首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Aims: To improve the production of sweet‐tasting protein brazzein in Lactococcus lactis using controlled fermentation conditions. Methods and Results: The nisin‐controlled expression system was used for brazzein expression. The concentration of nisin for induction and the optical density (OD) at induction were therefore optimized, together with growth conditions (medium composition, pH, aerobic growth in the presence of hemin). Brazzein was assayed with ELISA on Ni‐NTA plates and Western blot. Use of the M‐17 medium, containing 2·5% glucose, anaerobic growth at pH 5·9 and induction with 40 ng ml?1 nisin at OD 3·0 led to an approx. 17‐fold increase in brazzein per cell production compared to non‐optimized starting conditions. Aerobic growth in the presence of hemin did not increase the production. Conclusions: Considerable increase in brazzein per cell production was obtained at optimized fermentation conditions. Significance and Impact of the Study: Optimized growth conditions could be used in application of brazzein expression in L. lactis. The importance of pH and OD at induction contributes to the body of knowledge of optimal recombinant protein expression in L. lactis. The new assay for brazzein quantification was introduced.  相似文献   

2.
Abstract

The sweet-tasting protein brazzein is a candidate sugar substitute owing to its sweet, sugar-like taste and good stability. To commercialize brazzein as a sweetener, optimization of fermentation and purification procedure is necessary. Here, we report the expression conditions of brazzein in the yeast Kluyveromices lactis and purification method for maximum yield. Transformed K. lactis was cultured in YPGlu (pH 7.0) at 25?°C and induced by adding glucose:galactose at a weight ratio of 1:2 (%/%) during the stationary phase, which increased brazzein expression 2.5 fold compared to the previous conditions. Cultures were subjected to heat treatment at 80?°C for 1?h, and brazzein containing supernatant was purified using carboxymethyl-sepharose cation exchange chromatography using 50?mM NaCl in 50?mM sodium acetate buffer (pH 4.0) as a wash buffer and 400?mM NaCl (pH 7.0) for elution. The yield of purified brazzein under these conditions was 2.0-fold higher than that from previous purification methods. We also determined that the NanoOrange assay was a suitable method for quantifying tryptophan-deficient brazzein. Thus, it is possible to obtain pure recombinant brazzein with high yield in K. lactis using our optimized expression, purification, and quantification protocols, which has potential applications in the food industry.  相似文献   

3.
Brazzein is a 54-amino-acid sweet-tasting protein first isolated from the fruit of Pentadiplandra brazzeana Baillon found in West Africa. Brazzein, as isolated from the fruit, is 500 times sweeter than sucrose on a weight basis (9500 times sweeter on a per-molecule basis). A minor component of brazzein from fruit, des-pGlu1-brazzein, has 53 amino acid residues and has twice the sweetness of the parent protein. We have designed a gene for des-pGlu1- brazzein that incorporates codons that are optimal for protein production in Escherichia coli. Production of brazzein from the chemically synthesized gene resulted in recombinant protein with sweetness similar to that of brazzein isolated from the original source. The best yields were achieved by producing brazzein as a fusion with staphylococcal nuclease with a designed cyanogen bromide cleavage site. Because of its intense sweetness and stability at high pH and temperature, brazzein is an ideal system for investigating the chemical and structural requirements involved in sweet-taste properties. This efficient protein production system for brazzein will facilitate such investigations.  相似文献   

4.
Sugar, the most popular sweetener, is essential in daily food. However, excessive sugar intake has been associated with several lifestyle-related diseases. Finding healthier and more economical alternatives to sugars and artificial sweeteners has received increasing attention to fulfill the growing demand. Brazzein, which comes from the pulp of the edible fruit of the African plant Pentadiplandra brazzeana Baill, is a protein that is 2,000 times sweeter than sucrose by weight. Here we report the production of transgenic mice that carry the optimized brazzein gene driven by the goat Beta-casein promoter, which specifically directs gene expression in the mammary glands. Using western blot analysis and immunohistochemistry, we confirmed that brazzein could be efficiently expressed in mammalian milk, while retaining its sweetness. This study presents the possibility of producing plant protein–sweetened milk from large animals such as cattle and goats.  相似文献   

5.
Brazzein protein comes from an edible fruit, which has a long history of being a staple in the local human diet in Africa. The attractive features of brazzein as a potential commercial sweetener include its small size (53 amino acid residues), its stability over wide ranges of temperature and pH, and the similarity of its sweetness to sucrose. Heterologous production of brazzein is complicated by the fact that the protein contains four disulfide bridges and requires a specific N-terminal sequence. Our previous protocol for producing the protein from Escherichia coli involved several steps with low overall yield: expression as a fusion protein, denaturation and renaturation, oxidation of the cysteines, and cleavage by cyanogen bromide at an engineered methionine adjacent to the desired N-terminus. The new protocol described here, which is much faster and leads to a higher yield of native protein, involves the production of brazzein in E. coli as a fusion with SUMO. The isolated protein product contains the brazzein domain folded with correct disulfide bonds formed and is then cleaved with a specific SUMO protease to liberate native brazzein. This protocol represents an important advancement that will enable more efficient research into the interaction between brazzein and the receptor as well as investigations to test the potential of brazzein as a commercially viable natural low calorie sweetener.  相似文献   

6.
目的:构建能够稳定表达萤火虫荧光素酶报告基因(luc)的乳酸乳球菌(Lactococcus lactis, L.lactis)食品级表达系统,以便后续研究对目的基因进行示踪。方法:从pGL4.10质粒中PCR扩增萤火虫荧光素酶报告基因,测序,克隆至载体pNZ8149,构建pNZ8149-luc表达质粒;电击转化宿主乳酸乳球菌NZ3900,采用乳糖筛选法获得重组的乳酸乳球菌,Nisin诱导,采用微孔板发光检测仪检测荧光素酶的存在,Western Blot检测目标蛋白luc的表达。结果:PCR扩增的荧光素酶报告基因成功克隆至pNZ8149质粒,并电击转化宿主乳酸乳球菌NZ3900,得到乳酸乳球菌表达系统NZ3900/pNZ8149-luc。Nisin诱导后,检测到荧光素酶随诱导时间的延长活性逐渐增强,时间超过24 h之后荧光素酶活性逐渐下降。Western Blot检测到目标蛋白luc在胞内表达。结论:成功构建了p NZ8149-luc表达载体,并能够在乳酸乳球菌体内稳定表达。  相似文献   

7.
Chen S  Zhang R  Duan G  Shi J 《Current microbiology》2011,62(6):1726-1731
Helicobacter pylori is the principal cause of chronic active gastritis, peptic ulcer, and gastric cancer. To develop an oral vaccine against H. pylori infection, we had expressed the H. pylori ureB gene (Genbank accession no. FJ436980) in nisin-controlled expression vectors using Lactococcus lactis NZ3900 as host. The ureB gene was amplified by PCR from a H.pylori strain MEL-Hp27. Then the ureB gene was fused translationally downstream of the nisin-inducible promoter nisA in a L. lactis plasmid pNZ8149. Lactose utilization based on the complementation of the lacF gene was used as a dominant selection marker for the food-grade expression system employing L. lactis NZ3900. The conditions of UreB expression in this system were optimized by orthogonal experiment. The optimized conditions have been determined as follows: induction of expression was carried out at the cells density of OD600 ≈ 0.4 with 25 ng/ml nisin, and harvest after 5 h. The maximum percentage of recombinant UreB was estimated to be 7% of total soluble cellular proteins and the yield was 12.9 μg/ml. Western blot demonstrated that the UreB protein was expressed in the L. lactis transformant and had favorable immunoreactivity. These results indicated that the lactococci-derived vaccines could be promising candidates as alternative vaccine strategies for preventing H. pylori infection.  相似文献   

8.
Aims: The gram‐positive bacterial genus Lactococcus has been taxonomically classified into seven species (Lactococcus lactis, Lactococcus garvieae, Lactococcus piscium, Lactococcus plantarum, Lactococcus raffinolactis, Lactococcus chungangensis and Lactococcus fujiensis). This study aimed to develop a novel multiplex polymerase chain reaction (PCR) primer set for the identification of the seven lactococcal species, as well as to differentiate the two industrially important dairy subspecies, L. lactis subsp. lactis and L. lactis subsp. cremoris. Methods and Results: A multiplex PCR primer set was designed based on the nucleotide sequences of the 16S rRNA gene of the seven lactococcal species. The specificity of the established one‐step multiplex PCR scheme was verified using more than 200 bacterial strains, in which a complete sequence match was confirmed by partial sequencing of their 16S rRNA gene. Conclusions: The one‐step multiplex PCR enables the identification and speciation of bacterial strains belonging to the genus Lactococcus and the differentiation of strains of L. lactis subsp. lactis and L. lactis subsp. cremoris. Significance and Impact of the Study: This work provides an efficient method for identification of lactococcal strains of industrial importance.  相似文献   

9.
Brazzein is a sweet-tasting protein isolated from the fruit of West African plantPentadiplandra brazzeana Baillon. It is the smallest and the most water-soluble sweet protein discovered so far and is highly thermostable. The proton NMR study of brazzein at 600 MHz (pH 3.5, 300 K) is presented. The complete sequence specific assignments of the individual backbone and sidechain proton resonances were achieved using through-bond and through-space connectivities obtained from standard two-dimensional NMR techniques. The secondary structure of brazzein contains one α-helix (residues 21–29), one short 310-helix (residues 14–17), two strands of antiparallel β-sheet (residues 34–39, 44–50) and probably a third strand (residues 5–7) near the N-terminus. A comparative analysis found that brazzein shares a so-called ‘cysteine-stabilized alpha-beta’ (CSαβ) motif with scorpion neurotoxins, insect defensins and plant γ - thionins. The significance of this multi-function motif, the possible active sites and the structural basis of themostability were discussed.  相似文献   

10.
In the development of an oral vaccine against Helicobacter pylori, H. pylori urease subunit B (UreB) was expressed in a food-grade delivery vehicle, Lactococcus lactis NZ3900. The ureB gene (Genbank accession no. FJ436980) was amplified by polymerase chain reaction (PCR) from MEL-Hp27. The PCR-amplified ureB gene was cloned in the E. coli–L. lactis shuttle vector pNZ8110 and transformed into E. coli MC1061. After the transformant had been identified, the recombinant plasmid was purified and electrotransformed into L. lactis NZ3900. The conditions of UreB expression in the L. lactis transformant were optimized by orthogonal experiment. The maltose binding protein (MBP)-UreB fusion protein expressed by TB1/pMAL-c2X-ureB was used to cultivate mice polyclonal anti-UreB serum after purification by the amylose prepacked column. The Western blot method was adopted to confirm whether the UreB expressed by L. lactis transformant had immunoreactivity. The optimized conditions for UreB expression were as follows. Nisin 40 ng/ml was added to the medium when the recombinant grew to OD600≈0.30–0.40 and the induction time lasted 5 h. As a result, the maximum yield of UreB was 27.26 μg/mL of medium, and the maximum percentage of UreB in cell extracts of the L. lactis transformant reached its peak at 20.19%. Western blot analysis showed that the UreB protein expressed by L. lactis transformant had favorable immunoreactivity. All these results make an appealing case for construction of the food-grade vaccine for H. pylori.  相似文献   

11.
The facultative anaerobic bacterium Lactococcus lactis has been used as a host for expression of a gene isolated from the anaerobic rumen fungus Neocallimastix sp. The coding region of the cellulase gene was obtained from the fungus with the aid of polymerase chain reaction amplification. The gene was then transformed into pCT vector system and the constructed recombinant plasmid was introduced into two L. lactis strains (IL403 and MG1363) by electroporation. The gene encoding the fungal originated cellulase was expressed in both strains successfully although the expression level was relatively lower in comparison with the original enzyme activity. Genetically modified L. lactis strains were used as silage inoculants for pre-biodegradation of the plant biomass during ensiling. That treatment resulted in a notable reduction of the acid detergent fiber (ADF) and neutral detergent fiber (NDF) contents of the plant biomass used as silage material. Inoculation with recombinant strain IL1043 resulted in 4.8 and 9.7 % decrease in NDF and ADF contents, respectively while the inoculation of silage with strain MG1363 decreased the ADF content by >5 %.  相似文献   

12.
13.
Rui-Yan Fu  Jian Chen    Yin Li 《Applied microbiology》2005,71(12):8911-8919
This study describes a novel strategy to improve the growth performance of Lactococcus lactis by heterologous production of food-grade transglutaminase. The mtg gene from Streptoverticillium mobaraense that encodes the transglutaminase mature protein was cloned into a nisin-inducible expression vector and transformed into L. lactis subsp. cremoris NZ9000. The leaky expression of the mtg gene from the nisA promoter resulted in ammonia formation and carbon flux redistribution at the pyruvate branch. As a consequence, medium acidification was lessened and energy utilization was improved. This led to significantly higher biomass production under aerobic conditions and particularly under non-pH-controlled conditions (up to a 12-fold increase). The results presented here provide a novel way to enhance the growth yield of L. lactis, which is an important step for the purposes of producing proteins of commercial interest using L. lactis as a host.  相似文献   

14.
Brazzein is a sweet-tasting protein isolated from the fruit of the West African plant Pentadiplandra brazzeana Baillon. It is the smallest and the most water-soluble sweet protein discovered so far, it is also highly thermostable. The proton NMR study of brazzein at 600 MHz (pH 3.5, 300K) is presented. Complete sequence specific assignment of the individual backbone and sidechain proton resonances were achieved using through-bond and through-space connectivities obtained from standard two-dimensional NMR techniques. The secondary structure of brazzein contains one -helix (residues 21–29), one short 310-helix (residues 14–17), two strands of antiparallel β-sheet (residues 34–39, 44–50) and probably a third strand (residues 5–7) near the N-terminus.  相似文献   

15.
植物甜蛋白brazzein基因的克隆与表达   总被引:2,自引:0,他引:2  
根据大肠杆菌偏爱的密码子,利用PCR技术体外人工合成brazzein cDNA序列,并将其克隆至原核高效表达载体pET30a( )中。重组载体pET30a( )-brazzein转化至大肠杆菌BL21(DE3)中,经IPTG诱导后,SDS-PAGE结果证明pET30a( )-brazzein在大肠杆菌中获得高效表达,目的蛋白占总菌体蛋白25%左右。  相似文献   

16.
K88 (F4) fimbrial adhesin, FaeG, was expressed extracellularly in Lactococcus lactis using a nisin-controlled gene expression system. The antibody response and protective efficacy of the recombinant bacteria (L. lactis [spNZ8048-faeG]) against live enterotoxigenic E. coli (ETEC) C83549 challenge were evaluated in ICR mice. Mice vaccinated with L. lactis [spNZ8048-faeG] had a significantly increased antigen-specific IgG level in the serum and decreased mortality rate (P < 0.05) compared with the control. This indicates that oral immunization of L. lactis [spNZ8048-faeG] can induce an immune-response protection upon challenge with live ETEC in ICR mice. An erratum to this article can be found at  相似文献   

17.

Background  

The NIsin-Controlled gene Expression system NICE of Lactococcus lactis is one of the most widespread used expression systems of Gram-positive bacteria. It is used in more than 100 laboratories for laboratory-scale gene expression experiments. However, L. lactis is also a micro-organism with a large biotechnological potential. Therefore, the aim of this study was to test whether protein production in L. lactis using the NICE system can also effectively be performed at the industrial-scale of fermentation.  相似文献   

18.
To develop an oral vaccine against Helicobacter pylori infection, we have expressed the H. pylori cag12 (HP0532) gene, encoding the outer membrane protein Cag12 (31 kDa), in a live delivery vehicle Lactococcus lactis. The cag12 gene was amplified by polymerase chain reaction (PCR) using the genomic DNA of H. pylori K51 isolated from Korean patients. DNA sequence analysis revealed that the cag12 gene of H. pylori K51 has 98.1 and 97.4% identity with individual cag12 genes of the H. pylori 26695 and J99, respectively. The GST–Cag12 fusion protein, produced using the Escherichia coli expression system, was used to raise a rat polyclonal anti-Cag12 antibody. The PCR-amplified cag12 gene of H. pylori K51 was cloned in the E. coliL. lactis shuttle vector (pMG36e) and transformed into L. lactis. Western blot analysis demonstrated that the Cag12 protein was expressed in the L. lactis transformant, with a maximum level at the log phase without extracelluar secretion. The oral administration of the transformant into mice resulted in the generation of the anti-Cag12 antibody in serum in two out of five cases. These results suggest that the recombinant L. lactis, which expresses Cag12, may be applicable as an oral vaccine to induce protective immunity against H. pylori.  相似文献   

19.
Abstract

Hyaluronic acid (HA) is a natural biopolymer and has long been attracting the attention of biotechnology industry due to its various biological functions. HA production with natural producer Streptococcus equi subsp. zooepidemicus has not been preferred because it has many drawbacks due to its pathogenicity. Therefore, in the present study, Streptococcal hyaluronan synthase gene (hasA) was introduced and expressed in Lactococcus lactis, through the auto inducible NICE system and the effect of nisin amount on the production of HA was examined. Newly constructed plasmid was transformed into L. lactis CES15, produced 6.09 g/l HA in static flask culture after three hours of induction period with initial 7.5 ng/ml nisin concentration within total six hours of incubation. The highest HA titer value ever was reported for recombinant HA-producing L. lactis by examining the effect of initial nisin concentration. We have shown that initial nisin concentration, which used to initiate the auto-inducing mechanism of NICE system and consequently hyaluronan synthase expression, has a direct and significant effect on the produced HA amount. Recently constructed recombinant L. lactis CES15 strain provide significant advantages for industrial HA production than those in literature in terms of production time, energy demand, carbon usage, and safety status.  相似文献   

20.
Nattokinase has been reported as an oral health product for the prevention of atherosclerosis. We developed a novel strategy to express a nattokinase from Bacillus subtilis in a live delivery vehicle, Lactococcus lactis. Promoter P nisZ and signal peptide SPUsp were used for inducible and secretory expression of nattokinase in L. lactis. Western blotting analysis demonstrated that nattokinase was successfully expressed, and about 94% of the enzyme was secreted to the culture. The recombinant nattokinase showed potent fibrinolytic activity, equivalent to 41.7 urokinase units per milliliter culture. Expression and delivery of such a fibrinolytic enzyme in the food-grade vehicle L. lactis would facilitate the widespread application of nattokinase in the control and prevention of thrombosis diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号