首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Through modifications in the fine membrane structure, cell-cell or cell-matrix interactions, and/or modulation of intracellular signaling pathways, sphingolipids can affect the tumorigenic potential of numerous cell types. Whereas ceramide and its metabolites have been described as regulators of cell growth and apoptosis, these lipids as well as other sphingolipid molecules can modulate the ability of malignant cells to grow and resist anticancer treatments, and their susceptibility to non-apoptotic cell deaths. This review summarizes our current knowledge on the properties of sphingolipids in the regulation of cancer cell death and tumor development. It also provides an update on the potential perspectives of manipulating sphingolipid metabolism and using sphingolipid analogues in anticancer therapy.  相似文献   

2.
Through modifications in the fine membrane structure, cell-cell or cell-matrix interactions, and/or modulation of intracellular signaling pathways, sphingolipids can affect the tumorigenic potential of numerous cell types. Whereas ceramide and its metabolites have been described as regulators of cell growth and apoptosis, these lipids as well as other sphingolipid molecules can modulate the ability of malignant cells to grow and resist anticancer treatments, and their susceptibility to non-apoptotic cell deaths. This review summarizes our current knowledge on the properties of sphingolipids in the regulation of cancer cell death and tumor development. It also provides an update on the potential perspectives of manipulating sphingolipid metabolism and using sphingolipid analogues in anticancer therapy.  相似文献   

3.
4.
Autophagy is an evolutionarily conserved mechanism for protein degradation that is critical for the maintenance of homeostasis in man. Autophagy has unexpected pleiotropic functions that favor survival of the cell, including nutrient supply under starvation, cleaning of the cellular interior, defense against infection and antigen presentation. Moreover, defective autophagy is associated with a diverse range of disease states, including neurodegeneration, cancer and Crohn's disease. Here we discuss the roles of mammalian autophagy in health and disease and highlight recent advances in pharmacological manipulation of autophagic pathways as a therapeutic strategy for a variety of pathological conditions.  相似文献   

5.
6.
Cancer drug development is leading the way in exploiting molecular biological and genetic information to develop "personalized" medicine. The new paradigm is to develop agents that target the precise molecular pathology driving the progression of individual cancers. Drug developers have benefited from decades of academic cancer research and from investment in genomics, genetics and automation; their success is exemplified by high-profile drugs such as Herceptin (trastuzumab), Gleevec (imatinib), Tarceva (erlotinib) and Avastin (bevacizumab). However, only 5% of cancer drugs entering clinical trials reach marketing approval. Cancer remains a high unmet medical need, and many potential cancer targets remain undrugged. In this review we assess the status of the discovery and development of small-molecule cancer therapeutics. We show how chemical biology approaches offer techniques for interconnecting elements of the traditional linear progression from gene to drug, thereby providing a basis for increasing speed and success in cancer drug discovery.  相似文献   

7.
Traditional anti-cancer drugs preferentially kill rapidly growing tumour cells rather than normal cells. However, most of these drugs have no preferential selection towards cancer cells and are taken up by the whole body, resulting in significant adverse side effects. Therapeutic molecules that could specifically inhibit undesirable phenotypes are an attractive way of eliminating cancer cells. There is a widespread effort to develop inhibitors against signal transduction molecules that play a key role in the proliferative, migratory and invasive properties of a cancer cell. Grb7 is an adaptor-type signalling protein that is recruited via its Src-homology 2 (SH2) domain to a variety of tyrosine kinases. Grb7 is overexpressed in breast, oesophageal and gastric cancers, and may contribute to the invasive potential of cancer cells. Molecular interactions involving Grb7 therefore provide attractive targets for therapeutic intervention.  相似文献   

8.
Three main targets were subjected for the most approved monoclonal antibodies (mAbs) in cancer therapy: EGFR in solid cancer, the clusters of differentiation in blood cancer and VEGF in angiogenesis. Meanwhile side effects, the elevated costs and resistance problems are limiting the efficiency of mAbs as targeted therapy. The combinatory therapy with chemo or radiotherapy has improved the efficiency of mAbs. The present review aims to shed more light on the immunotherapy and the related patents that were developed for cancer treatment.  相似文献   

9.
10.
11.
The experimental infectivity and excellent tolerance of some rodent autonomous parvoviruses in humans, together with their oncosuppressive effects in preclinical models, speak for the inclusion of these agents in the arsenal of oncolytic viruses under consideration for cancer therapy. In particular, wild-type parvovirus H-1PV can achieve a complete cure of various tumors in animal models and kill tumor cells that resist conventional anticancer treatments. There is growing evidence that H-1PV oncosuppression involves an immune component in addition to the direct viral oncolytic effect. This article summarizes the recent assessment of H-1PV antineoplastic activity in glioma, pancreatic ductal adenocarcinoma, and non-Hodgkin lymphoma models, laying the foundation for the present launch of a first phase I/IIa clinical trial on glioma patients.  相似文献   

12.
13.
Protein phosphorylation is a key mechanism of cell regulation in normal and cancer cells. Various new cancer drugs and drug candidates are aimed at protein kinase targets. However, selecting patients likely to respond to these treatments, even among individuals with tumors expressing validated kinase targets remains a major challenge. There exists a need for biomarkers to facilitate the monitoring of modulation of drug-targeted kinase pathways. Phospho-proteomics involves the enrichment of phosphorylated proteins from tissue, and the application of technologies such as mass spectrometry (MS) for the identification and quantification of protein phosphorylation sites. It has potential to provide pharmacodynamic readouts of disease states and cellular drug responses in tumor samples, but technical hurdles and bioinformatics challenges will need to be addressed.  相似文献   

14.
《Molecular medicine today》1996,2(12):519-527
Replication-competent viruses are used as selective cancer therapeutics and the mechanisms leading to tumor-specific replication and antitumoral efficacy are now becoming apparent. The specific viruses in development include tumor-targeting herpes simplex viruses, autonomous parvoviruses, Newcastle disease viruses and adenovirus. Information is also available on antiviral immunology and viral defenses against host-mediated immunity. This approach has many potential attributes, in addition to potential hurdles that must be overcome.  相似文献   

15.
Development of humanized antibodies as cancer therapeutics   总被引:1,自引:0,他引:1  
Recent success in the development of monoclonal antibody-based anti-cancer drugs has largely benefitted from the advancements made in recombinant technologies and cell culture production. These reagents, derived from the antibodies of mouse origin, while maintaining the exquisite specificity and affinity to the tumor antigens, have low immunogenicity and toxicity in human. High-level expressing cell clones are generated and used to produce large quantities of the recombinant antibodies in bioreactors in order to meet the clinical demand for therapeutic applications. In this report, the systems and general methodologies developed by us to construct and produce humanized antibodies from the parent mouse antibodies are described. Once the humanized antibodies are available, they can be applied in three principal forms for cancer therapy: (1) naked antibodies, (2) drug- or toxin conjugates, and (3) radioconjugates. Using the humanized anti-CD22 (epratuzumab) and anti-carcinoembryonic antigen (ant-CEA; labetuzumab) antibody prototypes, clinical applications of naked and radiolabeled humanized monoclonal antibodies are described.  相似文献   

16.
17.
The management of malignant disease remains one of the most challenging areas of modern medicine. The lifetime risk of developing cancer in the western world is estimated to be as high as 1 in 3. Traditionally, surgery, chemotherapy and radiotherapy have been the primary choice of treatment for patients with malignant tumours. Despite advances in the use and development of conventional cytotoxic agents, the cure rate remains disappointing in most patients with advanced disease of the common solid tumours. Consequently, the development of novel anti-cancer therapies is a high priority in cancer medicine. In recent years, a new generation of cancer therapies has emerged, based on a growing understanding of the molecular events that contribute to malignant transformation. A major difference between normal and cancer cells is the ability of cancer cells to multiply in an unrestricted and ungoverned fashion. In this context, there is considerable interest in elucidating the mechanisms that allow this unrestricted proliferation and that ultimately result in immortal cancer cells. It is now clear that the enzyme telomerase confers immortality on cells in most types of cancer. With the cancer cell reliant on telomerase for its survival, telomerase represents an extremely attractive mechanism-based target for the development of new cancer therapeutics.  相似文献   

18.
19.
Recently, several molecular genetic bases of polymorphic enzyme activities involved in drug activation and detoxification have been elucidated. Many molecular epidemiology studies based on these premises have sought to gather information on the association of genetically determined metabolic variants with different risks of environmentally induced cancer. While rare alterations of tumor suppressor genes dramatically raise cancer risk for the single affected subjects, far more common and less dramatic differences in genes encoding for drug metabolism enzymes can be responsible for a relatively small, but rather frequent increase of cancer risk at the population level. This increase could be especially important in specific cases of occupational, pharmacological or environmental exposure. Examination of the current literature reveals that the most extensively investigated metabolic polymorphisms are those of P450 1A1 and P450 2D6 cytochromes, glutathione S-transferases (GSTs; M1 and, to a lesser extent, M3, P1 and T1) and N-acetyltransferases (NATs; NAT1 and NAT2). Making reference to these enzymes, we have assayed the current knowledge on the relations among polymorphisms of human xenobiotic-metabolizing enzymes and cancer susceptibilities. We have found intriguing models of susceptibility toward different types of cancer. We have reviewed and commented these models on light of the complex balance among different enzyme activities that, in each individual, determines the degree of each cancer susceptibility. Moreover, we have found techniques of molecular genetic analysis, more suitable than previous ones on phenotypic expression, now allowing better means to detect individuals at risk of cancer. According to the models presently available, a systematic screening of individuals at risk seems to make sense only in situations of well defined carcinogenic exposures and when performed by the polymorphism analysis of coordinated enzyme activities concurring to the metabolism of the carcinogen(s) in question. Genetic polymorphism analysis can allow for the detection of patients more prone to some types of specific cancers, or to the adverse effects of specific pharmaceutical agents. Considering the increasingly confirmed double-edged sword nature of metabolism polymorphism (both wild-type and variant alleles can predispose to cancer, albeit in different situations of exposure), individual susceptibility to cancer should be monitored as a function of the nature, and mechanism of action, of the carcinogen(s) to which the individual under study is known to be exposed, and with reference to the main target organ of the considered type of exposure.  相似文献   

20.
Mitochondria as cancer drug targets   总被引:4,自引:0,他引:4  
Cancer cells are defined by their unlimited replicative potential and resistance to cell death stimuli. It is generally considered that a point of no return in apoptotic cell death is the permeabilisation of the mitochondrial membranes. For this reason, agents that permeabilise cancer cell mitochondria have the potential to circumvent their resistance to apoptotic cell death. Fortunately, the proliferative and bioenergetic differences between normal and cancerous cells provide an opportunity to selectively target cancer cell mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号