首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hepatitis B virus (HBV) X protein (HBx) is essential for virus infection and has been implicated in the development of liver cancer associated with chronic infection. HBx can interact with a number of cellular proteins, and in cell culture, it exhibits pleiotropic activities, among which is its ability to interfere with cell viability and stimulate HBV replication. Previous work has demonstrated that HBx affects cell viability by a mechanism that requires its binding to DDB1, a highly conserved protein implicated in DNA repair and cell cycle regulation. We now show that an interaction with DDB1 is also needed for HBx to stimulate HBV genome replication. Thus, HBx point mutants defective for DDB1 binding fail to complement the low level of replication of an HBx-deficient HBV genome when provided in trans, and one such mutant regains activity when directly fused to DDB1. Furthermore, DDB1 depletion by RNA interference specifically compromises replication of wild-type HBV, indicating that HBx produced from the viral genome also functions in a DDB1-dependent fashion. We also show that HBx in association with DDB1 acts in the nucleus and stimulates HBV replication mainly by enhancing viral mRNA levels, regardless of whether the protein is expressed from the HBV genome itself or supplied in trans. Interestingly, whereas HBx induces cell death in both HepG2 and Huh-7 hepatoma cell lines, it enhances HBV replication only in HepG2 cells, suggesting that the two activities involve distinct DDB1-dependent pathways.  相似文献   

2.
DDB1, a subunit of the damaged-DNA binding protein DDB, has been shown to function also as an adaptor for Cul4A, a member of the cullin family of E3 ubiquitin ligase. The Cul4A-DDB1 complex remains associated with the COP9 signalosome, and that interaction is conserved from fission yeast to human. Studies with fission yeast suggested a role of the Pcu4-Ddb1-signalosome complex in the proteolysis of the replication inhibitor Spd1. Here we provide evidence that the function of replication inhibitor proteolysis is conserved in the mammalian DDB1-Cul4A-signalosome complex. We show that small interfering RNA-mediated knockdown of DDB1, CSN1 (a subunit of the signalosome), and Cul4A in mammalian cells causes an accumulation of p27Kip1. Moreover, expression of DDB1 reduces the level of p27Kip1 by increasing its decay rate. The DDB1-induced proteolysis of p27Kip1 requires signalosome and Cul4A, because DDB1 failed to increase the decay rate of p27Kip1 in cells deficient in CSN1 or Cul4A. Surprisingly, the DDB1-induced proteolysis of p27Kip1 also involves Skp2, an F-box protein that allows targeting of p27Kip1 for ubiquitination by the Skp1-Cul1-F-box complex. Moreover, we provide evidence for a physical association between Cul4A, DDB1, and Skp2. We speculate that the F-box protein Skp2, in addition to utilizing Cul1-Skp1, utilizes Cul4A-DDB1 to induce proteolysis of p27Kip1.  相似文献   

3.
4.
5.
Wang Z  Ni J  Li J  Shi B  Xu Y  Yuan Z 《Journal of virology》2011,85(21):11457-11467
Cellular inhibitor of apoptosis protein 2 (cIAP2) is a potent suppressor of apoptotic cell death. We have shown previously that cIAP2 is involved in the tumor necrosis factor alpha (TNF-α)-induced anti-hepatitis B virus (HBV) response; however, the mechanism for this antiviral effect remains unclear. In the present study, we demonstrate that cIAP2 can significantly reduce the levels of HBV DNA replication intermediates but not the total viral RNA or core protein levels. Domain-mapping analysis revealed that the carboxy-terminal domains of cIAP2 were indispensable for this anti-HBV ability and that an E3 ligase-deficient mutant of cIAP2 (termed cIAP2*) completely lost its antiviral activity. We further identified HBV polymerase as the target of cIAP2. Overexpression of cIAP2 but not cIAP2* reduced polymerase protein levels, while cIAP2 knockdown increased polymerase expression. In addition, we observed that cIAP2 promoted the degradation of the viral polymerase through a proteasome-dependent pathway. Further experiments demonstrated that cIAP2 can bind to polymerase and promote its polyubiquitylation. Finally, we found that cIAP2 downregulated the encapsidation of HBV pregenomic RNA. Taken together, these data reveal a novel mechanism for the inhibition of HBV replication by cIAP2 via acceleration of the ubiquitin-proteasome-mediated decay of polymerase and reduction of the encapsidation of HBV pregenomic RNA, making this mechanism a novel strategy for HBV therapy.  相似文献   

6.
The hepatitis B virus (HBV) X protein (HBx) is critical for the life cycle of the virus. HBx associates with several host cell proteins including the DDB1 subunit of the damaged-DNA binding protein DDB. Recent studies on the X protein encoded by the woodchuck hepadnavirus have provided correlative evidence indicating that the interaction with DDB1 is important for establishment of infection by the virus. In addition, the interaction with DDB1 has been implicated in the nuclear localization of HBx. Because the DDB2 subunit of DDB is required for the nuclear accumulation of DDB1, we investigated the role of DDB2 in the nuclear accumulation of HBx. Here we show that expression of DDB2 increases the nuclear levels of HBx. Several C-terminal deletion mutants of DDB2 that fail to bind DDB1 are able to associate with HBx, suggesting that DDB2 may associate with HBx independently of binding to DDB1. We also show that DDB2 enhances the nuclear accumulation of HBx independently of binding to DDB1, since a mutant that does not bind DDB1 is able to enhance the nuclear accumulation of HBx. HBV infection is associated with liver pathogenesis. We show that the nuclear levels of DDB1 and DDB2 are tightly regulated in hepatocytes. Studies with regenerating mouse liver indicate that during late G1 phase the nuclear levels of both subunits of DDB are transiently increased, followed by a sharp decrease in S phase. Taken together, these results suggest that DDB1 and DDB2 would participate in the nuclear functions of HBx effectively only during the late-G1 phase of the cell cycle.  相似文献   

7.
DDB1, a component of a Cul4A ubiquitin ligase complex, promotes nucleotide excision repair (NER) and regulates DNA replication. We have investigated the role of human DDB1 in maintaining genome stability. DDB1-depleted cells accumulate DNA double-strand breaks in widely dispersed regions throughout the genome and have activated ATM and ATR cell cycle checkpoints. Depletion of Cul4A yields similar phenotypes, indicating that an E3 ligase function of DDB1 is important for genome maintenance. In contrast, depletion of DDB2, XPA, or XPC does not cause activation of DNA damage checkpoints, indicating that defects in NER are not involved. One substrate of DDB1-Cul4A that is crucial for preventing genome instability is Cdt1. DDB1-depleted cells exhibit increased levels of Cdt1 protein and rereplication, despite containing other Cdt1 regulatory mechanisms. The rereplication, accumulation of DNA damage, and activation of checkpoint responses in DDB1-depleted cells require entry into S phase and are partially, but not completely, suppressed by codepletion of Cdt1. Therefore, DDB1 prevents DNA lesions from accumulating in replicating human cells, in part by regulating Cdt1 degradation.  相似文献   

8.
Damaged DNA-binding protein (DDB) is a heterodimer composed of two subunits, p127 and p48, which have been designated DDB1 and DDB2, respectively. DDB2 recognizes and binds to UV-damaged DNA during nucleotide excision repair. Here, we demonstrated that DDB2 was SUMOylated in a UV-dependent manner, and its major SUMO E3 ligase was PIASy as determined by RNA interference-mediated knockdown. The UV-induced physical interaction between DDB2 and PIASy supported this notion. PIASy knockdown reduced the removal of cyclobutane pyrimidine dimers (CPDs) from total genomic DNA, but did not affect that of 6-4 pyrimidine pyrimidone photoproducts (6-4PPs). Thus, DDB2 plays an indispensable role in CPD repair, but not in 6-4PP repair, which is consistent with the observation that DDB2 was SUMOylated by PIASy. These results suggest that the SUMOylation of DDB2 facilitates CPD repair.  相似文献   

9.
深入研究HBV复制机理,筛选参与HBV复制的基因,可能为开发抗乙肝病毒新药提供新 的靶点.本文拟建立一种筛选HBV复制相关基因的方法: RNAi文库感染HepG2.2.15细胞后,利用免疫磁珠收集HBsAg表达降低的细胞,提取DNA,PCR扩增siRNA编码序列,将PCR产物克隆入T-easy载体,随机挑选克隆测序,发现DDB1基因可能参与HBV复制.本试验建立了一种筛选HBV复制相关基因的方法,为大规模全基因组筛选参与HBV复制的基因奠定了基础.  相似文献   

10.
The replication checkpoint protein Claspin is important for maintenance of genomic stability and is required for cells to overcome genotoxic stress. Upon UV-induced DNA damage, Claspin is required for activation of the ATR-mediated DNA damage checkpoint response, leading to arrest of DNA replication and inhibition of cell cycle progression. Located at the DNA replication fork, Claspin is also suggested to monitor replication and sense damage. Our present studies in HeLa cells demonstrate associations between the Claspin/ATR-related DNA damage checkpoint response and the global genomic nucleotide excision repair pathway. siRNA-mediated knockdown of Claspin abolishes the UV-induced degradation of DDB2 and impairs the co-localization of DDB2 to DNA damage sites. Thus, the presence of Claspin is required for the total turnover of DNA damage binding protein DDB2, as well as for its functionality in DNA damage recognition. Claspin, however, seems not to be required for maintaining the cellular level of the NER factor XPC and its UV-induced post-translational modifications. Co-localization of XPC with DNA lesions is also intact in the absence of Claspin as is the repair of the UV-induced lesions CPD and 6-4PP. Claspin itself may be directly responsible for physical interaction between the two pathways since Claspin is able to associate with DDB1, DDB2 and XPC. Taken together, these findings reveal physical and functional interplay between Claspin and NER-related proteins and demonstrate crosstalk between the DNA damage checkpoint control and DNA damage repair pathways.  相似文献   

11.
12.
Tan L  Ehrlich E  Yu XF 《Journal of virology》2007,81(19):10822-10830
Vpr-mediated induction of G2 cell cycle arrest has been postulated to be important for human immunodeficiency virus type 1 (HIV-1) replication, but the precise role of Vpr in this cell cycle arrest is unclear. In the present study, we have shown that HIV-1 Vpr interacts with damaged DNA binding protein 1 (DDB1) but not its partner DDB2. The interaction of Vpr with DDB1 was inhibited when DCAF1 (VprBP) expression was reduced by short interfering RNA (siRNA) treatment. The Vpr mutant (Q65R) that was defective for DCAF1 interaction also had a defect in DDB1 binding. However, Vpr binding to DDB1 was not sufficient to induce G2 arrest. A reduction in DDB1 or DDB2 expression in the absence of Vpr also did not induce G2 arrest. On the other hand, Vpr-induced G2 arrest was impaired when the intracellular level of DDB1 or Cullin 4A was reduced by siRNA treatment. Furthermore, Vpr-induced G2 arrest was largely abolished by a proteasome inhibitor. These data suggest that Vpr assembles with DDB1 through interaction with DCAF1 to form an E3 ubiquitin ligase that targets cellular substrates for proteasome-mediated degradation and G2 arrest.  相似文献   

13.
Hu J  McCall CM  Ohta T  Xiong Y 《Nature cell biology》2004,6(10):1003-1009
Cullins assemble a potentially large number of ubiquitin ligases by binding to the RING protein ROC1 to catalyse polyubiquitination, as well as binding to various specificity factors to recruit substrates. The Cul4A gene is amplified in human breast and liver cancers, and loss-of-function of Cul4 results in the accumulation of the replication licensing factor CDT1 in Caenorhabditis elegans embryos and ultraviolet (UV)-irradiated human cells. Here, we report that human UV-damaged DNA-binding protein DDB1 associates stoichiometrically with CUL4A in vivo, and binds to an amino-terminal region in CUL4A in a manner analogous to SKP1, SOCS and BTB binding to CUL1, CUL2 and CUL3, respectively. As with SKP1-CUL1, the DDB1-CUL4A association is negatively regulated by the cullin-associated and neddylation-dissociated protein, CAND1. Recombinant DDB1 and CDT1 bind directly to each other in vitro, and ectopically expressed DDB1 bridges CDT1 to CUL4A in vivo. Silencing DDB1 prevented UV-induced rapid CDT1 degradation in vivo and CUL4A-mediated CDT1 ubiquitination in vitro. We suggest that DDB1 targets CDT1 for ubiquitination by a CUL4A-dependent ubiquitin ligase, CDL4A(DDB1), in response to UV irradiation.  相似文献   

14.
Hepatitis B virus (HBV) infection is a major world-wide health problem. The major obstacles for current anti-HBV therapy are the low efficacy and the occurrence of drug resistant HBV mutations. Recent studies have demonstrated that combination therapy can enhance antiviral efficacy and overcome shortcomings of established drugs. In this study, the inhibitory effect mediated by combination of siRNAs targeting different sites of HBV in transgenic mice was analyzed. HBsAg and HBeAg in the sera of the mice were analyzed by enzyme-linked immunoadsorbent assay, HBV DNA by real-time PCR and HBV mRNA by RT-PCR. Our data demonstrated that all the three siRNAs employed showed marked anti-HBV effects. The expression of HBsAg and the replication of HBV DNA could be specifically inhibited in a dose-dependent manner by siRNAs. Furthermore, combination of siRNAs compared with individual use of each siRNA, exerted a stronger inhibition on antigen expression and viral replication, even though the final concentration of siRNA used for therapy was the same. Secreted HBsAg and HBeAg in the serum of mice treated with siRNA combination were reduced by 96.7 and 96.6 %, respectively. Immunohistochemical detection of liver tissue revealed 91 % reduction of HBsAg-positive cells in the combination therapy group. The combination of siRNAs caused a greater inhibition in the levels of viral mRNA and DNA (90 and 87.7 %) relative to the control group. It was noted that the siRNA3 showed stronger inhibition of cccDNA (78.6 %). Our results revealed that combination of siRNAs mediated a stronger inhibition of viral replication and antigen expression in transgenic mice than single siRNAs.  相似文献   

15.
16.
The CUL4 (cullin 4) proteins are the core components of a new class of ubiquitin E3 ligases that regulate cell cycle, DNA replication, and DNA damage response. To determine the composition of CUL4 ubiquitin E3 ligase complex, we used anti-CUL4 antibody affinity chromatography to isolate the proteins that associated with human CUL4 complexes and identified them by mass-spectrometry. A novel and conserved WD40 domain-containing protein, the human homologue of Drosophila lethal(2) denticleless protein (L2DTL), was found to associate with CUL4 and DDB1. L2DTL also interacts with replication licensing protein CDT1 in vivo. Loss of L2DTL in Drosophila S2 and human cells suppressed proteolysis of CDT1 in response to DNA damage. We further isolated the human L2DTL complexes by anti-L2DTL immuno-affinity chromatography from HeLa cells and found it associates with DDB1, components of the COP9-signalosome complex (CSN), and PCNA. We found that PCNA interacts with CDT1 and loss of PCNA suppressed CDT1 proteolysis after DNA damage. Our data also revealed that in vivo, inactivation of L2DTL causes the dissociation of DDB1 from the CUL4 complex. Our studies suggest that L2DTL and PCNA interact with CUL4/DDB1 complexes and are involved in CDT1 degradation after DNA damage.  相似文献   

17.
18.
19.
多种小分子干扰RNA联合抑制乙型肝炎病毒的体外研究   总被引:1,自引:0,他引:1  
小分子干扰RNA(siRNA)能够在哺乳动物细胞中引起包括病毒基因在内的基因沉默。为了研究多种siRNA联合应用在体外抑制乙型肝炎病毒(HBV)复制中的效果,本研究设计了12种针对不同HBV靶点的siRNA,转染可稳定分泌HBV颗粒的HepG22.2.15细胞,并采用了酶联免疫法检测上清液中HBsAg和HBeAg的含量,实时定量PCR法检测细胞中HBV的DNA含量。结果发现这12种分子均能在不同程度上抑制病毒复制。进一步研究表明它们对HBV的抑制作用在一定程度上存在剂量效应和协同作用,单分子siRNA在80nmol/L处对HBsAg和HBeAg的抑制率分别可达到约80%和60%,而多分子siRNA组合在20nmol/L处对HBsAg就能达到90%的抑制率,但对HBeAg表达的抑制率提高不明显。单分子siRNA在80nmol/L处对HBVDNA复制的抑制率可达到90%以上,而多分子siRNA组合在20nmol/L处对DNA含量就能达到约90%的抑制率。本研究的结果为进一步开发新的联合应用多种siRNA治疗HBV的途径打下了基础。  相似文献   

20.
乙型肝炎病毒(hepatitis B virus,HBV)编码的X蛋白(hepatitis B virus X protein,HBx)对HBV感染的起始和维持至关重要。HBx可能作为病毒来源的接头分子,介导Cullin-RING E3泛素连接酶4(cullin-RING ubiquitin E3 ligase 4,CRL4)复合物对染色体外DNA限制因子SMC5/6的降解。最近研究发现CRL4接头分子DNA损伤结合蛋白1(DNA damage-binding protein 1,DDB1)可不依赖与HBx的相互作用而直接上调病毒的表达和复制。本研究基于HBx基因删除(X-null)的HBV重组cccDNA(recombinant covalently closed circular DNA,rcccDNA)模型系统,在多种体外培养肝细胞系中证实上述发现。有意思的是,CRL4刺激rcccDNAX-null转染细胞抗原分泌表达的效应能被血清饥饿实验抵消。应用尾静脉高压注射小鼠模型,同样发现CRL4并不上调rcccDNAX-null在非增殖小鼠肝脏细胞中的表达。以上结果提示,细胞增殖特征与CRL4不依赖HBx上调病毒抗原表达的效应密切相关,有助于HBx生物学意义的准确分析和理解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号