell swelling promoted RVD.  相似文献   

17.
We report here that the signaling molecule phospholipase D (PLD) is present in the parasitic protozoan Leishmania donovani. In vitro enzymatic activity is dependent on Ca2+ and Mg2+ ions, its basal activity is stimulated by phosphatidyl-inositol-4,5-bisphosphate (PIP2) and its pH optima are pH 8.0 and pH 6.0. PLD activity increases 3-fold about 5 min after an abrupt decrease in osmolality from 317 mOsm (isosmotic) to 155 mOsm and increases 1.5-fold in response to an abrupt increase in osmolality to 617 mOsM. Cells grown for > 24 h under the anisosmotic conditions showed only marginal changes in activity compared to the controls grown under isosmotic conditions, indicating an adaptation to long-term exposure to hypo- or hyper-osmolarity. Immunologically, two isoforms, PLD1 and PLD2, are present. An analysis of in vitro PLD activity in anti-PLD immunocomplexes revealed that either hypotonic (cell swelling) or hypertonic stress (cell shrinking) causes an increase in PLD1 activation but a reduction in PLD2 activity. The interplay between these two isoforms results in a predominance for PLD1 in the observed increase when measuring total PLD activity. Finally, the increase in enzymatic activity in acute hyposmotic shock is accompanied by tyrosyl phosphorylation of the PLD1 isoform, suggesting a role for protein tyrosine kinase in the control of PLD activity in response to osmotic stress.  相似文献   

18.
This study was conducted to determine the osmotic properties of bull spermatozoa, including the effects of osmotic stress and cryoprotectant agent (CPA) addition and removal, on sperm motility. Semen from beef bulls was collected by electroejaculation and extended 1:3 in TL-Hepes containing 100 micro g/ml pyruvate and 6 mg/ml BSA. In solutions of 150-1200 mOsmolal (mOsm), bull spermatozoa behaved as linear osmometers (r(2) = 0.97) with an osmotically inactive cell volume of 61%. The isosmotic cell volume was 23.5 micro m(3). Motility was determined after exposure to anisosmotic solutions ranging from 35 to 2400 mOsm and after return to isosmotic conditions. Retention of at least 90% of isosmotic motility could be maintained only between 270-360 mOsm. Bull spermatozoa were calculated to retain 90% of their isosmotic motility at 92-103% of their isosmotic cell volume. Motility following a one-step addition and removal of 1 M glycerol, dimethyl sulfoxide, and ethylene glycol was reduced by 31%, 90%, and 6%, respectively, compared with CPA addition only. These data indicate that, during bull spermatozoa cryopreservation, osmotically driven cell volume excursions must be limited by exposure to a very narrow range that may be facilitated by the use of ethylene glycol as a CPA.  相似文献   

19.
The Pacific white shrimp, Litopenaeus vannamei, acclimated to 30 ppt salinity, was transferred to either low (15 and 5 ppt), or high (45 ppt) salinity for 7 days. Hemolymph osmolality, branchial carbonic anhydrase activity, and total ninhydrin-positive substances (TNPS) in abdominal muscle were then measured for each condition. Hemolymph osmotic concentration was regulated slightly below ambient water osmolality in shrimp acclimated to 30 ppt. At 15 and 5 ppt, shrimp were strong hyper-osmotic regulators, maintaining hemolymph osmolality between 200 and 400 mOsm above ambient. Shrimp acclimated to 30 ppt and transferred to 45 ppt salinity were strong hypo-osmotic and hypo-ionic regulators, maintaining hemolymph osmolality over 400 mOsm below ambient. Branchial carbonic anhydrase (CA) activity was low (approximately 100 micromol CO(2) mg protein(-1) min(-1)) and uniform across all 8 gills in shrimp acclimated to 30 ppt, but CA activity increased in all gills after exposure to both low and high salinities. Anterior gills had the largest increases in CA activity, and levels of increase were approximately the same for low and high salinity exposure. Branchial CA induction appears to be functionally important in both hyper- and hypo-osmotic regulations of hemolymph osmotic concentrations. Abdominal muscle TNPS made up between 19 and 38% of the total intracellular osmotic concentration in shrimp acclimated to 5, 15, and 30 ppt. TNPS levels did not change across this salinity range, over which hemolymph osmotic concentrations were tightly regulated. At 45 ppt, hemolymph osmolality increased, and muscle TNPS also increased, presumably to counteract intracellular water loss and restore cell volume. L. vannamei appears to employ mechanisms of both extracellular osmoregulation and intracellular volume regulation as the basis of its euryhalinity.  相似文献   

20.
Effects of osmotic stress on rabbit corneal endothelium   总被引:1,自引:0,他引:1  
The effects of osmotic stress on corneal endothelium were investigated by exposing rabbit corneas to anisosmotic conditions, and then perfusing the corneas with isosmotic glutathione bicarbonate Ringer solution for 4 hr at 35 degrees C. During the perfusion, endothelial function was assessed by measuring corneal thickness with a specular microscope. After perfusion, the corneas were prepared for scanning and transmission electron microscopy. Endothelial ultrastructure and function were well maintained after exposure to a wide range of osmolality (0.12-2.7 osmol/kg), but this tolerance of osmotic stress was dependent both on the duration and the temperature of exposure to the anisosmotic conditions. Exposure to an osmolality of 2.7 osmol/kg for 15 min at 23 or 37 degrees C resulted in gross damage to the endothelium when the hyperosmotic agent was sodium chloride. This damage was not the result of increased osmolality per se nor cellular shrinkage because the endothelium tolerated exposure to a sucrose solution of the same osmolality for 15 min at 37 degrees C. The detrimental effect of sodium chloride, however, was mitigated by reducing the temperature of exposure to 0 degrees C or reducing the duration of exposure to 5 min. These results suggest that endothelial cells become more tolerant of high electrolyte concentrations with reducing temperature, and this could be an important factor in the survival of the endothelium in corneal cryopreservation. The results also help to define the limits of osmotic shrinkage and swelling tolerated by endothelial cells. This will be of value in overcoming the detrimental osmotic effects associated with the addition and, in particular, the removal of cryoprotectants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号