首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Auxin-induced elongation of epicotyl segments of azuki bean ( Vigna angularis Ohwi and Ohashi cv. Takara) was suppressed by fucose-binding lectins from Tetragonolobus purpureus Moench and Ulex europaeus L. These lectins also inhibited auxin-induced cell wall loosening (decrease in the minimum stress-relaxation time of the cell walls) of segments. Auxin caused a decrease in molecular mass of xyloglucans extracted with 24% KOH from the cell walls. The lectins inhibited auxin-induced changes in molecular mass of the xyloglucans. The autolytic release of xylose-containing products from the pectinase-treated cell walls was also suppressed by the lectins. Fucose-binding lectins pretreated with fucose exhibited little or no inhibitory effect on auxin-induced elongation, cell wall loosning, or breakdown of xyloglucans. These results support the view that the breakdown of xyloglucans is involved in the cell wall loosening responsible for auxin-induced elongation in dicotyledons.  相似文献   

2.
Antiserum raised against the LiCl extract of maize shoot cell walls suppresses auxin-induced elongation of maize coleoptile segments. A series of polyclonal antibodies were raised against protein fractions separated from the LiCl extract of maize ( Zea mays L. cv. B73 x Mo17) coleoptiles by SP-Sephadex and Bio-Gel P-150 chromatography. To understand the role of cell wall proteins in growth regulation, the effect of these antibodies on auxin-induced elongation and changes in the cell walls of maize coleoptiles was examined. Four of the fractions prepared reacted with the antiserum raised against the total LiCl extract and effectively suppressed its growth-inhibiting activity. Only these fractions contained the proteins responsible for eliciting growthinhibiting antibodies. The antibodies capable of growth inhibition of auxin-induced elongation of segments also inhibited auxin-induced cell wall loosening (decrease in the minimum stress-relaxation time of the cell walls) of segments. The antibodies raised against one of the protein fractions separated by SP-Sephadex inhibited the autolytic reactions of isolated cell walls and the auxin-induced decrease in (1→3), (1→4)-β-D-glucans in the cell walls. Thus, the degradation of β-D-glucans by cell wall enzymes may be associated with the cell wall loosening that is responsible for cell elongation. Because the other antibodies did not influence the auxin-induced degradation of (1→3), (1→4)-β-D-glucanses, β-D-glucanases and other cell wall enzymes may cooperate in regulation of cell elongation in maize coleoptiles.  相似文献   

3.
Auxin-induced elongation of epicotyl segments of azuki bean ( Vigna angularis Ohwi et Ohashi cv. Takara) was suppressed by a fucose-binding lectin from Tetragonolobus purpureas Moench and by polyclonal antibodies raised against xyloglucan heptasaccharide (Xyl3Glc4) when the cuticle present in the outer surface of epicotyls was abraded. In contrast, elongation of non-abraded segments was not influenced by the lectin or the antibodies. Epicotyl segments, from which the epidermal and the outer cortical cells had been removed, elongated rapidly for 2 h and than only slowly. Auxin slightly stimulated elongation of the inner tissue segments in the phase of slow growth. Neither in the presence nor in the absence of auxin did the lectin or the antibodies affect elongation of the inner tissue segments. The split portions of outer surface-abraded epicotyl segments incubated in buffer extended outward, and auxininhibited this outward bending. The lectin and the antibodies reversed the effect of auxin on bending. The fucose-binding lectin pretreated with fucose or the immunoglobulin fraction obtained from preimmune serum exhibited little or no inhibitory effect on auxin-induced elongation of abraded or split segments. These results support the view that a breakdown of xyloglucans in the epidermal cell walls plays an essential role in auxin-induced elongation in dicotyledons.  相似文献   

4.
Hoson T  Nevins DJ 《Plant physiology》1989,90(4):1353-1358
Antiserum was raised against the Avena sativa L. caryopsis β-d-glucan fraction with an average molecular weight of 1.5 × 104. Polyclonal antibodies recovered from the serum after Protein A-Sepharose column chromatography precipitated when cross-reacted with high molecular weight (1→3), (1→4)-β-d-glucans. These antibodies were effective in suppression of cell wall autohydrolytic reactions and auxin-induced decreases in noncellulosic glucose content of the cell wall of maize (Zea mays L.) coleoptiles. The results indicate antibody-mediated interference with in situ β-d-glucan degradation. The antibodies at a concentration of 200 micrograms per milliliter also suppress auxin-induced elongation by about 40% and cell wall loosening (measured by the minimum stress-relaxation time of the segments) of Zea coleoptiles. The suppression of elongation by antibodies was imposed without a lag period. Auxin-induced elongation, cell wall loosening, and chemical changes in the cell walls were near the levels of control tissues when segments were subjected to antibody preparation precipitated by a pretreatment with Avena caryopsis β-d-glucans. These results support the idea that the degradation of (1→3), (1→4)-β-d-glucans by cell wall enzymes is associated with the cell wall loosening responsible for auxin-induced elongation.  相似文献   

5.
It has been proposed that cell wall loosening during plant cell growth may be mediated by the endotransglycosylation of load-bearing polymers, specifically of xyloglucans, within the cell wall. A xyloglucan endotransglycosylase (XET) with such activity has recently been identified in several plant species. Two cell wall proteins capable of inducing the extension of plant cell walls have also recently been identified in cucumber hypocotyls. In this report we examine three questions: (1) Does XET induce the extension of isolated cell walls? (2) Do the extension-inducing proteins possess XET activity? (3) Is the activity of the extension-inducing proteins modulated by a xyloglucan nonasaccharide (Glc4-Xyl3-Gal2)? We found that the soluble proteins from growing cucumber (cucumis sativum L.) hypocotyls contained high XET activity but did not induce wall extension. Highly purified wall-protein fractions from the same tissue had high extension-inducing activity but little or no XET activity. The XET activity was higher at pH 5.5 than at pH 4.5, while extension activity showed the opposite sensitivity to pH. Reconstituted wall extension was unaffected by the presence of a xyloglucan nonasaccharide (Glc4-Xyl3-Gal2), an oligosaccharide previously shown to accelerate growth in pea stems and hypothesized to facilitate growth through an effect on XET-induced cell wall loosening. We conclude that XET activity alone is neither sufficient nor necessary for extension of isolated walls from cucumber hypocotyls.  相似文献   

6.
Auxin induces cell elongation by increasing the extensibility of the cell wall. Biochemical modifications of wall constituents lead to such changes in the mechanical properties of the cell wall (wall loosening). The results obtained in the studies using antibodies and lectins as specific probes indicate that the breakdown of xyloglucans in dicotyledons and (1→3), (1→4)-β-glucans in Poaceae is involved in auxin-induced wall loosening. In dicotyledons, xyloglucans are degraded by the direct hydrolysis with an endoglucanase to oligosaccharides and by the two-step reaction via a product with intermediate size. (1→3), (1→4)-β-Glucan breakdown in Poaceae coleoptiles is mediated by the two-step reaction with endo-and exoglucanases. Although auxin inducesde novo synthesis of some hydrolases involved in breakdown of these polysaccharides, the breakdown activity is also regulated by the wall environment such as pH, by the mobility of hydrolases through wall networks, by the interaction of hydrolases with wall polysaccharide complex, and by the presence and the concentrations of different types of regulatory molecules. Recipient of the Botanical Society Award of Young Scientists, 1992.  相似文献   

7.
Elongation growth of dark-grown azuki bean (Vigna angularis Ohwi et Ohashi cv. Takara) epicotyls was suppressed by hypergravity at 30 x g and above. Acceleration at 300 x g significantly decreased the mechanical extensibility of cell walls. The amounts of cell wall polysaccharides (pectin, hemicellulose-II and cellulose) per unit length of epicotyls increased under the hypergravity condition. Hypergravity also increased the amounts and the weight-average molecular mass of xyloglucans in the hemicellulose-II fraction, while decreasing the activity of xyloglucan-degrading enzymes extracted from epicotyl cell walls. These results suggest that hypergravity increases the amounts and the molecular mass of xyloglucans by decreasing xyloglucan-degrading activity. Modification of xyloglucan metabolism as well as the thickening of cell walls under hypergravity conditions seems to be involved in making the cell wall mechanically rigid, thereby inhibiting elongation growth of azuki bean epicotyls.  相似文献   

8.
Indole-3-acetic acid at 10 µM caused a 30% decrease inthe weight-average molecular mass of xyloglucans extracted with24% KOH from the cell walls of epicotyl segments of azuki bean(Vigna angularis Ohwi et Ohashi cv. Takara). Concanavalin A(Con A) at 2 g liter–1 completely inhibited the IAA-inducedchange in the molecular mass of the xyloglucans. Con A alsosuppressed the autolysis of pectin-depleted cell walls, as wellas the breakdown of xyloglucans by a protein fraction that hadbeen extracted with 1 M NaCl from the cell walls of azuki beanepicotyls. These results indicate that Con A is a potent inhibitorof the breakdown of xyloglucans both in vivo and in vitro. Mostof the activity responsible for the decrease in staining byiodine and the increase in reducing power of solution of xyloglucansin the protein fraction from cell walls bound to a column ofCon A-Sepharose and was eluted by the specific hapten, methyl  相似文献   

9.
Hemicellulose extracted from cell walls of suspension-cultured rose (Rosa Paul's Scarlet) cells was digested with cellulase from Trichoderma viride. The quantitatively major oligosaccharide products, a nonasaccharide and a heptasaccharide derived from xyloglucan, were purified by gel permeation chromatography. The nonasaccharide was found to inhibit the 2,4-dichlorophenoxy-acetic-acid-induced elongation of etiolated pea (Pisum sativum) stem segments. This confirms an earlier report (York et al., 1984, Plant Physiol. 75, 295–297). The inhibition of elongation by the nonasaccharide showed a maximum at around 10-9M with higher and lower concentrations being less effective. The heptasaccharide did not significantly inhibit elongation at 10-7–10-10M and also did not affect the inhibition caused by the nonasaccharide when co-incubated with the latter.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - XG xyloglucan - XG7 xyloglucan heptasaccharide (Glc4·Xyl3) - XG9 xyloglucan nonasaccharide (Glc4·Xyl3·Gal·Fuc)  相似文献   

10.
Hoson T  Masuda Y  Nevins DJ 《Plant physiology》1992,98(4):1298-1303
Polyclonal antibodies, raised against β-d-glucans prepared from oat (Avena sativa L.) caryopses, cross-reacted specifically with (1→3),(1→4)-β-d-glucans when challenged in a dot blot analysis of related polymers bound to a cellulose thin layer chromatography plate. The antibodies suppressed indoleacetic acid (IAA)-induced elongation of segments from maize (Zea mays L.) coleoptiles when the outer surface was abraded. However, IAA-induced elongation of nonabraded segments or segments with abrasion restricted to the interior of the cylinder was not influenced by the antibodies. Fab fragments prepared from the antibodies gave similar results. The capacity for IAA to overcome outward curvature of split coleoptile segments was partially reversed by treatment of the segments with the antibodies. Fluorescence microscopy revealed that antibody penetration was largely restricted to the epidermal cell wall region. These results support the view that the degradation of (1→3),(1→4)-β-d-glucans in the outer epidermal cell wall serves an essential role in auxin-induced elongation of Poaceae coleoptiles.  相似文献   

11.
Addition of xyloglucan-derived oligosaccharides shifted the wall-bound xyloglucans to a lower molecular mass distribution and increased the cell wall extensibility of the native epidermal tissue strips isolated from azuki bean (Vigna angularis) epicotyls. To ascertain the mechanism of oligosaccharide function, we examined the action of a xyloglucan endotransglucosylase/hydrolase (XTH) showing both endotransglucosylase and endohydrolase activities, isolated from azuki bean epicotyl cell walls, in the presence of xyloglucan oligosaccharides. The addition of xyloglucan oligosaccharides enhanced the xyloglucan-degrading activity of XTH against isolated xyloglucan substrates. When the methanol-fixed epidermal tissue strips were incubated with XTH, the molecular mass of wall-bound xyloglucans was decreased and the cell wall extensibility increased markedly in the presence of the oligosaccharides. These results suggest that xyloglucan oligosaccharides stimulate the degradation of xyloglucans by enhancing the XTH activity within the cell wall architecture, thereby increasing the cell wall extensibility in azuki bean epicotyls.  相似文献   

12.
Effects of indole-3-acetic acid (IAA) on the mechanical properties of cell walls and structures of cell wall polysaccharides in outer and inner tissues of segments of dark grown squash (Cucurbita maxima Duch.) hypocotyls were investigated. IAA induced the elongation of unpeeled, intact segments, but had no effect on the elongation of peeled segments. IAA induced the cell wall loosening in outer tissues as studied by the stress-relaxation analysis but not in inner tissues. IAA-induced changes in the net sugar content of cell wall fractions in outer and inner tissues were very small. Extracted hemicellulosic xyloglucans derived from outer tissues had a molecular weight about two times as large as in inner tissues, and the molecular weight of xyloglucans in both outer and inner tissues decreased during incubation. IAA substantially accelerated the depolymerization of xyloglucans in outer tissues, while it prevented that in inner tissues. These results suggest that IAA-induced growth in intact segments is due to the cell wall loosening in outer tissues, and that IAA-accelerated depolymerization of hemicellulosic xyloglucans in outer tissues is involved in the cell wall loosening processes.  相似文献   

13.
Galactose inhibited auxin-induced cell elongation of oat coleoptiles but not that of azuki bean stems. Galactose decreased the level of UDP-glucose in oat coleoptiles but not in azuki bean hypocotyls. Glucose-1-phosphate uridyltransferase activity (EC 2.7.7.9), in a crude extract from oat coleoptiles, was competitively inhibited by galactose-1-phosphate, but that enzyme from azuki bean was not. A correlation was found between inhibition of growth by galactose and inhibition of glucose-1-phosphate uridyltransferase activity by galactose-1-phosphate using oat, wheat, maize, barley, azuki bean, pea, mung bean, and cucumber plants. Thus, it is concluded that galactose is converted into galactose-1-phosphate, which interferes with UDP-glucose formation as an analog of glucose-1-phosphate.  相似文献   

14.
Concanavalin A (Con A) suppresses auxin-induced elongation ofsurface-abraded segments from both dicotyledonous and poaceousplants. In coleoptile segments of rice (Oryza sativa L.), theauxin-induced decrease in the minimum stress-relaxation timeand increase in the mechanical extensibility of the cell wallswere also inhibited by Con A, indicating that the lectin suppresseselongation by inhibiting the cell wall loosening. Auxin causeda decrease in the level of (1 3), (1 4)-ß-D-glucansin the cell walls of rice coleoptile segments, and this decreasewas also inhibited by the lectin. Con A suppressed the autolytichydrolysis of the glucans, as well as their breakdown in vitroby a protein fraction that had been extracted from the cellwalls of rice coleoptiles with 1 M NaCl. Furthermore, most ofthe glucan-hydrolyzing activity of the wall proteins bound toa Con A-Sepharose column, suggesting that glycoprotein enzymesare involved in the hydrolysis. Although Con A also affectedthe hydrolysis of other wall polysaccharides, the present data,when considered in combination with the inhibitory effects ofglucan-specific or glucanasespecific antibodies, support theview that the breakdown of (1 3),(1 4)-ß-D-glucansis associated with the cell wall loosening that is responsiblefor auxin-induced elongation in Poaceae. (Received August 17, 1994; Accepted February 15, 1995)  相似文献   

15.
Xyloglucan nonasaccharide (XG9) is recognized as an inhibitorof 2,4-D-induced long-term growth of segments of pea stems.In the presence of 10–5 M 2,4-D, inhibition by 10–9M XG9 of elongation of third internode segments of pea seedlingswas detected within 2 h after the start of incubation, in someexperiments. Analysis by double-reciprocal (Lineweaver-Burk)plots of elongation in the presence of various concentrationsof 2,4-D, with or without XG9, gave parallel lines, indicatingthat XG9 inhibited 2,4-D-induced elongation in an uncompetitivemanner. XG9 did not influence the 2,4-D-induced cell wall loosening.Thus, XG9 does not fulfill the proposed definition of an "antiauxin". XG9 at 10–11 to 10–6 M did not influence IAA-inducedelongation of segments from pea third internodes, azuki beanepicotyls, cucumber hypocotyls, or oat coleoptiles. Inhibitionof IAA-induced elongation by XG9 was not observed even whenthe segments from pea or azuki bean were abraded. Furthermore,fucosyl-lactose at 10–11 to 10–4 M did not affectthe IAA-induced elongation of segments of pea internodes orof azuki bean epicotyls. XG9 may be incapable of inhibitingthe IAA-induced cell elongation (especially in oat) or, alternatively,the endogenous levels of XG9 may be so high that exogenouslyapplied XG9 has no inhibitory effect on IAA-induced elongation. (Received February 28, 1991; Accepted May 25, 1991)  相似文献   

16.
The effect of auxin on the molecular weight (Mw) distributionof cell wall xyloglucans was investigated by gel permeationchromatography using coleoptile segments of Avena sativa L.cv. Victory, and the following results were obtained.
  1. The water-insoluble hemicellulose (HC-A) mainly consisted ofxyloglucans. Iodine staining method revealed that relativelylarge amounts of xyloglucans were present in the water-solublehemicellulose (HC-B) and water-soluble polysaccharide (WS) fractions.
  2. IAA did not cause remarkable changes in xyloglucan contentsin the hemicellulose, but significantly increased the xyloglucancontent in the WS fraction.
  3. IAA substantially decreased theweight-average Mw of HC-A. Thiseffect became apparent within30 min of the incubation period,and was not affected by the0.15 M mannitol or 2% sucrose applied.Hydrogen ions also causeda decrease in the weight-average Mwof HC-A; its effect beingreversible.
  4. Neither IAA nor hydrogen ions caused any remarkablechangesin the weightaverage Mw of water-soluble xyloglucansin theHC-B.
These results suggest that cell wall xyloglucans have an importantrole in auxininduced cell wall loosening in oat coleoptile cells. (Received May 10, 1984; Accepted August 20, 1984)  相似文献   

17.
A xyloglucan oligosaccharide was isolated from cell walls of Daucus carota L. suspension-cultured cells. From analytical data (gel-permeation chromatography, thin-layer chromatography, monosaccharide analysis, methylation analysis) it can be concluded that this oligosaccharide preparation consists mainly of a nonasaccharide known as XG9 (Glc4Xyl3GalFuc). This nonasaccharide showed excellent “anti-auxin” properties in the pea-stem bioassay, with 80% inhibition of 2,4-dichlorophenoxyacetic acid (2,4-D)-induced longitudinal growth of etiolated pea stem segments at concentrations of 1-0.1 nM. Applied in nanomolar concentrations to protoplasts regenerating in a medium containing 4.52 μM 2,4-D, the nonasaccharide influenced the viability of the protoplasts and the activities of glycan synthases in vitro. The effects were similar to those achieved by the omission of 2,4-D from the regeneration medium. The composition of the regenerated cell wall was not changed significantly by the use of 2,4-D-depleted medium or the addition of XG9 to 2,4-D-containing medium.  相似文献   

18.
Auxin-induced cell elongation in oat coleoptile segments was inhibited by galactose; removal of galactose restored growth. Galactose did not appear to affect the following factors which modify cell elongation: auxin uptake, auxin metabolism, osmotic concentration of cell sap, uptake of tritium-labeled water, auxin-induced wall loosening as measured by a decrease in the minimum stress-relaxation time and auxininduced glucan degradation. Galactose markedly prevented incorporation of [14C]-glucose into cellulosic and non-cellulosic fractions of the cell wall. It was concluded that galactose inhibited auxin-induced long-term elongation of oat coleoptile segments by interfering with cell wall synthesis.  相似文献   

19.
An enzyme involved in the breakdown of xyloglucans was purifiedfrom an extract of cell walls of azuki bean epicotyls obtainedwith 1 M NaCl and purified by column chromatography on severaldifferent resins. The purified enzyme gave a single band ofa protein with a molecular mass of about 32 kDa after SDS-PAGE.The enzyme hydrolyzed the xyloglucans of high molecular massfrom azuki cell walls to yield fragments of about 50 kDa withoutproduction of any oligo- or monosaccharides. Moreover, the enzymehad hardly any effect on xyloglucans of less than 60 kDa. Theenzyme also hydrolyzed xyloglucans from tamarind, but it didnot react with cellulose derivatives. In the presence of pyridylamino-labeledxyloglucan oligosac-charides as acceptor substrates, the enzymecatalyzed the transfer of 50-kDa products to the oligosaccharides.The Km value of the enzyme for xyloglucans of 540 kDa was similarin the presence and in the absence of xyloglucan oligosaccharidesas acceptors: 1.0 mg ml–1. These results suggest thatthe enzyme was an endotransferase but had unusual acceptor specificity,preferring smaller acceptors such as water. (Received September 9, 1996; Accepted March 16, 1997)  相似文献   

20.
Two auxin-induced endo-1,4-β-glucanases (EC 3.2.1.4) were purified from pea (Pisum sativum L. var. Alaska) epicotyls and used to degrade purified pea xyloglucan. Hydrolysis yielded nonasaccharide (glucose/xylose/galactose/fucose, 4:3:1:1) and heptasaccharide (glucose/xylose, 4:3) as the products. The progress of hydrolysis, as monitored viscometrically (with amyloid xyloglucan) and by determination of residual xyloglucan-iodine complex (pea) confirmed that both pea glucanases acted as endohydrolases versus xyloglucan. Km values for amyloid and pea xyloglucans were approximately the same as those for cellulose derivatives, but Vmax values were lower for the xyloglucans. Auxin treatment of epicotyls in vivo resulted in increases in net deposits of xyloglucan and cellulose in spite of a great increase (induction) of endogenous 1,4-β-glucanase activity. However, the average degree of polymerization of the resulting xyloglucan was much lower than in controls, and the amount of soluble xyloglucan increased. When macromolecular complexes of xyloglucan and cellulose (cell wall ghosts) were treated in vitro with pea 1,4-β-glucanase, the xyloglucan component was preferentially hydrolyzed and solubilized. It is concluded that xyloglucan is the main cell wall substrate for pea endo-1,4-β-glucanase in growing tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号